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CAHIERS DE TOPOLOGIE ET Vol. Ll-2 (2010)
GEOMETRIE DIFFERENTIELLE CATEGORIQUES

BIPULLBACKS AND CALCULUS OF FRACTIONS

by Enrico M. VITALE 

Dedicated to Francis Borceux on the occasion of his 60th 
birthday

r é s u m é . Nous démontrons que la classe des équivalences 
faibles entre groupoïdes internes dans une catégorie régulière 
protomodulaire est une “congruence à biproduits fibrés” et, par 
conséquent, elle admet un calcul à droite des fractions. Comme 
application, nous montrons que les foncteurs monoïdaux entre 
groupoïdes internes dans les groupes et les homomorphismes en
tre 2-algèbres de Lie strictes sont les fractions des foncteurs in
ternes par rapport aux équivalences faibles.

RÉSUMÉ. We prove that the class of weak equivalences be
tween internal groupoids in a regular protomodular category is 
a bipullback congrence and, therefore, has a right calculus of 
fractions. As an application, we show that monoidal functors be
tween internal groupoids in groups and homomorphisms of strict 
Lie 2-algebras are fractions of internal functors with respect to 
weak equivalences.

1. Introduction

It is well known that any monoidal category is monoidally equivalent to 
a strict one. This is not true for strong monoidal functors: not every 
strong monoidal functor is naturally isomorphic to a strict one (i.e., to a 
functor F  such that the structural isomorphisms F A ®  F B  —> F {A ® B )  
and I  F I  are identities). An important example of this fact is given 
by Schreier theory of group extensions. In fact, let A  and B  be groups 
and write D{A) for A  seen as a discrete internal groupoid in the cate
gory Grp of groups, and OUT{B) for the internal groupoid in Grp corre
sponding to the crossed module B Aut(B )  of inner automorphisms.

Financial support: FNRS grant 1.5.276.09 is gratefully acknowledged.
2000 Mathematics Subject Classification: 18D05,18B40, 18D10, 18D35.
Key words and phrases: bipullback, bicategory of fractions, monoidal functor, 

weak equivalence.
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VITALE - BIPULLBACKS AND CALCULUS OF FRACTIONS

Then internal (= strict) functors from D{A) to O U T(B) correspond to 
split extensions of A  through B, whereas monoidal functors from D{A) 
to OUT{B) correspond to arbitrary extensions of A  by B.

The previous example leads to the following question: what is the 
precise relation between the 2 -category of internal groupoids and inter
nal functors in Grp and the 2 -category of internal groupoids in Grp and 
monoidal functors? The same question can be asked working internally 
to the category Lie of Lie /i'-algebras (for K  a fixed field), replacing 
monoidal functors by homomorphisms of strict Lie 2-algebras (precise 
definitions are in Section 7).

A possible answer to the previous questions is suggested by the fact 
that if F : C ^  D is an internal functor in Grp which is a weak equiv
alence (i.e., full, faithful and essentially surjective on objects) then the 
quasi-inverse functor F ~^: D —> C is no longer an internal functor, but 
it is still a monoidal one. More precisely, we prove that:

1 . The 2 -category of internal groupoids in Grp and monoidal func
tors is the 2 -category of fractions of the 2 -category of internal 
groupoids and internal functors in Grp with respect to weak equiv
alences.

2 . The 2 -category of internal groupoids in Lie and homomorphisms is 
the 2 -category of fractions of the 2 -category of internal groupoids 
and internal functors in Lie with respect to weak equivalences.

The paper is organized as follows:

- In Section 2 we recall some basic facts on bicategories of fractions 
established by D. Pronk in [16]. We then revisit the right calculus 
of fractions for classes of 1-cells using bipullbacks.

- In Section 3 we show that, for a category C with finite limits, 
the 2 -category Grpd{C) of internal groupoids and internal func
tors has bipullbacks. More precisely, we show that the standard 
homotopy pullback in Grpd(C) also satisfies the universal property 
of a bipullback.

- Using bipullbacks, we show in Section 4 that if C is regular, then 
the class of weak equivalences in Grpd{C) has a right calculus of 
fractions.
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- In Section 5 we refine the previous result showing that if C is regu
lar and protomodular, then weak equivalences satisfy the “2 ^  3” 
property and therefore they are a bipullback congruence, a notion 
inspired by Benabou’s approach to categories of fractions (see [4]).

- In the last two sections we choose as base category C the category 
of groups (Section 6) and the category of Lie iiT-algebras (Section
7) and we prove the results announced above.

Since Grp and Lie are Mal’cev categories, internal categories coincide 
with internal groupoids (see [11]). This is the reason why we restrict 
our attention to internal groupoids.

Let me finish with some comments. The result established in Section 
6 is not at all a surprise. In fact, if we work with isomorphism classes of 
internal functors, then Proposition 6.4 becomes a result on categories of 
fractions (not on 2-categories of fractions) quite easy to prove directly 
and also easy to deduce using the Quillen model structures studied in 
13] and in [15]. So, in my opinion, what is interesting is not the result 

per se but the fact that the 2-categorical nature of its proof requires 
the use of bipullbacks, whereas other kinds of 2-dimensional limits (like 
homotopy pullbacks) are not convenient in this context (see the Intro
duction in [4] for some comments on bilimits). Concerning the analogous 
result for Lie algebras stated in Section 7, I think it is interesting for a 
completely different reason. The notion of monoidal functor is a well- 
established one, whereas the notion of homomorphism of Lie 2-algebras 
is much more recent, so Proposition 7.4 could help to understand the 
2-dimensional theory of Lie algebras.

Notation: the composite of f  : A  B  and g : B  C is written f  • g 
or fg .

Terminology: bicategory means bicategory with invertible 2-cells.

2. B icategories o f fractions

2.1 Categories of fractions have been introduced by P. Gabriel and M. 
ZismaJi in [14] (see also Ch. 5 in [5]). If C is a category and S a class of 
arrows in C, the category of fractions of C with respect to E is a functor

- 8 5 -
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VITALE - BIPULLBACKS AND CALCULUS OF FRACTIONS

universal among all functors T ' . C ^ A  such that is an isomor
phism for all s € S. This can be restated saying that for every category 
A

Pe • — ; Funct{C\L~\ A ) Functj^{C,A)

is an equivalence of categories, where Functj:{C,A) is the category of 
functors making the elements of S invertible. If the class S  has a right 
calculus of fractions, then has a quite simple description:

P ro p o s itio n  2.2 (Gabriel-Zisman) Assume that S  satisfies the follow
ing conditions:

CFl. E contains all identities;

CF2. E is closed under composition;

CF3. For every pair f  : A  B  C  : g with p € S there exist g ': P  
A and / ' :  P  ^  C such that g' ■ f  = f  ■ g and g' G E;

CF4- I f  a pair of parallel arrows is coequalized by an element ofH,  then 
it is also equalized by an element o fE .

Then the objects ofC[E~^] are those ofC and an arrow from A to B  is 
C[E~^] is a class of spans

A ^ I ^ B

with s 6 E. Two spans (s, / ,  / )  and (s', I ', f )  are equivalent i f  there 
exist arrows x, x' in C such that x • s = x' • s' and x • f  = x' ■ f .

The analogous problem for bicategories has been solved by D. Pronk 
in [16]. For an introduction to bicategories see [3] or Ch. 7 in [5] where 
2-categories are also discussed.

D efin ition  2.3 (Pronk) Let Bhe&  bicategory and E a class of 1-cells in 
B. The bicategory of fractions of B  with respect to E is a homomorphism 
of bicategories

P e :  ^ ^ e [ E - ' i  

- 8 6 -
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VITALE - BIPULLBACKS AND CALCULUS OF FRACTIONS

universal among all homomorphisms such that T {S)  is an
equivalence for all 5  € E. This can be restated saying that for every 
bicategory A

is a biequivalence of bicategories, where Hom^{B,A)  is the bicategory 
of those homomorphisms T  such that T {S)  is an equivalence for all 

E.

D efin ition  2.4 (Pronk) Let be a bicategory and E a class of 1-cells in 
B. The class E has a right calculus of fractions if the following conditions 
hold:

BFl. E contains all equivalences;

BF2. E is closed under composition;

BF3. For every pair F : A —> B <— C : G with G G E there exist G ': P ^  
A, F ' : F C and (p: G' • F  => F' ■ G with G' G E;

BF4. For every a: F  - W  G - W  with G E there exist G E and 
P: V ■ F  ^  V -G  such that V ■ a  — ¡3-W, and for any other T/' G E 
QXidp':V' -F  -G  such that V  -a  = (3' -W  there exist U, U' 
axide-.U -V  ^ U '  - V  such that • V G E and

U-3
U - V - F -------- -̂---^ U - V - G

e-F e-G

U ' - V ' - F ---- j j r ^ U ' - V ' - G

commutes;

BF5. If a; F  G is a 2-cell, then F  G E if and only if G G E.

If the class E has a right calculus of fractions, the bicategory 
can be described in a way similar to that recalled in Proposition 2.2. 
Here we do not give full details because what we will use in Sections 6 
and 7 is the following useful result:

- 8 7 -
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P ro p o s itio n  2.5 (Pronk) Let B be a bicategory and S  a class of 1- 
cells in B which has a right calculus of fractions. Consider a bifunctor 
J- : B A  such that ^ { S )  is an equivalence for all S  E T, and let
T :  SfE-i-i A  be its extension. Then T  is a biequivalence provided
that T  satisfies the following conditions:

EFl. T  is surjective up to equivalence on objects;

EF2. T  is full and faithful on 2-cells;

EF3. For every 1-cell F  in A  there exist 1-cells G and W  in B with W  
in S  and a 2-cell J~{G) • F.

(In [16] it is stated that conditions EF1-EF3 are also necessary for T  
being a biequivalence. This is not true, as proved by M. Dupont in [12].)

2.6 Recall that a diagram

F'
C

X I
G

in a bicategory jB is a bipullback of F  and G if for any other diagram

K

H

■C

there exists a fill-in, that is a triple {L: X  F, a: L ■ G' 
F' => K ) such that

H, (3: L

L G' F  L - F '  -G

a-F 0-G

H F -- —̂ ^ K G

- 8 8 -
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commutes, and for any other fill-in (L ',a ',P ')  there exists a unique 
A: L' ^  L  such that

. Q , --------------^  I .  Q >  . j p f --------------b i l l ------------^  I . p >

H K

commute.

R em ark  2.7 1. Bipullbacks are determined uniquely up to equiva
lence.

2. A 1-cell : B —> A is called full and faithful if for every X the 
hom-functor

^  B(X, A)

is full and faithful in the usual sense. Consider now the following 
diagrams, the first one being a bipullback,

*̂ 2 ^  ^  id ^

W i

K
WXI W  id ' W

Let (D w : B —>• K, ¿1 : Dw  • id, 8 2 : Dw • W 2 => id) be the
fill-in of the second diagram through the first one. Then W  is full 
and faithful iff the second diagram is a bipullback iff the diagonal 
Dw  is an equivalence.

P ro p o s itio n  2.8 Let B be a bicategory with bipullbacks and E a class 
of 1 -cells in B. Assume that E satisfies the following conditions:

BPl. E contains all equivalences;

BP2. E is closed under composition;

BPS. E is stable under bipullbacks;

BP4- I fW  is in Ti, then the diagonal Dw is in T,-,

BPS. I f  a  . F  ^  G is a 2 -cell, then F  e T , if  and only i f  G eT ,.

Then E has a right calculus of fractions.

- 8 9 -
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Proof. Clearly BP3 implies BF3. We have to show that BF4 holds. 
Consider the following diagrams, the first one being a bipullback,

K B

V i w id

id

W W

W W W

Let {D\y' B 6 1 ^6 2 ) be the fill-in of the second diagram through
the first one, and (H: C K, o:i,a2) the fill-in of the third diagram 
through the first one. Consider also the bipullback

■C
H

Dw •K

and definí

V F  V H W i ' ^ ' L D w W i  L L D w W2 VHW 2 V G

Observe that since VF G S, then Dw G S by BP4, and then G E 
by BP3. Moreover, the condition V • a = (3 -W  follows from the fill-in 
condition on {Dw,^i,5 2 ) and (ii, « 1, 0 2̂).

Let /?': F ' • F  1/' • G be such that F ' G E and T/' • a  = /?' • IV. We 
obtain two fill-in of

TT.V/ V' F ^

V'-F\ v'Fm W

W

through the bipullback (K, VKi, W2 , w) : the first one is

( D' —  C —  E —  K , V ' - F - S i X - F -  S2) 

and the second one is

- 9 0 -
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By the universal property of (K, W i,W i,w ),  there exists a unique (3*: V -  
F  ■ Dw ^  V ' ■ H  such that

V' - F- Dw- Wi V

and

V 'F-5 i

V'-F-Dw -W2
V-F-Ô2

V  ■ F

I3*-W2
V  -H -W2

V'-a2

V  ■ F V  -G

commute. Let {U: W B,r]: U ■ L ^  V ' ■ F,e: U ■ V  ^  V )  be the 
fill-in of

D ' - ^ C
V ' F

ß*irH

Dw ■K

through the bipullback (D, L, V, (p). If we choose U' =  id, we have e: U ■
V  ^  U' -V '. Since V' E T,, then also U' ■ V  and U ■ V  are in E because 
of B Pl, BP2 and BPS. It remains to check the compatibility of £, (3 and 
j3' as in BF4, but this is just a diagram chasing. ■

3. B ipullbacks in Grpd(C)

The aim of this section is to prove the following result:

P ro p o s itio n  3.1 LetC be a category with finite limits, and let Grpd{C) 
he the 2-category of internal groupoids, internal functors and internal 
natural transformations in C. The 2-category Grpd{C) has bipullbacks.

3.2 Let us fix notation (details can be found in Ch. 7 of [5 
Appendix 3 of [7]):

or m

-91  -
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VITALE - BIPULLBACKS AND CALCULUS OF FRACTIONS

An internal groupoid C is represented by

C l Xc,d C l C l  Co C l
c

where the following diagram is a pullback

Cl X e,dCi^^Ci
7Tl

C l Co

Cl

- An internal functor F  : C is represented by

d e  d e

C o - ^ D ,

- An internal natural transformation o ; : F = i * G : C —>^Dis repre
sented by

/  Fo
c 0 Go

:Dr

3.3 It is helpful to start recalling that in Grpd{Set) bipullbacks are 
comma-squares. W ith the notations of 2.6:

- an object in P is a triple {oq G A q, b i : Fo(ao) —>■ Go(cq),co G Cq),

- an arrow from (oq, 6i, cq) to (ao, b[, c^) is a pair of arrows ( a i : ao 
Oq, Ci: Co c'q) such that F i(ai) • b[ =  6i • Ci(ci),

- G': F A  and F': F C are the obvious projections, and 
(^(ao,6i,co) =  bi,

- 9 2  -
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- Lo{xq)  =  {H q{xq) , ì I j {xo ) ,K o{xq) ) ,  L i { x i )  = { H i { x i ) , K i { x i ) ) ,  a  = 
id and ¡3 =  id,

- A ( x o )  =  {a'{xo),l3'{xo)).

3.4 The description of bipullbacks in Grpd{Set) recalled in 3.3 indi
cates that the first step to obtain bipullbacks in Grpd{C) is to construct 
from an internal groupoid B a new internal groupoid B whose objects 
are arrows in B and whose arrows are commutative squares in B. The 
construction of B is quite standard:

M = (  Bi Bi Bi Bi

- B i is defined by the following pullback

Bi
m2 Bi ^c,dBi

mi

Bi Xc,dBi

- d = m \ • 7Ti and c =  m2 • 7T2 ,

- e is the unique factorization through Bi of the following commu
tative diagram

<d,l>
Bi

< 1 , 0

Bi X Bo Ixe

B q X B i

B \  Xc,d B i

e x l
B \  X c4 B \

m

—

- we leave to the reader the task of describing rh and 1 .

3.5 The internal groupoid B is equipped with two internal functors 
7 : B —> B specified by

^  ( 5 i = m 2 - 7 r i  ^  ^  7 i = m i 7 r 2
B\ ^ B\ ^ ^1

d e  d e ¿  ^ d e  

----- 5o=d  * ^ 0  ------70=c * -So

-9 3  -
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and it tourns out that to give an internal natural transformation a: F  ^  
G : A B is the same as giving an internal functor a : A ^  B such that 
a ■ S = F  and a  • 7  =  G. Indeed, the internal functor a  is specified by

A

where a i is the unique factorization through Bi of the following com
mutative diagram

A
<i,c; Bi Xc,d Bi

<d,l>

^ 0  X A.I axGi
Bi Xc d̂Bi B

3.6 We are ready to prove Proposition 3 .1 . We use the notations of 
2 .6 .

Proof. Given F : A — B and G\ C — B in Grpd{C), a bipullback

P - ^ C

is given by the following limit in Grpd{C) (recall that Grpd{C) has limits 
computed componentwise in C)

P

A B

j / ^

C

- 94  -
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Indeed, any diagram

X - ^ C
H G

produces a commutative diagram

X

A i e

B B

so that following the universal property of P as a limit there exists a 
unique L: X — P such that L ■ G' = H, L ■ F' = K  and L • (f — 4). (In 
other words, (P, G', F', (p) is the standard homotopy pullback of F  and 
G.)
Clearly, (L, a = id, 0  — id) is a fill-in of (X, H, K, ip) through (P, G', F', (p). 
Let (L ',a ',P ')  be another fill-in of {X, H, K,'ip) through {F,G', F',ip). 
We have to show that there exists a unique X: L' => L  such that 
A • G" =  a ' and A • F ' =  p'. Define:

- Ti to be the unique factorization through Bi Xc,dBi of the following 
diagram

A ß'

B i

d

Bo

- T2 to be the unique factorization through Bi y~c,dBi of the following 
diagram

X

Fi B

By

d

Bo

- 9 5  -
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- T to be the unique factorization through B\ of the following dia
gram

T2 Bi Xc,d Bi

Tl

B \ X(. ¡i Bi

Finally, A is the unique factorization through Pi of the following diagram

^1 Bi Cl

X m 2 - 7 T i  yX \ ^ ^ m i - 7 r 2

X N>
Bi Bi

Clearly, X-G' =  a' and X-F' — ¡3'. To check that X-d =  L'q and A-c =  Lq, 
the naturality of A, and its uniqueness is a diagram chasing using that 
{G'l, (fi, F{}, {mi, m 2 } and {tti, 7T2} are jointly monomorphic. ■

4. W eak equivalences in Grpd{C)

D efin ition  4.1 (Bunge-Paré) Let P : C —> B be in Grpd{C).

1. F  is essentially surjective on objects if

Go XFo,d D <2 D Do

is a regular epimorphism, where ¿2 is given by the following pull
back

Cq D i  * - - >  Di 

tl d 

C o -----

2. F  is a weak equivalence if it is full and faithful (see 2.7) and 
essentially surjective on objects.

- 9 6 -

B m

m

ß 'a'

Gl

c

I XFo

D
Fo

o

A:o



VITALE - BIPULLBACKS AND CALCULUS OF FRACTIONS

The previous definition is due to M. Bunge and R. Paré (see [10]). In
13] a more general notion of weak equivalence involving a Grothendieck 

topology on C has been considered. Since in Sections 6 and 7 the base 
category C is regular, I adopt for the moment the definition of Bunge 
and Paré. More on this point is contained in 5.10.

Next lemma is well-known and we only sketch the proof.

L em m a 4.2 Let F: C ^ I D  be in Grpd(C).

1. F  is full and faithful if  and only if  the following is a limit diagram

Cl

Co Dl Co

Do Do

2. F  is an equivalence if  and only if  it is full and faithful and

Co XFo,d D l  > D i  — ^  Do 

is a split epimorphism.

Proof. 1. If the diagram is a limit diagram and a : G-F H -F  : X ^  D 
is an internal natural transformation, then a  ■ d = Go • Fq and a • c = 
Ho • Fo. By the universal property of Ci we get a unique f3: X q —>■ Ci 
such that (3 ■ d = Go-, P • d = Ho and P ■ Fi = a. So we have p  . G => H  
such that P ■ F  = a. (The naturality of P follows from that of ct.) 
Conversely, any commutative diagram

. ^ 0 .
Go i/o

OL

Co D l  Co

íb \i^  ^''^\». > / ^
Dn Do

- 9 7  -

d c

Fod cFo

t2

F



VITALE - BIPULLBACKS AND CALCULUS OF FRACTIONS

gives rise to internal functors G ,H  \ X —> C with discrete domain

Go-e
X

Xn

Hoe

Go

:C’1

Ho
:Co

and to an internal natural transformation a  : G ■ F  ^  H  ■ F. To give an 
internal natural transformation (3 : G H  such that ¡3 • F  = a  means 
precisely to give a factorization /3: Xo ^  Ci of {Go, a, Ho) through 
(d,Fuc).
2. Let F  be an equivalence and consider an internal natural transfor
mation p  . G ■ F  ^  Id-p. Since /? • d =  Go • Fq, there exists a unique 
j :  Do ^  Co X Di such that j  ■ h  =  Go and j  ■ t 2  =  (3. Therefore 
j  • t 2 • c — (3 • c — id.
Conversely, if j : Do —> Co x ̂ o.d D\ such that j  • t 2 • c = id, we can 
construct a quasi-inverse internal functor G: D ^  C as follows: first 
define Go by

Go = j  • t\:  Do Co XFo,d D\ Co 

Then, define j i  \ Di ^  Di by

j i  =< d - j - t 2 , l , c - j ‘t 2 -i > -(mx l ) -m:  Di Di x ^ ^ Di  Xc,dDi ^  Di

Finally, since F  is full and faithful, by the first part of the lemma we 
get a unique arrow Gi: Di ^  C\ such that Gi • d = d ■ Go, G\ ■ Fi = j i  
and Gi - c = c - Go- ■

C oro lla ry  4.3 Every equivalence in Grpd{C) is a weak equivalence. 
The converse is true provided that in C the axiom of choice holds (i.e., 
regular epimorphisms split).

4.4 Regular categories have been introduced by M. Barr in [2] (see also 
Ch. 2 in [6]). In a regular category regular epimorphisms behave well: 
they are closed under composition and finite products, stable under 
pullbacks, and if a composite arrow f  • g is a, regular epimorphism, then 
y is a regular epimorphism. It follows that if F ; C —> D is in Grpd{C) 
with C regular and if Fo is a regular epimorphism, then F  is essentially 
surjective on objects.

- 9 8 -
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P ro p o s itio n  4.5 Let C be a regular category and let E be the class of 
weak equivalences in Grpd(C). Then E has a right calculus of fractions.

Proof. Since by Proposition 3.1 Grpd{C) has bipullbacks, to prove that 
E has a right calculus of fractions we check conditions BP1-BP5 in 
Proposition 2.8.
B Pl is given by Corollary 4.3, BP4 follows from 2.7 and BP5 is an 
exercise for the reader.
BP2: full and faithful internal functors are closed under composition 
because so they are in Grpd(Set). Assume now that F : A —> B and 
G: B C are essentially surjective. Consider the following pullbacks

^ 0  XFo,d B i  

tl

A

t2
B i  B q X g o 4  > C l  A o  X F oG o4  C l

T2 Cl

'
d tl d Tl

’
lo--- ?0 £?o---- t;----^Co A

The essential surjectivity oi F  -G  comes from the commutativity of the 
following diagram

^0 XFo,d B i y.Gic,d C l

IxGi  x l

^0 XFoGo,«/ C l  Xc,d C l

Ixm

^0 XPoGô d Cl ---

¿2X1
B i 'XGic,d C l

CXl

T2 Cl

Bo XGo,d C l  

t2 

C l

BPS: full and faithful internal functors are stable under bipullbacks be
cause so they are in Grpd(Set) (use 3.3) and Grpd{C){X, —): Grpd(C) —> 
Grpd(Set) preserves bipullbacks. Consider now a bipullback

■C

- 9 9 -
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and assume that F  is essentially surjective. Following the description 
of P given at the beginning of 3.6, we have a limit diagram in C

Co

B q B q

But such a limit can be obtained performing two pullbacks as follows

Pn

A

Fo

Fo,d-Dl \

B i Co

Bq Bq

Since by assumption t 2 • c: Aq x B i  —> Bi  —> Bq is a regular epi
morphism, Fq also is a regular epimorphism and then F' is essentially 
surjective (see 4.4). ■

5. B ipullback congruences

Next definition is the direct bicategorical generalization of the notion of 
pullback congruence introduced by J. Benabou in [4 .

D efin ition  5.1 Let B he a. bicategory with bipullbacks and E a class 
of 1-cells in B. The class E is a bipullback congruence if the following 
conditions hold:

BCl. E contains all equivalences;

- 1 0 0 -
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BC2 . S  satisfies the “2 => 3” property: let F : C —> D and G: D —> E 
be 1-cells in if two of F, G and F  • G are in E, then the third 
one is in E;

BC3. E is stable under bipullbacks;

BC4. If a :  F  ^  G is a 2-cell, then F  € E if and only if G € E.

P ro p o s itio n  5.2 Let B he a bicategory with bipullbacks. Any bipullback 
congruence has a right calculus of fractions.

Proof. It is enough to prove that a bipullback congruence E satisfies 
condition BP3 in Proposition 2.8. Let PF: B A be in E and let 
(D w : B ^  K, ¿1 : Dw • id, ¿2 : Dw • id) be the diagonal
fill-in as in 2.7. By BCl, id e  E, and then by BC4 Dw  • VFi € S. Since 
by BC3 VFi G E, we conclude by BC2  that Dw  G E. ■

5.3 Protomodular categories have been introduced by D. Bourn in [8 
(see also [7]). Since we are concerned only with regular categories, we 
can consider the next lemma, proved in [9], as a definition of proto- 
modular category. This lemma makes also evident the analogy between 
bipullback congruences and regular protomodular categories: in a reg
ular protomodular category pullbacks satisfies the “2 ^  3” property. 
This analogy will be made precise in Proposition 5.5.

L em m a 5.4 (Boum-Gran) Let C be a regular category. The following 
conditions are equivalent:

1. C is protomodular;

2. In any commutative diagram

where b is a regular epimorphism, if  the left hand square and the 
outer rectangle are pullbacks, then the right hand square is a pull
back.

-1 0 1  -

b
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P ro p o s itio n  5.5 Let C be a regual protomodular category. The class 
of weak equivalences in Grpd{C) is a bipullback congruence.

Let F : A B and G: B C be in Grpd{C). In order to prove 
Proposition 5.5 we need two lemmas on the shape of certains limits. 
The proof is routine.

L em m a 5.6 Consider the pullbacks

Ao X F o , d  Bi 

tl

*2

o Fo

B,

d

Bo

Bi Ao

Si

S2

1

^0

Fo

Bo

and the commutative diagrams 

-̂-------- -A o

< d ,F i>

An X ,

A\

(1)Ì r 1
Fo < F i,c> (2)

Fo,d Bi — — Bi — E 0 Bi Xc,Fo ^ 0  B i  — r *  B

A q

Fo

is full and faithful iff (1) is a pullback iff (2 ) is aThen F: A 
pullback.

L em m a 5.7 Consider the pullbacks

Ao Xpo4 B i  > B i C \  Xc,Go Bo —^  

tl d si

A
Fo

Bo Cl

Bo A q y.FoGo4C'i

Go Tl

•Co /
F q 'G o

Cl

d

Co

and the commutative diagrams 

^0 Bi B r ^  Cl Xe,Go Bo

t l

Si

Ao Xpo,d -Dl

lxC?i (4)

(3) Cl

Go

^0 XFoGo.d Cl Cl —̂  Co

Ao
Fo Go

Co

Then (3) is a pullback iff (4) is a pullback.

- 1 0 2 -

c

_d__

'o

BA

Xc

A1 ■

c

T2

Í2
Fo,X

d

B Bc

Si

D



5.8 We are ready to prove Proposition 5.5.

Proof. Let E be the class of weak equivalences in Grpd{C). We have 
to show that condition BC2 holds, since the other conditions have been 
checked in the proof of Proposition 4.5. More precisely, given F  : A ^  B 
and G : B — C in Grpd{C) such that F  • G G E, we have to prove that 
F  e  E iff G € S. There are two not obvious steps. (The protomodularity 
of C is needed only for the first step.)
1. If F  • G is full and faithful and F  is a weak equivalence, then G is 
full and faithful. Consider the following commutative diagram

VITALE - BIPULLBACKS AND CALCULUS OF FRACTIONS

A -i ■A

<d,Fi>

^0 XFo,d B i -  

IxGi  

-4 o XFoGo,d C l

<2

T2

B i ^

C i ^

Fo 

Bo

Go

■Co

Since F  is full and faithful, by Lemma 5.6 the top square is a pullback. 
Since F  • G is full and faithful, by Lemma 5.6 the outer rectangle is a 
pullback. Since F  is essentially surjective, the second row is a regular 
epimorphism. Following Lemma 5.4 the bottom square is a pullback. 
Therefore, by Lemma 5.7, the outer rectangle of the following commu
tative diagram is a pullback

^0 Bi B i^ ^  Cl Bo

tl

Ao

S i

Cl

Fo
Bo

Go
Co

Since the left hand square is a pullback by definition and the second 
column is a split epimorphism, by Lemma 5.4 the right hand square is a 
pullback. By Lemma 5.6 again we conclude that G is full and faithful.
2. If F  • G is essentially surjective and G is full and faithful, then F  is

- 1 0 3 -
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essentially surjective. Consider the following pullback (notations as in 
Lemma 5.7)

Q ----------- ------------^Bo

Go

■^0 XFoGo,d Cl Cl —^  Co

By assumption T2 -c is a regular epimorphism, so that A2 also is a regular 
epimorphism. Since C is full and faithful, there exists X : Q ^  Bi such 
that A • d =  Ai • Ti • Fo) • Cl =  Ai • T2 and A ■ c =  A2 . Prom the first 
equation on A, we deduce the existence of ^ : Q ^  AqX Fo4  Bi such that 
// • ii =  Ai • Ti and // • ¿2 =  A. Finally, fx • t 2  • c = X ■ c = X2 , so that ¿2 • c 
is a regular epimorphism. (Note that we need only the existence of A, 
not its uniqueness. In other words we only use the “fullness” of G, and 
not its “faithfulness” .) ■

5.9 Observe that, contrarily to Lemma 5.4, Proposition 5.5 is not a 
characterization of regular protomodular categories. Indeed, if C is Set 
(more generally, if in C the axiom of choice holds) then weak equivalences 
in Grpd(C) are the same that equivalences (see Corollary 4.3), and the 
class of equivalences obviously is a bipullback congruence.

5.10 G. Janelidze pointed out to me that condition 2 in Lemma 5.4 
holds in any protomodular (not necessarily regular) category C provided 
that the arrow 6 is a pullback stable strong epimorphism. This fact has 
an interesting consequence. Indeed, Proposition 4.5 holds when C is any 
finitely complete category and S is the class of “weak 5-equivalences” , 
where:

- is any class of arrows that behaves well (in the sense explained 
in 4.4) and contains the split epimorphisms,

- an internal functor F  is a weak 5-equivalence if it is full and faith
ful and essentially 5-surjective (that is, the arrow ¿2 • c: Co
Dl ^  Dl Do of Definition 4.1 is in 5).

Therefore, Proposition 5.5 holds for weak 5-equivalences in any pro
tomodular category C provided that £  behaves well, contains the split

- 1 0 4 -

Al
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epimorphisms and is contained in the class of pullback stable strong 
epimorphisms. Examples are:

i. the class of pullback stable regular epimorphisms,

ii. the class of pullback stable regular epimorphisms that are effective 
descent morphisms.

6. M onoidal functors

All along this section we fix C =  Grp, the category of groups, which is a 
regular and protomodular category. I use additive notation for groups.

6.1 The aim of this section is to prove that the 2-category MON  de
scribed hereunder is the bicategory of fractions of Grpd(C) with respect 
to weak equivalences.

1. Objects of MON  are internal groupoids in Grp. Note that since 
the forgetful functor Grp —> Set preserves finite limits, any object 
of MON  is also a groupoid in the usual sense.

2. 1-cells F : A B in MON  are monoidal functors, that is, pairs 
(F, F2) where F  is a (not necessarily internal) functor and

F2 =  {F2“’" : F a  +  F6 ^  F (a  +  b)}a,beAo 

is a natural family of arrows in B satisfying the cocycle condition

Fa + Fb + F c ------- !— i  Pa +  F{b + c)

F “ ^ a , b + c

F{a + b) + Fc — > F{a + b + c)

(and suitable Fq: 0 —> FO is uniquely determined by F  and F2).

3. 2-cells A: F ^  G in MON  are monoidal natural transformations, 
that is, natural transformations such that the following diagram

- 1 0 5 -

1

pb,C
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commutes

^ F { a  + b)

â+b

Ga + Gb > G{a +  b)

Fa  +  Fh

Aa“f"Ab

R em firk  6.2 1. The 2-category Grpd(C) embeds into the 2-category 
MON: internal functors F : A ^  B are precisely those monoidal 
functors for which all the are identites. Indeed, in this case 
the naturality of F2 corresponds to the fact that F^: Ai B\ 
is a group homomorphism, and the cocycle condition is verified 
because e : Bq ^  B i'is a, group homomorphism.

2. The embedding T  : Grpd{C) MONSs full and faithful on 2-cells. 
Indeed, if F^'^ — id — G^'^, then the fact that A is monoidal cor
responds to the fact that X: A q ^  Bi is a group homomorphism.

3. The embedding : Grpd(C) ^  MON preserves-weak equivalences. 
In fact, the forgetful functor Grp Set preserves and reflects 
finite limits and regular epimorphisms (this is because Grp is an 
algebraic category, see Ch. 3 in [6]), so that weak equivalences 
in Grpd{C) and in MON  are 1-cells which are full, faithful and 
essentially surjective in the usual sense.

4. In MON  weak equivalences coincide with equivalences. Indeed, if 
F : A B is a weak equivalence, any quasi-inverse G: B —+ A 
can be equipped with a monoidal structure as follows: choose, 
for each x  G B q, an arrow f3x : F{Gx) a; so to have a natural 
transformation ¡3: G ■ F  ^  Id. Then define

G%'̂ -. G x-\-G yT2 . y j j .  - r  yjy —T G(x -I- y) 

to be the unique arrow making the following diagram commutative

F{Gx  -h Gy)

p G x , G v

F (G ix + y))

0 x + y

F{Gx) + F{Gy)
0 X + 0 V

x + y

- 1 0 6 -

F. >à

T

F !,y>

G a,b
2
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It is straightforward to check naturahty and cocycle condition for 
G2  and that /? is monoidal. Moreover, we get a monoidal natural 
transformation a : F  ■ G ^  Id  via the equation F{aa) — Ppa-

5. The above construction of G2 makes clear that even if F  is a weak 
equivalence in Grpd(C) in general G is in MON hut not in Grpd(C).

L em m a 6.3 The 2-category MON has bipullbacks. Moreover, given 1- 
cells F : A ^  B and G : C ^  B, it is possible to choose a bipullback of 
F and G

F - ^ C

a'

in such a way that F' and G' are internal functors in Grp.

Proof. The construction of the pullback P is as in 3.3. The interesting 
point is that, even if F  and G are monoidal (not necessarily internal) 
functors, P is an internal groupoid in Grp and not just a monoidal 
category. Indeed, if

(a, f : Fa ^  G x,x)  and (b, g : Fb ^  Gy,y)

are objects in P, their tensor product (a, / :  Fa Gx, x) +  {b,g : Fb ^  
Gy, y) is given by

(a +  b, F{a +  bf  ̂ Fa  +  Fb Gx -I- Gy G{x -\-y) , x -h y )

If (c, h: F c —̂ Gz, z) is a third object in P, to check that the above tensor 
product is strictly associative easily reduces to the commutativity of the

- 1 0 7 -

G

k BF

- 1 /- 9 Gx,y
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following diagram

F{a + b + c)

Fa  +  F{b +  c)

Fa + Fb + Fc

F{a +  6) +  Fc

f + ( F 2 ' " ) - ^ < 9 + h ) - G y ’‘ f + g + h

Gx + Gy + Gz

+  ^)

G p + T '- ^
G{x +  y) +  GzGx +  G{y

G{x + y + z) 

that is, to the cocycle condition on F2 and G2 .
The fact that F' and G' are internal functors is obvious. ■

P ro p o s itio n  6.4 The embedding T :  Grpd{C) —> MON is the bicate
gory of fractions of Grpd{C) with respect to the class of weak equiva
lences.

Proof. Let S be the class of weak equivalences in Grpd(C). Prom Propo
sition 4.5 we know that E has a right calculus of fractions. Moreover, 
by 6.2.3 and 6.2.4,.F(V F)isan equivalence for every W  G E. It remains 
to check conditions EF1-EF3 in Proposition 2.5: E F l is obvious and 
EF2 is precisely 6.2.2. As far as EF3 is concerned, consider a 1-cell 
F  : A —> B in MON and perform the bipullback of F  along the identity
1-cell I  as in Lemma 6.3

P-

w

G

A
XI

so that both W  and G are internal functors. Since equivalences are 
stable under bipullbacks, W  is an equivalence in MON  and therefore it

- 1 0 8 -

b + c F. b,c
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is a weak equivalence in Grpd{C). Finally, (p: ■ F  => J-{G) is the
2-cell needed in EF3. Following Proposition 2.5, : Grpd(C) —> MON  
is the bicategory of fractions with respect to E. ■

Rem sirk 6.5 Observe that we cannot expect to describe a class larger 
than the class of monoidal functors as fractions of internal functors 
with respect to weak equivalences. Indeed, the existence of a 2-cell 
J^(W) • F  => J^(G) as in condition EF3 implies that F  is monoidal.

7. H om om orphism s o f strict Lie 2-algebras

In this section the base category C is the category Lie of Lie algebras 
over a fixed field K, which is a regular and protomodular category. The 
situation is completely analogous to the situation described in Section 6 
for groups. The reason is that the forgetful functors Lie —> Vect (where 
Vect is the category of vector spaces over K)  and Vect Set preserve 
and refiect finite limits and regular epimorphisms (because Lie and Vect 
are algebraic categories) and moreover in Vect the axiom of choice holds 
(because every vector space is free and therefore regular projective).

7.1 The aim of this section is to prove that the 2-category LIE  de
scribed hereunder is the bicategory of fractions of Grpd(C) with respect 
to weak equivalences.

1. Objects of LIE  are internal groupoids in Lie, also called strict Lie
2-algebras in [1 .

2. 1-cells F : A ^  B in LIE  are internal functors in Vect equipped 
with a family of arrows in B

F2  = {F^'^-. [Fa,Fb] ^  F[a,b]}^,,^Ao

which is natural, bilinear, antisymmetric, and satisfies the follow-

- 1 0 9 -

[W]: J=
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ing Jacobi condition 

Fa, [Fb, Fc]

[Fa, F[b, c
p a . lb . c ]

F[a, [b, c]

[[Fa, Fb], Fc] + [Fb, [Fa, Fc 

[F[a, 6], Fc] + [Fb, F[a, c]]

F[[a,b],c] + F[b,[a,c]]

These 1-cells are simply called homomorphisms in [1], where in 
fact they are defined for more general semi-strict Lie 2-algebras.

3. 2-cells X : F  => G in LIE  are internal natural transformations in 
Vect such that the following diagram commutes

Fa, Fb] F[a, 6]

[Aa.Ab] \ a , b ]

Ga,C?6| — G[a,6|
g:

R em ark  7.2 1. The 2-category Grpd(C) embeds into the 2-category 
LIE: internal functors F : A —> B are precisely those homo
morphisms for which all the F^’** are identites. The embedding 
T : Grpd{C) —> LIE  is full and faithful on 2-cells, and preserves 
weak equivalences.

2. In LIE  weak equivalences coincide with equivalences. Indeed, let 
F : A ^  B be a weak equivalence in LIE. Then F  is also a weak 
equivalence in the 2-category of internal groupoids and internal 
functors in Vect. Since in Vect the axiom of choice holds, F  has 
a quasi-inverse G: B ^  A which is an internal functor in Vect 
(see Corollary 4.3). Now G can be equipped with a structure of 
homomorphism as follows: consider the internal (in Veci) natural 
transformation ¡3: G ■ F  Id  and define

G%' :̂ [G x ,G y ] ^ G [x ,y

- 1 1 0 -

[1l,Fb.c [F
f

2̂ ' Ml- -[1 F“,c

=]-f ' ,[a,F>'a ,6],c

F“ 6
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to be the unique arrow making the following diagram commutative

F[Gx, Gy
F ( G i ’y)

F{G
r p G x j G y2̂

FiG x),F{Gy)]
[ß.

l̂[x,y]

x,y]

L em m a 7.3 The 2-category LIE has bipullbacks. Moreover, given 1- 
cells F : A ^  B and G : C —̂ B, it is possible to choose a bipullback of 
F and G

P- •C

a

in such a way that F ' and G' are internal functors in Lie.

Proof. Once again the point is that, even if F  and G are homomor
phisms, the bipullback P constructed as in 3.3 is an internal groupoid in 
Lie and not just a semi-strict Lie 2-algebra. Indeed, the Lie operation 
in P is defined by

,a,6x_i

Fa, Fb lf<9i ^ . . 1Gx, Gy] G[x, y] , [a:, y])

and the Jacobi identity is strictly verified thanks to the Jacobi condition 
on F2 and G2 . ■

P ro p o s itio n  7.4 The embedding T  : Grpd{C) —> LIE is the bicategory 
of fractions of Grpd{C) with respect to the class of weak equivalences.

Proof. The proof is analogous to that of Proposition 6.4 and we omit 
details. ■

-1 1 1  -

G'

-BA

y])X ,

ßy

F'

F

‘P

([«:,b] F bŸ-a,
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