@article{CTGDC_2010__51_1_29_0, author = {McCurdy, Micah and Street, Ross}, title = {What separable {Fr\"obenius} mono{\"\i}dal functors preserve?}, journal = {Cahiers de Topologie et G\'eom\'etrie Diff\'erentielle Cat\'egoriques}, eid = {2}, pages = {29--50}, publisher = {Andr\'ee CHARLES EHRESMANN}, volume = {51}, number = {1}, year = {2010}, mrnumber = {2650578}, zbl = {1214.18008}, language = {en}, url = {http://www.numdam.org/item/CTGDC_2010__51_1_29_0/} }
TY - JOUR AU - McCurdy, Micah AU - Street, Ross TI - What separable Fröbenius monoïdal functors preserve? JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques PY - 2010 SP - 29 EP - 50 VL - 51 IS - 1 PB - Andrée CHARLES EHRESMANN UR - http://www.numdam.org/item/CTGDC_2010__51_1_29_0/ LA - en ID - CTGDC_2010__51_1_29_0 ER -
%0 Journal Article %A McCurdy, Micah %A Street, Ross %T What separable Fröbenius monoïdal functors preserve? %J Cahiers de Topologie et Géométrie Différentielle Catégoriques %D 2010 %P 29-50 %V 51 %N 1 %I Andrée CHARLES EHRESMANN %U http://www.numdam.org/item/CTGDC_2010__51_1_29_0/ %G en %F CTGDC_2010__51_1_29_0
McCurdy, Micah; Street, Ross. What separable Fröbenius monoïdal functors preserve?. Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 51 (2010) no. 1, article no. 2, 22 p. http://www.numdam.org/item/CTGDC_2010__51_1_29_0/
[1] Monoidal functors, species and Hopf algebras, preliminary copy available at http://www.math.tamu.edu/\~maguiar/a.pdf | MR | Zbl
and ,[2] Weak Hopf algebras and weak Yang-Baxter operators, Journal of Algebra 320 (2008), 2101-2143. | MR | Zbl
, and ,[3] Distributive laws, Lecture Notes in Mathematics (Springer, Berlin) 80 (1969), 119-140. www.tac.mta.ca/tac/reprints/articles/18/tr18abs.html
,[4] Linearly distributive functors, Journal of Pure and Applied Algebra 143 (1999), 155-203. | MR | Zbl
and ,[5] Note on Frobenius monoidal functors, New York Journal of Mathematics 14 (2008), 733-742. http://arxiv.org/pdf/0801.4107v2 | EuDML | MR | Zbl
and ,[6] The mix rule, Mathematical Structures in Computer Science 4 (1994), 273-285. | MR | Zbl
and ,[7] Linear Logic, Theoretical Computer Science 50 (1987), 1-102. | MR | Zbl
,[8] Braided tensor categories, Advances in Mathematics 102 (1993), 20-78. MR 94m: 18008 | MR | Zbl
and ,[9] The geometry of tensor calculus I, Advances in Mathematics 88 (1991), 55-112. | MR | Zbl
and ,[10] Frobenius algebras and 2D topological quantum field theories. CUP, (2004) | MR | Zbl
[11] Frobenius algebras and planar open string topological field theories, (2005) http://arXiv.org/pdf/math/0508349
,[12] Weak Hopf monoids in braided monoidal categories, Algebra and Number Theory 3 (2009), 149-207. http://pj m.math.berkeley.edu/ant/2009/3-2/index.xhtml | MR | Zbl
and ,[13] Weak distributive laws, Theory and Applications of Categories 22(12) (2009), 313-320. http://www.tac.mta.ca/tac/volumes/22/12/22-12.pdf | EuDML | MR | Zbl
.[14] Finite quantum groupoids and inclusions of finite type, Fields Institute Communications 30 (2001), 393-407. | MR | Zbl
,[15] Adjointable monoidal functors and quantum groupoids, Lecture Notes in Pure and Applied Mathematics 239 (2005), 291-307. http://arXiv.org/pdf/math/0301253 | MR | Zbl
,