Singularities and regular paths (an elementary introduction to smooth homotopy)
Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 52 (2011) no. 1, article no. 2, 32 p.
@article{CTGDC_2011__52_1_45_0,
     author = {Grandis, Marco},
     title = {Singularities and regular paths (an elementary introduction to smooth homotopy)},
     journal = {Cahiers de Topologie et G\'eom\'etrie Diff\'erentielle Cat\'egoriques},
     eid = {2},
     pages = {45--76},
     publisher = {Andr\'ee CHARLES EHRESMANN},
     volume = {52},
     number = {1},
     year = {2011},
     mrnumber = {2807421},
     zbl = {1237.58007},
     language = {en},
     url = {http://www.numdam.org/item/CTGDC_2011__52_1_45_0/}
}
TY  - JOUR
AU  - Grandis, Marco
TI  - Singularities and regular paths (an elementary introduction to smooth homotopy)
JO  - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY  - 2011
SP  - 45
EP  - 76
VL  - 52
IS  - 1
PB  - Andrée CHARLES EHRESMANN
UR  - http://www.numdam.org/item/CTGDC_2011__52_1_45_0/
LA  - en
ID  - CTGDC_2011__52_1_45_0
ER  - 
%0 Journal Article
%A Grandis, Marco
%T Singularities and regular paths (an elementary introduction to smooth homotopy)
%J Cahiers de Topologie et Géométrie Différentielle Catégoriques
%D 2011
%P 45-76
%V 52
%N 1
%I Andrée CHARLES EHRESMANN
%U http://www.numdam.org/item/CTGDC_2011__52_1_45_0/
%G en
%F CTGDC_2011__52_1_45_0
Grandis, Marco. Singularities and regular paths (an elementary introduction to smooth homotopy). Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 52 (2011) no. 1, article  no. 2, 32 p. http://www.numdam.org/item/CTGDC_2011__52_1_45_0/

[BH] J.C. Baez and A.E. Hoffnung, Convenient categories of smooth spaces, Trans. Amer. Math. Soc., to appear. Preprint [arXiv:0807.1704]. | Zbl

[Bo] J. Boman, Differentiability of a function and of its compositions with functions of one variable, Math. Scand. 20 (1967), 249-268. | EuDML | MR | Zbl

[CP] A.P. Caetano and R.F. Picken, On a family of topological invariants similar to homotopy groups, Rend. Istit. Mat. Univ. Trieste 30 (1998), 81-90. | MR | Zbl

[Ca] H. Cartan, Théorie élémentaire des fonctions analytiques d'une ou plusieurs variables complexes, Hermann, Paris 1961. | MR | Zbl

[Ch] K.T. Chen, Iterated path integrals, Bull. Amer. Math. Soc. 83 (1977), 831-879. | MR | Zbl

[Ck] P. Cherenack, The left exactness of the smooth left Puppe sequence, in New developments in differential geometry, 59-76, Kluwer Acad. Publ., Dordrecht 1996. | MR | Zbl

[E1] C. Ehresmann, Les prolongements d'une variété différentiable. I. Calcul des jets, prolongement principal. C. R. Acad. Sci. Paris 233, (1951). 598-600. | MR | Zbl

[E2] C. Ehresmann, Les prolongements d'une variété différentiable. II. L'espace des jets d'ordre r de V n dans V m . C. R. Acad. Sci. Paris 233, (1951). 777-779. | MR | Zbl

[Fr] A. Frölicher, Smooth structures, in Category Theory, Gummersbach 1981, pp. 69-81

A. Frölicher, Smooth structures, Lect. Notes in Math. Vol. 962, Springer, Berlin 1982. | MR

[G1] M. Grandis, Manifolds as enriched categories, in: Categorical Topology, Prague 1988, pp.358-368, World Scientific 1989. | MR

[G2] M. Grandis, Cohesive categories and manifolds, Ann. Mat. Pura Appl. 157 (1990), 199-244. | MR | Zbl

[G3] M. Grandis, Directed Algebraic Topology, Models of non-reversible worlds, Cambridge Univ. Press, Cambridge 2009. | MR | Zbl

[Ko] A. Kock, Synthetic differential geometry, Cambridge Univ. Press, Cambridge 1981. | MR | Zbl

[Ma] B. Malgrange, Ideals of differentiable functions, Oxford Univ. Press, Oxford 1966. | MR

[MBB] M.A. Moens, U. Berni-Canani and F. Borceux, On regular presheaves and regular semi-categories, Cah. Topol. Géom. Différ. Catég. 43 (2002), 163-190. | EuDML | Numdam | MR | Zbl

[MR] I. Moerdijk and G.E. Reyes, Models for smooth infinitesimal analysis, Springer, Berlin 1991. | MR | Zbl

[SSS] H. Sati, U. Schreiber and J. Stasheff, Differential twisted String and Fivebrane structures, Preprint (2009) [arXiv:0910.4001]. | MR | Zbl

[SW1] U. Schreiber and K. Waldorf, Parallel transport and functors, J. Homotopy Relat. Struct. 4 (2009), 187-244. | MR | Zbl

[SW2] U. Schreiber and K. Waldorf, Smooth functors vs. differential forms, Preprint [arXiv:0802.0663]. | MR | Zbl

[So] J. M. Souriau, Groupes différentiels, in Differential Geometrical Methods in Mathematical Physics (Proc. Conf., Aix-en-Provence/Salamanca, 1979), Lecture Notes in Math. 836, Springer, Berlin 1980, pp. 91-128. | MR

[Ze] E. C. Zeeman, The topology of the brain and visual perception, in: Topology of 3-manifolds and related topics, pp. 240-256, Prentice-Hall, Englewood Cliffs, N.J., 1962. | MR | Zbl