@article{CTGDC_2009__50_1_23_0, author = {Milius, Stefan and Moss, Lawrence S.}, title = {Equational properties of recursive program scheme solutions}, journal = {Cahiers de Topologie et G\'eom\'etrie Diff\'erentielle Cat\'egoriques}, eid = {2}, pages = {23--66}, publisher = {Andr\'ee CHARLES EHRESMANN}, volume = {50}, number = {1}, year = {2009}, mrnumber = {2512521}, zbl = {1170.68009}, language = {en}, url = {http://www.numdam.org/item/CTGDC_2009__50_1_23_0/} }
TY - JOUR AU - Milius, Stefan AU - Moss, Lawrence S. TI - Equational properties of recursive program scheme solutions JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques PY - 2009 SP - 23 EP - 66 VL - 50 IS - 1 PB - Andrée CHARLES EHRESMANN UR - http://www.numdam.org/item/CTGDC_2009__50_1_23_0/ LA - en ID - CTGDC_2009__50_1_23_0 ER -
%0 Journal Article %A Milius, Stefan %A Moss, Lawrence S. %T Equational properties of recursive program scheme solutions %J Cahiers de Topologie et Géométrie Différentielle Catégoriques %D 2009 %P 23-66 %V 50 %N 1 %I Andrée CHARLES EHRESMANN %U http://www.numdam.org/item/CTGDC_2009__50_1_23_0/ %G en %F CTGDC_2009__50_1_23_0
Milius, Stefan; Moss, Lawrence S. Equational properties of recursive program scheme solutions. Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 50 (2009) no. 1, article no. 2, 44 p. http://www.numdam.org/item/CTGDC_2009__50_1_23_0/
[1] Infinite trees and completely iterative theories: A coalgebraic view, Theoret. Comput. Sci. 300 (2003), 1-45. | MR | Zbl
, , and ,[2] Elgot Algebras, Log. Methods Comput. Sci., Vol. 2 (5:4), 31 pp. | MR | Zbl
, and ,[3] Equational Properties of Iterative Monads, submitted. | MR | Zbl
, and ,[4] Fractals Everywhere, Academic Press 1988. | MR | Zbl
,[5] Iteration Theories: The Equational Logic of Iterative Processes, EATCS Monographs on Theoretical Computer Science, Springer Verlag, 1993. | MR | Zbl
and ,[6] Handbook of Categorical Algebra 2: Categories and Structures, Vol. 51 of Encyclopedia of Mathematics and its Applications, Cambridge University Press, 1994. | MR | Zbl
,[7] A Transformation System for Developing Recursive Programs, J. ACM, 24:1 (1977), 44-67. | MR | Zbl
and ,[8] Fundamental Properties of Infinite Trees, Theoret. Comput. Sci. 25 (1983), no. 2, 95-169. | MR | Zbl
,[9] Recursive Applicative Program Schemes. In J. van Leeuwen, ed., Handbook of Theoretical Computer Science, Vol. B, 459-492, Elsevier, Amsterdam, 1990. | MR | Zbl
,[10] Algebraic Semantics. Lecture Notes in Comput. Sci., Vol. 99, Springer Verlag, 1981. | MR | Zbl
,[11] The Logic of Recursive Equations, J. Symbolic Logic 63 (1998), no. 2, 451-478. | MR | Zbl
, , , and ,[12] A Fixpoint Theorem for Complete Categories, Math. Z. 103 (1968), 151-161. | EuDML | MR | Zbl
,[13] Categories for the Working Mathematician, 2nd edition, Springer Verlag, 1998. | MR | Zbl
,[14] Equational Logic of Recursive Program Schemes, PhD thesis, Indiana University, Bloomington, 2004. | MR | Zbl
,[15] Equational Logic of Recursive Program Schemes, in J. Fiadeiro et al (eds.): Algebra and Coalgebra in Computer Science: First International Conference (CALCO 2005), Proceedings, Lecture Notes in Comput. Sci., Vol. 3629, 278-292, Springer Verlag, 2005. | MR | Zbl
,[16] Completely Iterative Algebras and Completely Iterative Monads, Inform. and Comput. 196 (2005), 1-41. | MR | Zbl
,[17] The Category Theoretic Solution of Recursive Program Schemes, Theoret. Comput. Sci. 366 (2006), 3-59. | MR | Zbl
and ,[18] The Category Theoretic Solution of Recursive Program Schemes, full version, available at the URL http://www.stefan-milius.eu. | Zbl
and ,[19] Theoret. Comput. Sci. 403 (2008), 409-415. | MR
and , Corrigendum to [17],[20] Parametric Corecursion, Theoret. Comput. Sci. 260 (2001), no. 1-2, 139-163. | MR | Zbl
,[21] Recursion and Corecursion Have the Same Equational Logic, Theoret. Comput. Sci. 294 (2003), no. 1-2, 233-267. | MR | Zbl
,[22] The Logic of Functional Recursion. In M. L. Dalla Chiara et al (eds.) Logic and scientific methods, Synthese Lib., 259, Kluwer Acad. Publ., Dordrecht, 1997, 179-207. | MR | Zbl
,[23] On the Interpretation of Recursive Polyadic Program Schemes, Symposia Mathematica XV (1975), 255-281. | MR
,