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CAHIERS DE TOPOLOGIE ET 
GEOMETRIE DIFFERENTIELLE CATEGORIQUES

Vol LU-4 (2011)

KÀHLER CATEGORIES

by R ichard BLUTE, J.R .B . COCKETT, 

Timothy PO RTER a n d R .A .G . SE E L Y

Résumé. Dans cet article, on établit une relation entre la notion de catégorie 
codifférentielle et la théorie, plus classique, des différentielles de Kàhler, 
qui appartient à l’algèbre commutative. Une catégorie codifférentielle est 
une catégorie monoïdale additive, ayant une monade T  qui est en outre une 
modalité d’algèbre, c.à.d. une attribution naturelle d’une structure d’algèbre 
associative à chaque object de la forme T(C). Enfin, une catégorie cod
ifférentielle est équipée d’une transformation dérivante, qui satisfait quelques 
axiomes typiques de différentiation, exprimés algébriquement.
La notion classique de différentielle de Kàhler définit celle d’un module des 
formes A-différentielles par rapport à A, où A est une /c-algèbre commuta
tive. Ce module est équipé d’une A-dérivation universelle. Une catégorie 
Kàhler est une catégorie monoïdale additive, ayant une modalité d’algèbre et 
un objet des formes différentielles associé à chaque objet. Suivant l’hypothèse 
que la monade algèbre libre existe et que l’application canonique vers T  est 
epimorphique, les catégories codifférentielles sont Kàhler.
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Abstract. This paper establishes a relation between the notion of a codiffer
ential category and the more classic theory of Kahler differentials in commu
tative algebra. A codifferential category is an additive symmetric monoidal 
category with a monad T, which is furthermore an algebra modality, i.e. a 
natural assignment of an associative algebra structure to each object of the 
form T(C). Finally, a codifferential category comes equipped with a deriv
ing transformation satisfying typical differentiation axioms, expressed alge
braically.
The traditional notion of Kahler differentials defines the notion of a module of 
^-differential forms with respect to A , where A is a commutative fc-algebra. 
This module is equipped with a universal ^-derivation. A Kahler category 
is an additive monoidal category with an algebra modality and an object o f 
differential forms associated to every object. Under the assumption that the 
free algebra monad exists and that the canonical map to T  is epimorphic, 
codifferential categories are Kahler.

Keywords. Differential categories, Kahler differential, Kahler category 
Mathematics Subject Classification (2010). 13N05, 18D10

1. Introduction

Differential categories were introduced in [3] in part to categorify work 
of Ehrhard and Regnier on differential linear logic and the differential A- 
calculus [10, 11]. In the present paper, we shall work with the dual notion 
of a codifferential category. The notion was also introduced with an eye to
wards capturing the interaction in certain monoidal categories between an 
abstract differentiation operator and a (possibly monoidal) monad or co
monad. We require our monads to be equipped with algebra modalities, i.e. 
each object naturally obtains the structure of an algebra with respect to the 
monoidal structure. The primary examples of differential and codifferential 
categories were the categories of vector spaces, relations and sup-lattices, 
each with some variation of the symmetric algebra monad. Differentiation is 
formal differentiation of polynomials. The notion of algebra modality is also 
fundamental in the categorical formulation of linear logic [4]. Thus both the 
work of Ehrhard and Regnier as well as our work can be seen as an attempt 
to extend linear logic to include differential structure.
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The logical and semantic consequences of this sort of extension of linear 
logic look to be very promising, likely establishing connections to such areas 
as functional analysis, as in the Käthe spaces or finiteness spaces introduced 
by Ehrhard, [8 , 9]. Recent work [5] shows that the category of convenient 
vector spaces [12] is also a differential category. This category is of great 
interest as it provides underlying linear structure for the category of smooth 
spaces [1 2 ], a cartesian closed category in which one can consider infinite- 
dimensional manifolds.

Two significant areas in which there is a well-established notion of ab
stract differentiation is algebraic geometiy and commutative algebra, where 
Kähler differentials are of great significance. There the Kähler module of 
differential forms is introduced, for instance see [13, 14]. This is similar in 
concept to various aspects of the definition of differential category; in par
ticular, the notion of differentiation must satisfy the usual Leibniz rule. But, 
in addition, Kähler differentials have a universal property that the notion of 
differential category seems to be lacking. Roughly, given a commutative al
gebra A, the Kähler ^4-module of differential forms is a module equipped 
with a derivation satisfying Leibniz, which is universal in the sense that to 
any other A-module equipped with a derivation, there is a unique ^4-module 
map commuting with this differential structure. There is no such (explicit) 
universal structure in the definition of differential category.

With this in mind, we introduce the new notion of a Kähler category. A 
Kähler category is an additive symmetric monoidal category equipped with 
a monad T  and an algebra modality. We further require that each object 
be assigned an object of differential forms, i.e. an object equipped with a 
derivation and satisfying a universal property analogous to that arising from 
the Kähler theory in commutative algebra.

Our main result is that every codifferential category, satisfying a minor 
structural property, is Kähler. In retrospect, this perhaps should not have 
been surprising. In any symmetric monoidal category, one can define both 
the notions of associative algebra and module over an associative algebra. 
Furthermore if A is any associative algebra in a symmetric monoidal cat
egory and C is an arbitrary object, then one can form the free vl-module 
generated by C, as A  0 C. This satisfies the usual universal property of free 
^4-modules. So in a codifferential category, TC  is automatically an associa
tive algebra, and thus TC  <g> C is the free TC-module generated by C. This
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is what we will take to be our object of differential forms.
The difficulty in the proof is in demonstrating that the map of TC- 

modules arising from the freeness of TC®  C also commutes with the differ
ential structure. This is where an additional property, which we call Property 
K, becomes necessary. We assume that our category has sufficient coprod
ucts to construct free associative algebras. As such, there is a canonical 
morphism of monads between this free algebra monad and the monad giv
ing the differential structure. Property K requires that this morphism be an 
epimorphism. In many codifferential categories, this is indeed the case. The 
proof that this condition suffices reveals additional structure in the definition 
of codifferential category.

A different approach to capturing the universality of Kahler differentials 
is contained in [7]. There the work is grounded in the notion of Lawvere 
algebraic theory, as opposed to linear logic in the present framework. A 
comparison of the two approaches would be interesting.

Acknowledgments Thanks to the University of Ottawa for providing the 
third author with a Distinguished Visiting Professorship. We also want to 
thank Anders Kock for asking the right question, and the anonymous referee 
for insightful comments.

2. Codifferential categories

We here review the basic definition in the paper [3]. The emphasis there was 
on differential categories. We here need the dual definition of codifferential 
category. We refer the reader to [3] for more details and motivations.

2.1 Basic definitions

Definition 2.1. 1. A symmetric monoidal category C is additive if it is en
riched over commutative monoids*. Note that in an additive symmetric 
monoidal category, the tensor distributes over the sum.

2. An additive symmetric monoidal category has an algebra modality if 
it is equipped with a monad (T , /x, rj) such that for every object C in

1 In particular, we only need addition on Hom-sets, rather than abelian group structure.
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C, the object, T(C), has a commutative associative algebra structure

and this family of associative algebra structures satisfies evident nat- 
urality conditions.

3. An additive symmetric monoidal category with an algebra modality is 
a codifferential category if it is also equipped with a deriving transfor
mation2, i.e. a natural transformation

(dl) e; d =  0 (Derivative o f a constant is 0.)

(d2) m ;d =  (id ® d); (m <g> id) +  (d 0  id); c; (m 0  id) (where c is the 
appropriate symmetry) (Leibniz Rule)

(d3) rj.d = e ® id (Derivative o f a linear function is constant.)

(d4) n\ d = d; p. ® d\m  ® id (Chain Rule)

For a diagrammatic presentation of (the duals of) these equations, see

We will need an iterated version of the Leibniz rule, which we state now. 
(The proof is straightforward.)

Lemma 2.2. In any codifferential category, the composite:

In this composite the d occurs in the i-th position. The c is the appropri
ate symmetry to move the C to the final position without changing the order 
of the TC  terms.

2We use the terminology of a deriving transformation in both differential and codiffer
ential categories.

3For simplicity, we assume the monoidal structure is strict

m: T(C) <S> T(C) —> T(C), e: I  —>■ T(C)

d: T(C) -)■ T(C) ® C

satisfying the following four equations3:

[3].

TC®" TC  TC  <g> C

is equal to the sum over i of the composites:

TC®n i d ® id"  ■d- -®id> TC  0 ■ ■ ■ TC  <g> C7 <g> • • • TC
c

TC  <g> • • • TC  <g> • • • TC  <g> C
m (g) id

TC  <g> C
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2.2 The polynomial example

We review the canonical example of a codifferential category, as this con
struction will be generalized in a number of different ways. Let A: be a field, 
and Vec the category of A:-vector spaces. It is well-established that Vec is an 
additive, symmetric monoidal category, and further that the free symmetric 
algebra construction determines an algebra modality. Specifically, if V  is a 
vector space, set

T(V) = k +  V + (V ®s V) +  (V V V ) . . . ,

where ®s denotes the usual symmetrized tensor product.
An equivalent, basis-dependent description is obtained as follows. Let J  

be a basis for V, then
T(V) ~  k[xj | j  € J],

in other words, T (V ) is the polynomial ring generated by the basis J. We 
have that T(V) provides the free commutative fc-algebra generated by the 
vector space V, and as such provides an adjoint to the forgetful functor from 
the category of commutative fc-algebras to Vec. The adjunction determines 
a monad on Vec, and the usual polynomial multiplication makes T(V ) an 
associative commutative algebra, and endows T  with an algebra modality.

Furthermore Vec is a codifferential category [3]. It is probably easiest to 
see using the basis-dependent definition. Noting that, even if V  is infinite
dimensional, any polynomial only has finitely many variables appearing, the 
coderiving transformation is defined by

f ( x j l tXj 2 , . . . ,x jn) ( ^ 1 , ^ 2 . • • - ,X jn) ® j i
¿=1 OX3i

where ^ f-  is defined in the usual way for polynomial functions.

Theorem 2.3. (See [3]) The above construction makes Vec a codifferential 
category.

By similar arguments, we can state:
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Theorem 2.4.

1. The category Rel of sets and relations is a differential and codifferen
tial category4.

2. The category Sup ofsup-semi lattices and homomorphisms is a codif
ferential category.

Further details can be found in [3].

3. Review of Kahler differentials

To see the origins of our theory of Kahler categories and introduce our main 
example, we now consider the classical case of Kahler differentials; see [13, 
14] and many other sources, for details.

Let A: be a field, A  a commutative fc-algebra, and M  an ,4-module5.

Definition 3.1. An ^-derivation from A to M  is a k-linear map d: A  —> M  
such that d{aa!) =  ad(a') +  a'd(a).

One can readily verify under this definition that 9(1) = 0 and hence
d(r) = 0  for any r G k.

Definition 3.2. Let Abe a k-algebra. A module of A-differential forms is an 
A-module Qa together with an A-derivation d:A  —> Qa which is universal 
in the following sense: for any A-module M, for any A-derivation &: A  
—> M, there exists a unique A-module homomorphism f:  Q/i —>• M  such 
that & - d f.

Lemma 3.3. For any commutative k-algebra A, a module of A-differential 
forms exists.

There are several well-known constructions. The most straightforward, 
although the resulting description is not that useful, is obtained by construct
ing the free /1-module generated by the symbols {da | a G A} divided out 
by the evident relations, most significantly d(aa') — ad(a') +  a'd(a). Of 
more value is the following description, found, for instance, as Proposition 
8.2Aof [13].

4Noting the self-duality which commutes with the monoidal structure.
5A11 modules throughout the paper will be left modules.
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Lemma 3.4. Let A be an k-algebra. Consider the multiplication o f A:

fi: A<S) A  —► A.

Let I  be the kernel o f ¡j, and set Q.a =  I / I 2. Define a map d: A  —> fi_4 by

db =  [1 <g> b — b ® 1]

where we use square brackets to represent the equivalence class. The pair 
(0 ,4 , d ) acts as a module o f differential forms. □

Example 3.5. For the key example, let 4̂ = k[ x i ,x 2, . . . ,  xn], then fI a is 
the free A-module generated by the symbols dx\, dx2, . . . ,  dxn, so a typical 
element of looks like

f i{ x i ,x 2, ■ • . , x n)dx 1 + f 2(x !,x2, .. . , x n)dx2 +  fn (x i,x 2, .. . , x n)dxn.

Note how this compares to our polynomial example of a codifferential cate
gory. If V  is an n-dimensional space, then there is a canonical isomorphism:

^T(V) —  ®  V-

This provides the basis for our main theorem on Kahler categories below.

4. Kahler categories

In all of the following, the category C will be symmetric, monoidal and ad
ditive. Unless otherwise stated, all algebras will be assumed to be both as
sociative and commutative for the remainder of the paper.

Definition 4.1. Let A be an algebra, and M  = (M, -M: A ®  M  —> M) an 
A-module. Then an /1-derivation to M  is an arrow d: A  —> M  such that

H;d = c;id® d;-M + id<gid;-M and 5(1) =  0

Note that if we are enriched over abelian groups, the second condition may 
be dropped.
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Definition 4.2. A Kahler category is an additive symmetric monoidal cate
gory with

• a monad T,

• a (commutative) algebra modality for T,

• for all objects C, a module o / T (C )-differential forms dc- T (C ) —> 
Q,c> viz a T(C)-module Qc> and a T(C)-derivation, dc-T(C) —>

which is universal in the following sense: for every T(C)-module 
M, and for every T(C)-derivation & :T(C ) —> M, there exists a 
unique T(C)-module map h: fie —> M  such that d; h — &.

T(C) Qc 

M

Remark 4.3. We remark that Q is functorial, indeed, is left adjoint to a 
forgetful functor, in the following sense. Consider the category T>er(T) of 
“T-derivations”: its objects are tuples (C, M, d ), for C  an object of C, M  
a T(C')-module, and d:T(C ) —> M a derivation. A morphism (C, M, d) 
—»• ( C , M', &) is a pair (/: C —>• C ' , g: M  —>• M'), where /  is a morphism 
in C and g is a T(C)-module morphism, satisfying d;g = T (f); &\ T(C) 
—y M'. The universal property of Q allows us to regard it as a functor C 
—y T>er(T), since given / :  C —>■ C', T ( f ); &: T (C ) —> f lc  is a derivation 
if & is, and hence /  induces fXf Qc ^ c -  Moreover ft is easily seen 
to be left adjoint to the forgetful functor Ver(T) —y C given by the first 
projection.

Theorem 4.4. The category o f vector spaces over an arbitrary field is a 
Kahler category, with structure as described in the previous section.

We would like to show that codifferential categories are Kahler, but are 
not in a position to do so at the moment, although we do not have a coun
terexample. The difficulty in getting a general result lies in the fact that in 
the definition of differential or codifferential category, there is no a priori 
universal property; evidently universality is fundamental in Kahler theory.
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However there is a universal property at our disposal: since our monad is 
equipped with an algebra modality, we can use the fact that T(C) <g> C is the 
free T(C) module generated by C.

Now suppose that C is a Kahler category. For each object C, we wish to 
construct an object Qc, with a universal derivation. As already suggested, 
we will define Vic =  T(C) <8> C.

So suppose we have a T(C)-derivation d: T (C ) —> M. We must con
struct the unique T(C)-module map h : T(C) ® C —> M  with the re
quired property. But because of the universal property of the free left T(C)- 
module generated by C, we already know there is a unique T(C)-module 
map h: T{C) ® C  ->  M.

It remains to verify that d;h = d, which is the focus of the remainder 
of the paper. The key to our approach is that there must be an interaction 
between the T-algebra structure and the associative algebra structure.

4.1 Free associative algebras vs. algebra modalities

We assume we have a symmetric monoidal additive category with an algebra 
modality and with finite biproducts and countable coproducts. We will also 
need to consider the tensor algebra, i.e.

F(C) = I  + C + C ® C  + C ® C ® C .. .

As always, this is the free (not-necessarily-commutative) associative al
gebra generated by C. As such, the functor induces a monad (F, fl, if) on our 
category, and that monad has its own (noncommutative) algebra modality.

Because of the existence of biproducts, we are able to establish close 
connections between the tensor algebra monad and the associative algebras 
arising from our algebra modality. These are expressed as a collection of 
natural transformations.

By the universality of F, we have the following natural transformations: 
a: F T  —>■ T  (given by the lifting of the identity T  —>■ T), and (p: F  —> T  
(given by the lifting of the unit rj. I  —> T). More explicitly, these are given 
by the following constructions.

For any object C, ac'. FT(C) —> T(C) can be built out of each com
ponent (since its domain is a coproduct). So we want a map an: T(C )0n 
—> T(C), but this is just the n-fold multiplication on T(C). In the case
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where n =  0, there is the canonical map rj: I  —»• T(C). The map otc is the 
usual quotient of the free associative algebra generated by (the underlying 
object of) T(C ) onto T(C).

Also we observe that <pc- FC  —»• TC  is simply Frjc', FC  —> F TC  
—> TC.

Lemma 4.5. <p is a morphism of monads

Proof. This follows immediately from Proposition 6.1, Chapter 3 of [1] 
(where the reader can also find the definition of a morphism of monads). 
That proposition states that will be a morphism of monads if the following 
diagrams commute:

T{C) — FT(C) FFT(C) FT(C) FTT(C)

T(C) FT(C) T(C) — —  TT(C)

These are straightforward, and in fact are an immediate consequence of 
the universal property of F, since the individual morphisms in these dia
grams are all associative algebra maps (and so each composite is the unique 
lifting of the obvious map). More concretely, since objects of the form F{C) 
are all coproducts, it suffices to check the equations componentwise, which 
is a simple exercise. □

Definition 4.6. The monad T  satisfies Property K if the natural transforma
tion (p:F —> T  is a componentwise epimorphism.

If we are working in a category in which there is an evident monad, we 
will say that the category satisfies Property K, rather than the monad.

Proposition 4.7. The categories o f vector spaces, relations and sup-lattices, 
as described in Theorems 2.3, 2.4, satisfy Property K.

Proof (Sketch) For vector spaces, for example, this is the usual quotient by 
symmetrizing. The other two examples are similar. □

- 263 -

a

O■C

a

F



BLUTE, COCKETT, PORTER & SEELY - KÄHLER CATEGORIES

4.2 Codifferential categories satisfying K are Kahler

We now present the main result of the paper. In fact, we offer two proofs to 
illustrate different aspects of the notions involved.

Theorem 4.8. I f C is a codifferential category, whose monad satisfies Prop
erty K, then C is a Kahler category, with Qc — T (C ) 0  C.

Proof. We consider the “inclusion” map rj;d:C —* T(C) 0  C. By equation 
1 in the definition of codifferential category, we have 77; d = u; e 0  idc .

Hence by the freeness of T(C) 0  C, for any T(C')-module M  and for 
any morphism h:C  —» M , there exists a unique map o f T(C)-modules, 
h:T(C) 0  C —>• M  such that r);d-,h — u ;e®  idc ; h = h. Suppose as 
in the definition of Kahler category that we have a T(C')-module M  and a 
T(C)-derivation d: T(C) —> M. Taking h = rj\d, we thus have a unique 
T^C^-module map h: T (C ) ® C —+ M  such that 77; d; h — h — rj; d

So our goal is to show that we can cancel the 77’s in the previous equation.

Proof #1 The first proof is a straight calculation. We consider the mor- 
phisms:

$  =  Frj; a; d; h and \I/ =  Fry; a; d

If we can show these two maps are equal, we are done given that Property K 
gives that Frj; a is suijective and thus d; h = d.

Since the domain of $  and 'I' is a coproduct, it suffices to show that the 
maps are equal on each component.

For the I  component, both composites are 0, by definition.
For the C component, we have r};d;h = tj; d, which has already been 

shown.
We next argue the binary C 0  C component, to demonstrate the tech

niques for the n-ary case. We wish to show that the composite

$ 2  = c ® C TC ® T C  ^  TC  TC  ® C M  

is equal to:

<H2 = C ® C  ^ T C  ® T C  ^ T C  M

- 264 -
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Proceed as follows. Throughout the proof, we assume strict associativity. 
Any unit isomorphism is denoted by u and c always denotes a symmetry. It 
will always be clear from the context what the relevant symmetry is.

$ 2 =  rj ® 77; id ® d; m  ® id,4, h -I- 77 <8> 77; d ® id; c; m ® id; h

= 77 ® u;id®  e® id;m ®  id;h +  u® rj;id®  e® id ;c ;m ® id ;h  

=  rj ® id;h + id® rj; c; h

Now note that

#2  =  r ] ® r j ; i d ® d ; - M  +  rj ®  T ];d  ®  i d ; - M

= V ® h;-M +  h®r];c;-M

The result then follows from the universal property of (—). In particular, 
idxc ® h; -M = h.

This calculation shows the structure for the general n-ary case, which 
requires the n-ary Leibniz rule of Section 2. The n-ary versions of $  and ^  
are

$ n =  77®"; m®""1; d; h Vn = 7?®n; d

Expanding, we obtain

n
$ n =  r7®*-1 ® id ® r/®n~l; c; m®n~2; h 

i=l

and
n

= ® h®  77®"“*; c; m®n~2; -M
i=1

The result again follows from the definition of h. □

We now give a more conceptual proof, using the universality of F  (as the 
free associative algebra functor), rather than its explicit construction.

Suppose that A  is a (commutative) algebra, and M  an 4̂-module. Then 
in fact A + M  has the structure of an algebra, in the following way. The unit

is I  - ê’-—» A +  M, and the multiplication (A + M ) ® (A +  M) —> A + M
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is induced by the following three maps:

A ®  A  - ^ 4  A

A ® M  

M  <g> M

M

M

A + M

A + M  

A + M

Moreover, this construction is functorial in M, so given a module morphism 
M  —> N, the map 4̂ + M —>-j4 +  iVisan algebra morphism.

The following well-known observation [6] was used in the early work of 
Beck [2],

Lemma 4.9. I f  A is a (commutative) algebra, M  an A-module, then A

M  is a derivation iff A < i . s > » A +  M  is an algebra morphism.

Proof #2 We note that d; h = d if and only if

T{C)
{14)

<!.»>

T(C) + T(C) ® C 

1 - \~ h

(*)

T(C) + M

Now, given property K, this previous diagram commutes if and only if

■F(C)

(1^)\ i1+̂

T ( C ) ^ T ( C )  + T(C)

1 -\-h 

T(C) +  M

Note that a T(C')-derivation followed by a T(C)-module map is a deriva
tion. So in the diagram above, every morphism is a morphism of algebras. 
Since F(C) is the free algebra generated by C, this diagram commutes if

o
—>
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and only if it commutes on the image of C.

F

T ( C ) ^ T ( C )  +  T(C)

T(C) +  M

But this amounts to the equation rj \d\h =  rj; d, which is already established.
□
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