@article{GAU_1976-1977__4__A13_0, author = {Gerritzen, Lothar}, title = {On automorphism groups of $p$-adic {Schottky} curves}, journal = {Groupe de travail d'analyse ultram\'etrique}, note = {talk:17}, pages = {1--6}, publisher = {Secr\'etariat math\'ematique}, volume = {4}, year = {1976-1977}, zbl = {0377.14006}, language = {en}, url = {http://www.numdam.org/item/GAU_1976-1977__4__A13_0/} }
TY - JOUR AU - Gerritzen, Lothar TI - On automorphism groups of $p$-adic Schottky curves JO - Groupe de travail d'analyse ultramétrique N1 - talk:17 PY - 1976-1977 SP - 1 EP - 6 VL - 4 PB - Secrétariat mathématique UR - http://www.numdam.org/item/GAU_1976-1977__4__A13_0/ LA - en ID - GAU_1976-1977__4__A13_0 ER -
Gerritzen, Lothar. On automorphism groups of $p$-adic Schottky curves. Groupe de travail d'analyse ultramétrique, Tome 4 (1976-1977), Exposé no. 17, 6 p. http://www.numdam.org/item/GAU_1976-1977__4__A13_0/
[1] Über Endomorphismen nichtarchimedischer holomorpher Tori, Inventiones Math., t. 11, 1970, p. 27-36. | MR | Zbl
. -[2] On multiplication algebras of Riemann matrices, Math. Annalen, t. 194, 1971, p. 109-122. | MR | Zbl
. -[3] Zur nichtarchimedischen Uniformisierung von Kurven, Math. Annalen, t. 210, 1974, p. 321-337. | MR | Zbl
. -[4] Unbeschränkte Steinsche Gebiete von P und nichtarchimedische automorphe Formen, J. reine und angew. Math. (to appear). | Zbl
. -[5] Invarianten binärer Formen, "Classification of algebraic varieties and compact manifolds", p. 36-69. - Berlin, Springer-Verlag, 1974 (Lecture Notes in Mathematics, 412). | MR | Zbl
. -[6] Über algebraische Gebilde mit eindeutigen Transformationen in sich, Math. Annalen, t. 40, 1892, p. 403-442. | JFM | MR
. -[7] Periods of p-adic Schottky groups, J. reine und angew. Math., t. 262-263, 1973, p. 239-247. | MR | Zbl
, . -[8] An analytic construction of degenerating curves over complete local rings, Compositio Math., Groningen, t. 24, 1972, p. 129-174. | Numdam | MR | Zbl
. -[9] p-adic Schottky groups, Thesis, Harvard 1973.
. -[10] Integral matrices. - New York, Academic Press, 1972. | MR | Zbl
. -[11] Über eine spezielle Funktion, welche bei einer bestimmten linearen Transformation ihres Arguments unverändert bleibt, J. reine und angew. Math., t. 101, 1887, p. 227-272. | JFM
. -