A note on the penon definition of n-category
Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 51 (2010) no. 3, article no. 3, 19 p.
@article{CTGDC_2010__51_3_205_0,
     author = {Cheng, Eugenia and Makkai, Michael},
     title = {A note on the penon definition of n-category},
     journal = {Cahiers de Topologie et G\'eom\'etrie Diff\'erentielle Cat\'egoriques},
     eid = {3},
     pages = {205--223},
     publisher = {Andr\'ee CHARLES EHRESMANN},
     volume = {51},
     number = {3},
     year = {2010},
     mrnumber = {2731718},
     zbl = {1235.18005},
     language = {en},
     url = {http://www.numdam.org/item/CTGDC_2010__51_3_205_0/}
}
TY  - JOUR
AU  - Cheng, Eugenia
AU  - Makkai, Michael
TI  - A note on the penon definition of n-category
JO  - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY  - 2010
SP  - 205
EP  - 223
VL  - 51
IS  - 3
PB  - Andrée CHARLES EHRESMANN
UR  - http://www.numdam.org/item/CTGDC_2010__51_3_205_0/
LA  - en
ID  - CTGDC_2010__51_3_205_0
ER  - 
%0 Journal Article
%A Cheng, Eugenia
%A Makkai, Michael
%T A note on the penon definition of n-category
%J Cahiers de Topologie et Géométrie Différentielle Catégoriques
%D 2010
%P 205-223
%V 51
%N 3
%I Andrée CHARLES EHRESMANN
%U http://www.numdam.org/item/CTGDC_2010__51_3_205_0/
%G en
%F CTGDC_2010__51_3_205_0
Cheng, Eugenia; Makkai, Michael. A note on the penon definition of n-category. Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 51 (2010) no. 3, article  no. 3, 19 p. http://www.numdam.org/item/CTGDC_2010__51_3_205_0/

[1] Jean Bénabou. Introduction to bicategories. Lecture notes in mathematics, 47, 1967. | MR

[2] Eugenia Cheng. Monad interleaving: a construction of the operad for Leinster's weak ω -categories, 2005. To appear in Journal of Pure and Applied Algebra; also available via http://www.math.uchicago.edu/~eugenia/interleaving.pdf. | Zbl

[3] Eugenia Cheng and Nick Gurski. The periodic table of n-categories for low dimensions II: degenerate tricategories. E-print 0705.2307, 2007. | Zbl

[4] Eugenia Cheng and Aaron Lauda. Higher dimensional categories : an illustrated guide book, 2004. Available via http://www.math.uchicago.edu/~eugenia/guidebook.

[5] R. Gordon, A. J. Power, and R. Street. Coherence for tricategories. Memoirs of the American Mathematical Society, 117(558), 1995. | MR | Zbl

[6] Nick Gurski. Nerves of bicategories as stratified simplicial sets. Preprint (submitted), 2005. | MR | Zbl

[7] Nick Gurski. An algebraic theory of tricategories. PhD thesis, University of Chicago, June 2006. Available via http://www.math.yale.edu/~mg622/tricats.pdf. | MR

[8] Tom Leinster. A survey of definitions of n-category. Theory and Applications of Categories, 10:1-70, 2002. | EuDML | MR | Zbl

[9] Michael Makkai and Marek Zawadowski. 3-computads do not form a presheaf category, 2001. Personal letter to Michael Batanin; also available via http://duch.mimuw.edu.pl/~zawado/Cex.pdf.

[10] Jacques Penon. Approche polygraphique des -catégories non strictes. Cahiers de Topologie et Géométrie Différentielle Catégoriques, XL-1:31-80, 1999. | EuDML | Numdam | MR | Zbl