@article{CTGDC_2010__51_2_143_0, author = {Everaert, Tomas and Van Der Linden, Tim}, title = {A note on double central extensions in exact maltsev categories}, journal = {Cahiers de Topologie et G\'eom\'etrie Diff\'erentielle Cat\'egoriques}, eid = {4}, pages = {143--153}, publisher = {Andr\'ee CHARLES EHRESMANN}, volume = {51}, number = {2}, year = {2010}, mrnumber = {2667981}, zbl = {1215.18013}, language = {en}, url = {http://www.numdam.org/item/CTGDC_2010__51_2_143_0/} }
TY - JOUR AU - Everaert, Tomas AU - Van Der Linden, Tim TI - A note on double central extensions in exact maltsev categories JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques PY - 2010 SP - 143 EP - 153 VL - 51 IS - 2 PB - Andrée CHARLES EHRESMANN UR - http://www.numdam.org/item/CTGDC_2010__51_2_143_0/ LA - en ID - CTGDC_2010__51_2_143_0 ER -
%0 Journal Article %A Everaert, Tomas %A Van Der Linden, Tim %T A note on double central extensions in exact maltsev categories %J Cahiers de Topologie et Géométrie Différentielle Catégoriques %D 2010 %P 143-153 %V 51 %N 2 %I Andrée CHARLES EHRESMANN %U http://www.numdam.org/item/CTGDC_2010__51_2_143_0/ %G en %F CTGDC_2010__51_2_143_0
Everaert, Tomas; Van Der Linden, Tim. A note on double central extensions in exact maltsev categories. Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 51 (2010) no. 2, article no. 4, 11 p. http://www.numdam.org/item/CTGDC_2010__51_2_143_0/
[1] The denormalized 3 x 3 lemma, J. Pure Appl. Algebra 177 (2003), 113-129. | MR | Zbl
,[2] Central extensions in semi-abelian categories, J. Pure Appl. Algebra 175 (2002), 31-44. | MR | Zbl
and ,[3] Some remarks on Maltsev and Goursat categories, Appl. Categ. Struct. 1 (1993), 385-421. | MR | Zbl
, , and ,[4] Internal graphs and internal groupoids in Mal'cev categories, Proceedings of Conf. Category Theory 1991, Montreal, Am. Math. Soc. for the Canad. Math. Soc., Providence, 1992, pp. 97-109. | MR | Zbl
, , and ,[5] Higher central extensions and Hopf formulae, J. Algebra, to appear, 2008. | MR
,[6] Higher Hopf formulae for homology via Galois Theory, Adv. Math. 217 (2008), 2231-2267. | MR | Zbl
, , and ,[7] Central extensions and internal groupoids in Maltsev categories, J. Pure Appl. Algebra 155 (2001), 139-166. | MR | Zbl
,[8] Applications of categorical Galois theory in universal algebra, Galois Theory, Hopf Algebras, and Semiabelian Categories (G. Janelidze, B. Pareigis, and W. Tholen, eds.), Fields Institute Communications Series, vol. 43, American Mathematical Society, 2004, pp. 243-280. | MR | Zbl
,[9] Galois theory and double central extensions, Homology, Homotopy and Appl. 6 (2004), no. 1, 283-298. | EuDML | MR | Zbl
and ,[10] What is a double central extension? (The question was asked by Ronald Brown), Cah. Top. Géom. Diff. Catég. XXXII (1991), no. 3, 191-201. | EuDML | Numdam | MR | Zbl
,[11] Galois groups, abstract commutators and Hopf formula, Appl. Categ. Struct. 16 (2008), 653-668. | MR | Zbl
,[12] Galois theory and a general notion of central extension, J. Pure Appl. Algebra 97 (1994), 135-161. | MR | Zbl
and ,[13] Central extensions in Mal'tsev varieties, Theory Appl. Categ. 7 (2000), no. 10, 219-226. | EuDML | MR | Zbl
and ,[14] Pseudogroupoids and commutators, Theory Appl. Categ. 8 (2001), no. 15, 408-456. | EuDML | MR | Zbl
and ,[15] A categorical approach to commutator theory, J. Algebra 177 (1995), 647-657. | MR | Zbl
,[16] The third cohomology group classifies double central extensions, Theory Appl. Categ. 23 (2010), no. 8, 150-169. | MR | Zbl
and ,[17] Mal'cev varieties, Lecture notes in mathematics, vol. 554, Springer, 1976. | MR | Zbl
,