Representability relative to a doctrine
Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 50 (2009) no. 1, article no. 1, 20 p.
@article{CTGDC_2009__50_1_3_0,
     author = {Karazeris, Panagis and Velebil, Ji\v{r}{\'\i}},
     title = {Representability relative to a doctrine},
     journal = {Cahiers de Topologie et G\'eom\'etrie Diff\'erentielle Cat\'egoriques},
     eid = {1},
     pages = {3--22},
     publisher = {Andr\'ee CHARLES EHRESMANN},
     volume = {50},
     number = {1},
     year = {2009},
     mrnumber = {2512520},
     zbl = {1190.18001},
     language = {en},
     url = {http://www.numdam.org/item/CTGDC_2009__50_1_3_0/}
}
TY  - JOUR
AU  - Karazeris, Panagis
AU  - Velebil, Jiří
TI  - Representability relative to a doctrine
JO  - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY  - 2009
SP  - 3
EP  - 22
VL  - 50
IS  - 1
PB  - Andrée CHARLES EHRESMANN
UR  - http://www.numdam.org/item/CTGDC_2009__50_1_3_0/
LA  - en
ID  - CTGDC_2009__50_1_3_0
ER  - 
%0 Journal Article
%A Karazeris, Panagis
%A Velebil, Jiří
%T Representability relative to a doctrine
%J Cahiers de Topologie et Géométrie Différentielle Catégoriques
%D 2009
%P 3-22
%V 50
%N 1
%I Andrée CHARLES EHRESMANN
%U http://www.numdam.org/item/CTGDC_2009__50_1_3_0/
%G en
%F CTGDC_2009__50_1_3_0
Karazeris, Panagis; Velebil, Jiří. Representability relative to a doctrine. Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 50 (2009) no. 1, article  no. 1, 20 p. http://www.numdam.org/item/CTGDC_2009__50_1_3_0/

[AK] M. H. Albert and G. M. Kelly, The closure of a class of colimits, Jour. Pure Appl. Alg. 51 (1988), 1-17 | MR | Zbl

[ABLR] J. Adámek, F. Borceux, S. Lack and J. Rosický, A classification of accessible categories, Jour. Pure Appl. Alg. 175 (2002), 7-30 | MR | Zbl

[AR1] J. Adámek and J. Rosický, Locally Presentable and Accessible Categories, Cambridge University Press, 1994 | MR | Zbl

[AR2] J. Adámek and J. Rosický, On sifted colimits and generalized varieties, Theor. Appl Categ. 8 (2001), 33-53 | EuDML | MR | Zbl

[Be] A. Beligiannis, On the Freyd categories of an additive category, Homology Homotopy Appl. 2 (2000), 147-185 | EuDML | MR | Zbl

[Bi] G. J. Bird, Limits in 2-categories of locally presented categories, Ph. D. Thesis, The University of Sydney, 1984

[BTh] R. Börger and W. Tholen, Abschwächungen des Adjunktionsbegriffs, Manuscripta Math. 19 (1976), 19-45 | EuDML | MR | Zbl

[C] R. R. Colby, Rings which have flat injective modules, J. Algebra 35 (1975), 239-252 | MR | Zbl

[D] B. J. Day, On closed categories of functors, Reports of the Midwest Category Seminar VI, Lecture Notes in Mathematics 137, Springer 1970, 1-38 | MR

[DL] B. J. Day and S. Lack, Limits of small functors, Jour. Pure Appl. Alg. 210(3) (2007), 651-663 | MR | Zbl

[DS] B. Day and R. Street, Quantum categories, star autonomy, and quantum groupoids, manuscript, April 2003 | Zbl

[Di] Y. Diers, Catégories Localisables, Thèse de Doctorat d'Etat, Université de Paris VI, 1977

[FS] P. Freyd and A. Scedrov, Categories, Allegories, North Holland, 1990 | MR | Zbl

[GU] P. Gabriel and F. Ulmer, Lokal präsentierbare Kategorien, Lecture Notes in Mathematics 221, Springer 1971 | MR | Zbl

[KRV] P. Karazeris, J. Rosický and J. Velebil, Limits in cocompletions, Jour. Pure Appl. Alg. 196 (2005), 229-250 | MR | Zbl

[K1] G. M. Kelly, Basic Concepts of Enriched Category Theory, London Math. Soc. Lecture Notes Series 64, Cambridge Univ. Press, 1982, also available as TAC reprint via http://www.tac.mta.ca/tac/reprints/articles/10/tr10abs.html | Zbl

[K2] G. M. Kelly, Structures defined by finite limits in the enriched context I, Cahiers de Top. et Géom. Diff. XXIII. 1 (1982), 3-42 | EuDML | Numdam | MR | Zbl

[KS] G. M. Kelly and V. Schmitt, Notes on enriched categories with colimits of some class, Theor. Appl Categ. 14(17) (2005), 399-423 | EuDML | MR | Zbl

[Kr] H. Krause, The spectrum of a module category, Mem. Amer. Math. Soc. 149 (2001), 1-125 | MR | Zbl

[M] F. Marmolejo, Distributive laws for pseudomonads, Theor. Appl. Categ. 5(5) (1999), 91-147 | EuDML | MR | Zbl

[PCW] A. J. Power, G. L. Cattani and G. Winskel, Representation result for free cocompletions, Jour. Pure Appl. Alg. 151(3) (2000), 273-286 | MR | Zbl

[SW] R. Street and R. Walters, Yoneda structures on 2-categories, J. Algebra 50 (1978), 350-379 | MR | Zbl

[Ta] M. Tanaka, Pseudo-Distributive Laws and a Unified Framework for Variable Binding, PhD Thesis, University of Edinburgh, 2005

[Th] W. Tholen, Pro-categories and multiadjoint functors, Can. J. Math. 36 (1984), 144-155 | MR | Zbl