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EQUILOGICAL SPACES, HOMOLOGY AND NON-
COMMUTATIVE GEOMETRY

by Marco GRANDIS*

CAHIERS DE TOPOLOGIE ET
GEOMETRIE DIFFERENTIELLE CA TEGORIQUES

Volume XL VI-I (2005)

R6sum6. On introduit 1’homologie singuli6re pour les espaces 6quilogiques
de D. Scott [22]. Son dtude montre que ces structures peuvent exprimer
des ’quotients formels’ d’espaces topologiques, lies à des C*-algebres non
commutatives bien connues, qui ne peuvent 6tre r6alis6es en tant qu’espaces
ordinaires. On utilise aussi une notion de morphisme local entre espaces
6quilogiques, qui generalise les morphismes usuels et pourrait 6tre d’int6ret
dans la th6orie g6n6rale de ces espaces.

Introduction

An unexpected byproduct of a previous work on the homology of cubical sets
[ 12] was finding that such structures also contain models of ’virtual spaces’ of
interest in noncommutative geometry, namely the irrational rotation C*-algebras or
’noncommutative tori’ [6], which cannot be realised as topological spaces.
Developing a remark in [12, 6.4], we show here how the simpler structure of an
equilogical space [22] can still express some of those ’formal quotients’ of spaces;
more effective results will be obtained, in a sequel, with a directed version,
preordered equilogical spaces.

An equilogical space X = (X#,-) is a topological space X# provided with an
equivalence relation - . This notion becomes important once one defines a map of
equilogical spaces X - Y to be a mapping X*/- -&#x3E; Y#/- which admits some
continuous lifting X# -&#x3E; Y#. The category Eql thus obtained contains Top as a
full subcategory, identifying the space X with the obvious pair (X, =X): we are
replacing Top with a larger category (studied in Section 1), having finer quotients.
Notice that - to have this embedding - we are dropping the condition that the support
X# be a To-space, usually required for equilogical spaces (cf. 1.2).

Singular cubes have an obvious extension to equilogical spaces, as maps
In - X defined on the standard euclidean cube: in other words, we take the

(*) Work supported by MIUR Research Projects.
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singular cubes of the space X# and we identify them when they have the same
projection to X# /-. Thus, singular homology is extended to equilogical spaces,
enjoying similar properties (Sections 3 and 5). But, as shown in Section 4, the
homology of an equilogical space X does not reduce to the homology of its
underlying space X#/ - and can capture properties of the formal quotient (X#,- )
which would be missed by the topological quotient X#/- : the latter can be trivial
while the homology groups Hn(X) are not.

For instance, the subgroup (u irrational) acts on the line by
translations; being dense in the line, it has a coarse orbit space R/Gu. Replacing
this trivial space with the quotient cubical set ( o R)/G.0, or equivalently with the
equilogical space (R, =-Gu), we have a non-trivial object, homologically equivalent
to the torus T2 (4.5.2) 

The same result holds for the equilogical space of leaves of the Kronecker
foliation of the torus, with slope a (4.6). All this agrees with the irrational rotation
C*-algebra Ao [6, 7, 18, 19], which ’replaces’ - in noncommutative geometry -
the trivial quotient R/G.0 and the trivial space of leaves of the foliation, and has the
same complex K-groups as T2 (its definition is recalled in 4.4).

One should note that these models, the cubical sets and even more the

equilogical spaces, have a clear geometrical derivation from the original problem -
studying the orbit ’space; of the action of G6 on R or the ’space’ of leaves of the
Kronecker foliation; much more evident than the corresponding C*-algebra.
Without forgetting, however, that C*-algebras seem to cover a wider range of
’virtual spaces’. Note also that, while we have little direct intuition of the formal
quotient (R, =Gu)’ homology explores it quite effectively (cf. 4.5).

Maps of equilogical spaces fail to be locally defined: while in Top one can
verify the continuity of a mapping on any open cover of the domain, this is no
longer true in Eql. As related drawbacks of Eql, paths cannot be concatenated
and there are different models of the circle, like the topological space S 1 and the
orbit equilogical space (R, =z), whose distinction seems to be artificial. We intro-
duce, in Section 2, an extended category EqL of equilogical spaces and local maps
which: (a) makes the previous models of the circle isomorphic (and other models
homotopy equivalent; 2.5); (b) allows us to concatenate the new paths (2.6); (c)
produces the same homology (Thm. 3.5); (d) makes the topological and equilogical
realisation of a cubical set homotopy equivalent (Thm. 5.7). One can keep to the
original category Eql and use its extension EqL as a tool to define local homo-
topy equivalence and fundamental groups (2.6) in the former.
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References for equilogical spaces can be found in 1.2. A map between spaces is
a continuous mapping. I = [0, 1] is the standard euclidean interval. The index a

takes values 0, 1. Category theory intervenes at an elementary level, essentially
reduced to the basic properties of limits, colimits and adjoint functors (see [16]).

The author acknowledges useful conversations with G. Rosolini.

1. Equilogical spaces and homotopy

Equilogical spaces are sort of ’formal quotients’ of topological spaces. Homotopy
is defined by the standard (topological) interval I.

1.1. Equilogical spaces. An equilogical space X = (X#,- x) will be a

topological space X# provided with an equivalence relation, written - x or
(We are not assuming X# to be To, cf. 1.2.) The space X# will be called the

support of X, while the quotient IXI = X*/- is the underlying space (or set,
according to convenience). One can think of the object X as a set IXI covered with
a chart p: X# -&#x3E; IXI containing the topological information.
A map of equilogical spaces f: X - Y (also called an equivariant mapping

[22]) is a mapping f: IXI - JYJ which admits some continuous lifting f:

X# -&#x3E; YO. It can also be defined as an equivalence class [f] of continuous

mappings f : X# -&#x3E; Y* coherent with the equivalence relations of X and Y

under the associated pointwise equivalence relation

The name ’pointwise’ looks more appropriate for an equivalent formulation:
f(x) - y f’(x), for all x. But in the set Top(X#, Y#) of all continuous mappings
between the supports, the two properties are no longer equivalent and (2) can
express the whole definition: in this set - is a partial equivalence relation
(symmetric and transitive); the condition f - f determines the coherent maps; the
equivalence classes of the latter are the maps of Eql(X, Y).

The category Eql thus obtained contains Top as a full subcategory,
identifying the space X with the obvious pair (X, =X). An equilogical space X is
isomorphic to a topological space A if and only if A is a retract of X#, with a
retraction p: X# -&#x3E; A whose equivalence relation is precisely - X. We shall see
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that the new category has relevant new objects (Section 4).
The terminal object of Eql is the singleton space {*} . Therefore, a point x:

{*} - X is an element of the underlying set IXI = X*/ - (not an element of the

support X#). The (faithful) forgetful functor, with values in Top (or in Set,
when convenient)

sends f: X -&#x3E; Y to the underlying mapping f: IXI - JYJ (also written lfl, more
precisely). On the other hand, the ’function’ X -&#x3E; X# is not part of a functor, as it
does not preserve isomorphic objects; indeed, one can often simplify the support by
taking a suitable retract, as already remarked above (see also Proposition 5.9a).

In the category Eql* of pointed equilogical spaces, an object (X, xo) is an

equilogical space equipped with a base point xo E !X!; a map f: (X, xo) -&#x3E; (Y, yo)
is a map X - Y in Eql whose underlying mapping IXI - JYJ takes xo to yo.

1.2. Remarks. Equilogical spaces have been introduced in [22] using To-spaces
as supports, so that they can be viewed as subspaces of algebraic lattices with the
Scott topology (which is always To). The category so obtained - a full subcategory
of the category Eql we are using here - is generally written as Equ. As a
relevant, non obvious fact, Equ is cartesian closed (while Top is not): one can
define an ’internal hom’ Zy satisfying the exponential law Equ(XxY, Z) =
Equ(X, Zy); this has been proved in [ 1 ] ; see also [2, 4, 20, 21 ] .

Here, we prefer to drop the condition To, so that every topological space be an
equilogical one. The category Eql can be obtained from Top by a general
construction, as its regular completion Topreg [5] . This fact can be used to prove
that also Eql is cartesian closed [21, p. 161].

Cartesian closedness is crucial in the theory of data types, where equilogical
spaces originated; here it will play a marginal role: we are essentially interested in
the (easy) fact that the path space XI exists in Eql, and coincides with the

topological one when X is in Top (1.5).

1.3. Limits. The category Eql has all limits and colimits. We recall briefly how
they are constructed (’precisely’ as in [ 1 ], for Equ); as well-known, we only need
to consider products, equalisers and their duals.

Products and sums are obvious: a product 11 Xi is the product of the supports
X/, equipped with the product of all equivalence relations; a sum (or coproduct)
2 Xi is the sum of the supports Xi#, with the sum of their equivalences.
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Now, take two maps f, g: X -&#x3E; Y. For their equaliser E = (E#, -), take first
the (set-theoretical or topological) equaliser Eo of the underlying mappings f, g:
IXI -&#x3E; IYI; then, the space E# is the counterimage of Eo in X*, with the

restricted topology and equivalence relation; the map E - X is induced by the
inclusion E# -&#x3E; XO. For the coequaliser C of the same maps, let us form the
coequaliser of the underlying mappings f, g: IXI - JYJ as a quotient Y*/ - c, by
an equivalence relation coarser than - y. Then C = (Y#, - c), with the map
Y - C induced by the identity of YO (and represented by the canonical projection
JYJ - lCl). Notice that we are using coequalisers in Set rather than in Top (the
latter do not agree with products, which precludes cartesian closedness).

An (equilogical) subspace, or regular subobject A = (A#, - ) of X is a

topological subspace A# c X# saturated with respect to - X, with the restricted
equivalence relation. The order relation A c B (of regular subobjects) amounts to
A# c B#, or equivalently to JAI c lBl. We say that the equilogical subspace A is
open (resp. closed) in X if A# is open (resp. closed) in X’; or, equivalently, if
the underlying set JAI is open (resp. closed) in the space IXI.

An (equilogical) quotient, or regular quotient of X is the space X# itself,
equipped with a coarser equivalence relation. A map f: X -&#x3E; Y has a canonical

factorisation through its coimage (a quotient of X) and its image (a subspace of Y)

where Coim(f) = (X#, R) is determined by the equivalence relation associated to
the composed mapping X# -&#x3E; IYI, while (Im(f))# is the counterimage of F(IXI)
in YO. Plainly, Im(f) is ’contained’ in a subspace B of Y if and only if every
lifting f: X# -&#x3E; Y# has an image contained in B#.

The (faithful) forgetful functor 1-1: Eql - Top (1.1.3) is left adjoint to the
(full) embedding Top c Eql

since every map IXI - T can be lifted to X#. The left adjoint l -l preserves
colimits (obviously) and equalisers, but not products, while the embedding Top C
Eql preserves limits (obviously) and sums, but not coequalisers (see 1.4).

1.4. Circles and spheres. The category Eql has various (non isomorphic)
models of the circle, i.e., objects whose associated space is homeomorphic to S1.
Similar facts happen with other structures of common use in algebraic topology:
simplicial complexes, simplicial sets, cubical sets. We will see that the models we
consider here are equivalent up to ’local homotopy’ (2.5).
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First of all, we have the topological circle itself: S 1 is the coequaliser in Top
of the faces of the standard interval I = [0, 1 ]

and represents loops in Top (as maps S 1 -&#x3E; X); it also lives in Eql.
But the coequaliser in Eql of the faces of the interval is produced by the

equivalence relation RaI which identifies the endpoints

(the standard equilogical circle);

(RA will often denote the equivalence relation identifying the points of a subset A).
A third model is the orbit quotient of the action of the group Z on R, in Eql

Finally, we consider a sequence of models

(the k-gonal equilogical circle),

where kI = I + ... + I (the sum of k copies) and Rk is the equivalence relation
identifying the terminal point of any addendum with the initial point of the following
one, circularly. This can be pictured as circle with k comer points (cf. 2.3), or as a
polygon for k &#x3E; 3; note that C1 = Sj .

There are obvious maps

where Ck,l - Ck collapses the last ’edge’; their underlying map is (at least) a
homotopy equivalence. But it is easy to see that any morphism in the opposite
direction has an underlying map which is homotopically trivial. This situation will
be further analysed below (2.3, 2.5).

Similarly, in dimension n &#x3E; 0, we have the topological n-sphere Sn and

(the standard equilogical n-sphere),

where the equivalence relation -n is generated by the congruence modulo Zn and
by identifying all points tun) where at least one coordinate belongs to Z. Of
course, SO = SO = (10, 1}, =) has the discrete topology. We shall see that all the
standard equilogical spheres are pointed suspensions of SO ( 1.6).

1.5. Theorem [Internal homs] . Let A be a Hausdorff, locally compact topologi-
cal space.
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(a) The equilogical exponential yA, for Y in Eql, can be realised as

where Y#A is the topological exponential (i.e., the set of maps Top(A, Y#) with
the compact-open topology) and -E is the pointwise equivalence relation of maps

(b) If also Y is a topological space, the topological and equilogical exponentials
yA coincide.

(c) For every equilogical space X, lXxAl = IXIXA.
(d) More generally, all this holds for every space A exponentiable in Top.

Proof. (Comments on cartesian closedness can be found in the last remark in 1.2.)

(a) First, let us recall that - in our hypotheses - the endofunctor -xA: Top - Top
has a right adjoint, the endofunctor (_)A, with the obvious natural bijection

Now, if X and Y are equilogical spaces, we can prove that the bijection cp

(for their supports) induces a natural bijection B11 (for the equilogical spaces
themselves)

Indeed, if cp (f ) = g’ and cp (f" ) = g", the relations f - f’ and g’ - g"
(1.1.2) are equivalent

(by definition of - E, in (1)). Therefore, (p restricts to a bijection between the
coherent maps, and then induces a bijection Y between their equivalence classes.

(b) Follows immediately from (a).

(c) The functor -xA is a left adjoint and preserves coequalisers; therefore, in Top

(d) This point will not be used and the proof is omitted, for brevity (it can be found
in [ 13]). For a characterisation of exponentiable topological spaces, see [10].D

1.6. Elementary homotopy. We consider here an elementary notion of paths
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(and homotopies), as opposed to a more general notion of ’local paths’, studied in
Section 2. The latter are better behaved, but can be reduced to finite concatenations
of the elementary ones, which give therefore a finer information.

An (elementary, or global) path in an equilogical space X is a map a: I - X;
it has two endpoints in the underlying space IXI, aa"(a) = a(a), and is called an
(elementary) loop at xo E IXI when these points coincide with xo. Loops of
equilogical spaces are represented as maps Se 1 - X, defined on the equilogical
circle; loops of pointed equilogical spaces correspond to pointed maps
(Se, [0]) - (X, xo), in Eql* (1.1).

Notice that paths cannot be concatenated, generally; for instance, this is possible
in S 1 (of course) and in S e = (R, =Z) (essentially because R is the universal

covering of SI), but is not possible in Sl = (I, Raj) where paths cannot ’cross’
the point [0] = [ 1 ] . Thus, the path components of an equilogical space X are
produced by the equivalence relation = in IXI generated by being endpoints of a
path; no(X) = [X[/ = will denote their set.

The standard interval I produces in Eql the cylinder functor I and its right
adjoint, the cocylinder (or path functor) P, which extend the ones of Top (by 1.3
and 1.5)

An (elementary, or global) homotopy f: fo - fi: X - Y in Eql is a map f:

XXI - Y with faces foa" = fa, where 8" = Xxaa: X -&#x3E; XxI. (A path in Y is

a homotopy on the singleton {*}.) The adjoint functors Eql =&#x3E; Top ( 1.3.2)
preserve homotopies (1.3, 1.5c). Again, homotopies in Eql cannot be concate-
nated, in general.

The embedding Top c Eql, preserving P and all limits, preserves also the
homotopy limits (including homotopy fibres and loop spaces, in the pointed case).
But coequalisers and homotopy colimits are not preserved, and we must distinguish
between the topological mapping cone, cone and suspension, in Top (written Cf,
CX, EX) and the corresponding equilogical constructs, in Eql (written Cef,
CeX, EeX), to avoid ambiguity when starting from topological data.
We are not going to study this theory, here. We shall only remark that the

pointed suspension of a pointed topological space, in Eql*, can be realised as

follows (it is a homotopy colimit, cf. [11])

(2) £e(X, xo) = ((IX, R), [xo, 0]),

where R is the equivalence relation which collapses the subspace (Xx 10, 11) u
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( { x0 } xI). Applying Ee to the discrete space S0= { 0, 1 } (pointed at 0) we obtain
the equilogical circle Se (1.4.2) (while the topological circle S 1 is a suspension in
Top). Iterating the procedure (which works similarly on equilogical spaces), we
obtain the higher equilogical n-spheres

On the other hand, the unpointed suspension of SO yields the 2-gonal circle C2
(1.4.4).

All the models of the circle considered in 1.4 are distinct, also up to homotopy
equivalence: this follows from a previous remark on the sequence 1.4.5, together
with the fact that the forgetful functor l - l: Eql - Top preserves homotopies.

2. Local maps and fundamental groups

We introduce an extension of Eql which makes all models of spheres (of a given
dimension) equivalent (2.5); the new paths can be concatenated and yield the funda-
mental groupoid of an equilogical space, or the fundamental group of a pointed one
(2.6).

2.1. Local maps and local homotopies. An important feature of topology is
the local character of continuity: a mapping between two spaces is continuous if and
only if it is on a convenient neighbourhood of every point. This local character fails
in Eql: for instance, the canonical map (R, =-Z) -&#x3E; S 1 has a topological inverse
S1 1 - R/=z which cannot be lifted to a map S 1 -&#x3E; R, but can be locally l ifted.

This suggests us to extend Eql to the category EqL of equilogical spaces and
locally liftable mappings, or local maps. A local map f: X -&#x3E; Y (the arrow is
marked with a dot) is a mapping f: IXI - JYJ between the underlying sets which
admits an open saturated cover (U¡)¡e I of the space X# (by open subsets,
saturated for - x), so that the mapping f has a partial (continuous) lifting fi:
Ui -&#x3E; Y4, for all i

Equivalently, for every point [x] E IXI, the mapping f restricts to a map of

equilogical spaces on a suitable saturated neighbourhood U of x in X#. The

previous remark on the local character of continuity in Top has two consequences:
the embedding Top c EqL is (still) full and reflective, with reflector (left adjoint)
1-1: EqL - Top.
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It is easy to see that the finite limits and arbitrary colimits of Eql (as
constructed in 1.3) still ’work’ in the extension, which is thus cocomplete and
finitely complete. A local isomorphism will be an isomorphism of EqL; a local
path will be a local map I -- X; a local homotopy will be a local map Xxl - Y,
etc. Items of Eql will be called global (or elementary, for paths) when we want to
distinguish them from the corresponding local ones.

2.2. Lemma [Coverings]. Let p: S - T be a surjective local homeomorphism,
in Top, and Rp the corresponding equivalence relation on S.

(a) The induced map (S, Rp) - T is a local isomorphism of equilogical spaces.
(b) More generally, if R is an equivalence relation on S, coarser than Rp, and
R’ the induced equivalence relation on T, then the induced map (S, R) - (T, R’)
is a local isomorphism.

Proof. It suffices to prove (b). For each ye T, we can choose some xE X and
some open neighbourhood U of the latter such that p(x) = y and the restriction
p’: U - p(U) be a homeomorphism with an open neighbourhood of y. This

means that we can lift the inverse bijection T/R’ - S/R, locally at y, with the

inverse homeomorphism p(U) - U c S. 0

2.3. Some local isomorphismes. Coming back to our models of the circle
(1.4), the canonical map S 1 = (R, ::z) -&#x3E; S 1 is locally invertible (2.2), and these
models are locally isomorphic. This is not true, in the strict sense, of the canonical
map p: Se 1 - S e : the topological inverse R/Z -&#x3E; Ilal cannot be locally lifted at
[0]; but we see below that a local inverse up to homotopy exists (2.5).

The fact that Se and S 1 be not locally isomorphic is consistent with viewing
S e = (I, RaI) as a circle with a comer point (at [0]), which elementary paths are not
allowed to cross. Thus, elementary homotopy and elementary paths are able to
capture properties of equilogical spaces which can be of interest, but are missed by
local paths, fundamental groups (2.6) and singular homology (3.7), as well as by
any functor invariant up to local homotopy.

Also in higher dimension, the canonical map (Rn, - n) -&#x3E; Sn is locally
invertible, while this is not true, in the strict sense, for (In, RaIn) -&#x3E; Sn (n &#x3E; 0).

2.4. Lemma [The concatenation pushout]. Consider the following pushout in
Eql (or EqL)
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which pastes two copies of I (R identifies the terminal point of the first copy with
the initial point of the second). Then the canonical map p, with values in (a
realisation of) the topological pushout

is a local homotopy equivalence. (Note that I is a realisation of the underlying
space Iji = J/R.)

Proof. (a) The points of I + I will be written as ul(t) = (t, a), for a = 0, 1.

First, we construct a local map k: I -o-&#x3E; J, by an underlying mapping with a stop at
the ’pasting point’ [ 1, 0] = [0, 1 ]

(so that k can be lifted on the open subsets [0, 1/2[, ] 1/3, 2/3 [ and ] 1/2, 1] ).
The composite pk: I - I (computed at the right, above, on the same
decomposition of I) is homotopic to idl, in Top and Eql.

Finally, also the composite kp: J - J happens to be a global map, whose
value at [t, 0] or [t, 1] is, respectively:

since it can be lifted to a map I + I - I + I (with the same formulas as above,
without square brackets). And it is homotopic to idJ (since its lifting is homotopic
to the identity, in Top). a

2.5. Proposition [Local homotopy equivalences of spheres]. All the canonical
maps linking the models of the circle (1.4.5)
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are local homotopy equivalences. The same holds for the higher spheres

Proof. The arguments are similar to the preceding ones, and will only be sketched.
For all the models of the circle we use one underlying set, the 1-dimensional torus
T=R/Z.

We know that the canonical map p: Sel -&#x3E; S e is not locally invertible, strictly.
But we can build a local map f:S1e -&#x3E; S e so that the composites pf and fp be
locally homotopic to the identities. For instance, take the following map between the
underlying spaces R/Z, locally constant at [0] (and locally liftable everywhere)

(A and v are the minimum and maximum in the line; brackets are not needed).
Loosely speaking, our map stays at [0] for a third of the time, then runs around the
circle for another third, and finally stays again at [0] for the last third. A local map

C 1 -o-&#x3E; C2 is similarly constructed, with a mapping locally constant at [1/2], and
so on for Ck -- Ck+ 1.

In the higher dimensional case, extending (3), a local map S e -o-&#x3E; Sne is

obtained with a mapping locally constant at the point we want to map into [0] E
In/aIn. Since Sen and Sn are locally isomorphic, the argument is done. 0

2.6. Concatenation. Let X be an equilogical space, and a, b: I -o-&#x3E; X two

consecutive local paths: a(1) = x = b(0) E lXl. The concatenation pushout (2.4.1)
defines a local map c’: J -o-&#x3E; X (whose underlying map is the ordinary
concatenation of paths, in Top). We define the concatenation c = a*b: I -o-&#x3E; X as

the composite c = c’k where k: I -o-&#x3E; J is the local map defined in Lemma 2.4.

In other words, the underlying mapping of c is defined in three steps (instead
of the usual two)

allowing for a stop at the concatenation point. One can show directly that this
mapping is locally liftable (since, on the open subsets [0, 1/2[, ] 1/3, 2/3[, ] 1/2, 1]
it essentially reduces to the given local paths, or to a constant mapping on the
middle subset).

For n-cubes, one can define a concatenation in each direction i = 1,..., n, using
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the local map

(this is implicitly used below, in dimension 2, for homotopies of paths).
We have thus the fundamental groupoid II1(X) of an equilogical space: a vertex

is a point x E IXI of the underlying set; an arrow [a]: x - y is an equivalence
class of local paths from x to y, up to local homotopy with fixed endpoints.
Associativity is proved in the classical way (with slight adaptations due to the
particular form of (1)); as well as the existence of identities (the classes of constant
paths) and inverses (reversing local paths, by precomposing with the reversion
I --&#x3E; I).

The endoarrows of H1 (X) at a point xo E IXI form the fundamental group
n1(X, xo). Globally, we have two functors, defined on equilogical spaces or on the
pointed ones

which are invariant by local homotopies (pointed, in the second case) and extend the
analogous functors for topological spaces. Local homotopy equivalence can reduce
their calculation to the previous ones; for instance, for all our models of the circle,
by 2.5; direct computations are also possible, by a version of the Seifert-van
Kampen theorem (2.8).

2.7. Proposition [Local and global paths]. A local path a: I -o-&#x3E; X is always a
finite concatenation of elementary paths in X, up to local homotopy with fixed
endpoints. 

In particular, the path-components of X defined by the equivalence relation
produced by elementary paths (1.6) coincide with the ones defined (directly) by
local paths, and the functor no: Eql - Set is invariant by local homotopy.

Proof. If the mapping a: I - IXI can be partially lifted to X# on the open cover
(Ui) of I, choose a natural number k so that every interval [U- 1)/k, j/k] (1 j
s k) is contained in some Ui. Letting aj: I - IXI be the restriction of a to this
interval, reparametrised on the standard one, we have a finite sequence of consecu-
tive elementary paths aj: I - X, whose concatenation is equivalent to a.

Therefore n0(X) is the set of components of the groupoid TT1 (X), and is also
invariant by local homotopy. 0

2.8. Theorem [’Seifert - van Kampen’]. Let the equilogical space X be covered
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by the interiors of its equilogical subspaces U, V: X# = int(U#)uint(V#). If U#,
V# and A’ = U#nV# are path connected and xo E IAI, the following square of
homomorphisms induced by the inclusions is a pushout of groups

R. Brown’s version for fundamental groupoids [3] can also be extended to
equilogical spaces.

Proof. It is the same proof of the classical case, after adapting the subdivision
procedure to local paths and local 2-cubes. Indeed, any cube a: In - T (in Top)
can be subdivided into a family of 2n ’subcubes’, indexed on the vertices v E

{0,1}n of In

and we can iterate this procedure, letting sd operate on each term of the family.
If the map a is a local cube In -o-&#x3E; X, there is an open cover (Wi) of In such

that a has partial liftings ai: Wi - X*; we can always assume that all these partial
liftings take place in U# or in VO (replacing the previous open subsets with the
ones of type a1-1(int(U#)) and ai 1(int(U#))). Choosing a Lebesgue number for
this cover, one deduces that there is some kE N such that any ’subcube’ of In

with edge 2-k is contained in some Wi. Therefore, all the ’subdivided’ cubes of
the family sdk(a) can be lifted to U# or V#. 0

3. Singular homology

Singular homology can be easily extended to equilogical spaces, to study the new
objects. Less trivially, we prove that this homology can be equivalently computed by
local cubes and deduce that it is also invariant under local homotopy equivalence.

3.1. Cubes and homology. As in Massey’s text [ 17], we follow the cubical

approach instead of the more usual simplicial one (the equivalence with the
simplicial definition is proved by acyclic models, see [8, 14]). General motivations
for preferring cubes essentially go back to the fact that cubes are closed under
product, while tetrahedra are not; but a specific motivation will be our use of the
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natural order on the standard cube In = [0,1]°, in a subsequent paper. References
for cubical sets can be found in [12] .

Recall that the standard cubes In have faces 6ai and degeneracies Ei (for a =

A topological space T has a cubical set 0 T of singular cubes, the maps
In - T; their faces and degeneracies are obtained by pre-composing with the faces
and degeneracies of the standard cubes. More generally, an equilogical space X
has a cubical set of singular cubes 0 X, constructed in the same way in the

category Eql (instead of Top)

therefore, a cube In -&#x3E; X is a mapping In - IXI which can be (continuously)
lifted to X#; or also an equivalence class in the quotient of the set o n(X*) =
Top(In, Xo) (the n-cubes of the support X#), modulo the associated equivalence
relation - n obtained by projecting such cubes along the canonical projection

Recall also that an (abstract) cubical set K is a sequence of sets Kn, with faces

6a: Kn - Kn-l and degeneracies ei: Kn-1 -&#x3E; Kn (a = 0, 1; i = 1,..., n),
satisfying the well-known cubical relations (recalled in [12, 1.2]). Their category
will be written as Cub.

We have defined in (2) a canonical embedding o : Eql - Cub, acting on a
map f: X - Y of equilogical spaces in the obvious way

This embedding produces the (normalised) singular chain complex of equilogical
spaces and their singular homology:

which extends the singular homology of topological spaces, but does not reduce to
the homology of the underlying space HN(IXI) (see Section 4).

Using the wider category EqL of local maps (2.1 ), we have the local cubes a:
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In -o-&#x3E; X, the complex of local chains CL.(X) and the local homology groups
HLn(X)

We will prove that HLn(X) coincides with the global homology Hn(X) (3.5 ).

3.2. Relative homology. Relative homology is defined for a pair (X, A),
where X is an equilogical space and A an equilogical subspace (determined by a
subspace A# c X*, saturated for -x. with the restricted structure; 1.3); it is the
homology of the quotient of the associated chain complexes

defined on the category Eql2 of pairs of equilogical spaces (in the previous sense).
Of course, a map f: (X, A) - (Y, B) consists of a map f: X - Y in Eql
which takes the regular subobject A into B; in other words, any lifting f:

X# -&#x3E; YO takes A# into B# (because these parts are saturated for the equivalence
relations of X and Y). Homotopy is extended to Eql2, by the relative cylinder

where AxI is easily seen to be an equilogical subspace of XxI (a product always
preserves regular subobjects). For each pair (X, A), the (natural) short exact

sequence of chain complexes

yields the (natural) exact homology sequence of the pair. Again, all this extends to
EqL2.
We shall prove, for both theories (global and local), the Homotopy Invariance

Theorem (3.3) and a Subdivision Lemma (3.4). We deduce from the latter the
coincidence of global and local homology (3.5); from both, the fact that global
homology is also invariant for local homotopy equivalence (3.6). Other ’classical’
properties are deferred to Section 5.

3.3. Theorem [Homotopy Invariance]. Homotopic maps of pairs of equilogical
spaces induce the same homomorphisms in homology. The same holds for local
homotopy and local homology.
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Proof. The classical (cubical) proof [17,11.4.1] extends without problems. Given
a homotopy f: IXX - Y between fo, fl: X - Y in Eql, one constructs in the
usual way a homotopy between the associated chain morphisms C*(X) -&#x3E; C*(Y)

This is extended to relative homotopies in Eql2. The same works in EqL2,
with the relative chain complexes CL.(X, A). 0

3.4. Lemma [The Subdivision operator]. Every equilogical space X has a

subdivision operator, a natural morphism of chain complexes defined as follows

which subdivides any n-dimensional cube into a chain with 2n cubes, indexed on
the vertices v E {0,1}n of In. This morphism Sd is homotopic to the identity,
by a chain homotopy cp = ((Pn)

obtained by means of a suitable family of maps qv: In - In+1.

The same holds for the local chain complex, CL.(X): the subdivision operator
Sd and the chain homotopy (p are constructed in the same way, and extend the

previous ones.

Proof. It is the ’geometric part’ of the classical construction used to prove the
Subdivision Theorem, for cubical singular homology [17,11.7]. We single it out, to
use it independently. 0

3.5. Comparison Theorem [Global and local homology]. Let X be an

equilogical space. The embedding C*(X) c CL*(X) induces an isomorphism
Hn(X) = HLn(X), natural for global maps.

Proof. We use subdivision in CL* (X) (3.4), to prove that the induced

homomorphism Hn(X) -&#x3E; HLn(X) is bijective.

Injectivity. Take a global cycle z E Cn(X) which annihilates in HLn(X): z = ac
for some local chain c E CLn+1(X). There is an open cover (Ui) of In+1 such

that all the cubes of c have partial liftings Ui - XO. Choosing a Lebesgue
number for it, one deduces that there is some kE N such that any ’subcube’ of In
with edge 2-k is contained in some Ui, so that c’ = Sdk(c) E Cn+1(X). The
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composed chain homotopy (obtained from cp: id

We conclude that

is also a boundary in Cn(X), after taking into account the last
remark in 3.4: the chain homotopy cp takes C*(X) into C*(X), whence also its

composite xv does.

Surjectivity. Take a local cycle z E CLn(X): there is an open cover (Vi) of In
such that all the cubes of z have partial liftings Ui - X# and some kE N such
that z’ = Sdk(z) E Cn(X). The composed chain homotopy y: id = Sdk:

CL*(X) -+ CL*(X) gives z’ - z = 8y(z) in CLn(X), whence z’ is a global cycle
whose homology class in CLn(X) coincides with [z]. 0

3.6. Corollary. Global homology is also invariant for local homotopy. More
precisely, for all equilogical spaces X, Y:

(a) if the global maps f, g: X - Y are locally homotopic, Hn(f) = Hn(g);

(b) if the global map f: X - Y is locally invertible (possibly up to local homo-
topy), then Hn(f) is an isomorphism;

(c) if X, Y are locally homotopy equivalent, then Hn(X)= Hn(Y).

Proof. Follows from Homotopy Invariance (3.3) and Comparison (3.5), using the
following diagrams for (a) and (b)

3.7. Computations. Recall that topological spaces keep their singular homology.
The homology of an equilogical space can often be determined by the previous
results, reducing it to a topological space equivalent up to local homotopy. Thus, all
the models of the circle or of the n-sphere considered above (1.4) have the classical
homology (by Prop. 2.5).

More interesting results, having no simple analogue in Top, are dealt with in
the next section and deduced from the homology of groups. Finally, our homology
can be computed directly, as we shall see in the last section.
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4. Formal quotients and noncommutative geometry

Starting from a group action or a foliation on a space X, the equilogical space of
orbits (X, =G) or leaves (X, =F) can express ’formal quotients’ whose underlying
topological space is trivial; this agrees with similar analyses in noncommutative

geometry.

4.1. Actions. Let X be a topological space and G a group acting on it; the
group is in additive notation, and the action is written as x+g (for xE X and

gE G). The following results show that the orbit space of the action can be better
represented by the orbit cubical set ( o X)/G, or also - under additional hypotheses
- by the orbit equilogical space (X, =G)’

Recall that G acts freely if no operator of G has fixed points, except the
neutral one; and acts properly if every point has a neighbourhood U such that all
subsets U+g are disjoint, a much stronger condition. A classical result says that, if
G acts properly on the acyclic space X (having the homology of the point), then
the homology of the orbit space coincides with the homology of the group (cf. [15,
IV.11.5])

Dropping acyclicity, there is a spectral sequence converging to H*(X/G) [15,
12]. But the condition of proper action is quite strong, and ordinary topology seems
unable to deal with more general situations, where the orbit space X/G has a trivial
topology. However, the previous result has been extended in [ 12, Thm. 3.3] to free
actions on acyclic cubical sets. As a straightforward consequence, if the group G
acts freely on the acyclic space X

since the cubical set o X is also acyclic (its homology is the one of X, by
definition of the latter) and - plainly - G acts freely on it as well.

An additional hypothesis will allow us to express (2) with the orbit equilogical
space (X, =G). We say that G acts pathwise freely on X if, whenever two paths
a, b: I - X have the same projection to the orbit space X/G, there is precisely
one gE G such that a = b + g. Then, the same works for all pairs of n-cubes a, b:

In -&#x3E; X; the 0-dimensional case shows that the action is free.

4.2. Proposition [Orbit equilogical spaces]. Let the group G act on the

topological space X.
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(a) If the action of G is proper, then it is pathwise free (4.1 ).

(b) If the action is pathwise free, the canonical surjection

is a bijection (for a free action, also the converse holds) and

(c) If the action is pathwise free and the space X is acyclic, then

Proof. For (a), let G act properly and let us take two paths a, b: I -&#x3E; X such

that a(t) = b(t) + g(t), for some function g: I - G. Working locally at some
toE I, we choose a neighbourhood U of b(to) such that all subsets U+g are

disjoint. Since a and b are continuous, the point a(t) lies in U+g(to) while b(t)
lies in U, locally at to; therefore, a(t) lies in U+g(to) and U+g(t), locally at to.
But this means that the function g: I - G is locally constant, whence constant.
Point (b) is a rephrasing of the definition of pathwise free, and (c) follows
immediately from 4.1.2. 0

4.3. Examples. (a) Various pathwise free (non proper) actions will be obtained
as follows: the space X is an (additive) topological group and G is a totally
disconnected subgroup, acting on X by translations x+g. Indeed, if the paths a,

b: I - X have the sanie projection to X/G, their difference a - b: I - G must
be constant. (Then, the action is proper if and only if G is discrete.)

(b) As an example of a free action which is not pathwise free, take a (non trivial)
group G acting on its underlying set X, equipped with the coarse topology. This
space is contractible, hence acyclic. Therefore (by 4.1.2) we have H*((D X)/G) =
H*(G), while the orbit equilogical space gives here a trivial result, H*(X, =0) = 0.
In particular, with G = Z/2 and X the coarse space on two points, we find the
homology of the infinite (real) projective space P°° (cf. [14, 23])

4.4. Irrational rotation algebras. After recalling a well-known ’virtual space’
of non-commutative geometry, we will show how it can be interpreted - more
geometrically - as a cubical set or an equilogical space.

Consider the subgroup Gu = Z+uZ (u irrational) of the real line, acting on the
latter by translation (not properly, of course). Since Gu is dense in the line, the
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orbit space R/Gu has a trivial topology, the coarse one (the same happens to the
space of leaves of the corresponding Kronecker foliation on the torus, see 4.6).

In noncommutative geometry, this quotient is ’interpreted’ as the

(noncommutative) C*-algebra Au} generated by two unitary elements u, v under

the relation vu = exp(2niu).uv, and called the irrational rotation algebra associated
with -6, or also a noncommutative torus [6, 7, 18, 19]. Both its complex K-theory
groups are isomorphic to Z2.

As in [19], one can give a more explicit description of Au, within the C*-

algebra B(L2(T)) of bounded operators on the Hilbert space L2(T), for T =

R/Z. ’Functions’ on T are viewed as functions on R with f(t) = f(t+1). Then
Au c B(L2(T)) is the norm-closed *-subalgebra generated by two operators u, v

(satisfying the previous relation): the translation u(f) = f(t - u), corresponding to a
rotation on T, and v(f) = kf with k(t) = exp(27nit). Note that the algebra of
continuous functions C(T) is embedded in B(L2(T)) identifying a function g
with the operator Mg(f) = gf; then, v = Mk generates C(T) in B(L2(T)).

K-theory classifies these algebras, by proving that K0(Au)= Z+uZ as an
ordered subgroup of R, a combined result of Pimsner-Voiculescu and Rieffel [ 18,
19]. It follows that Au and Au, are strongly Morita equivalent if and only ifu
and -6’ are equivalent modulo the fractional action (on the irrationals) of the group
GL(2, Z) of invertible integral 2x2 matrices [ 19, Thm. 4]

The orbit of a is its closure under the transformations R(t) = t-1 1 and T±1(t) =
t t 1, on RBQ.

4.5. Cubical sets, equilogical spaces and irrational rotations. Similar

results have been obtained in [12, 4.2a], replacing the line R with its singular
cubical set 0 R and applying the result recalled above (4.2).

In fact, G.0 acts freely on 0 R Gust translating the cubes) so that the homology
of the cubical set ( o R)/G.0 is the same as the homology of the group Gu = Z2

(For the last isomorphism, it suffices to note that Z2 acts properly on the plane,
with orbit space the torus T2). Now, Gt) is totally disconnected, so that its action
on the line is also pathwise free (4.3a); therefore, the same result holds for the orbit
equilogical space (R, =Gu) (by 4.2.3)



74 

Moreover, two generators of [a], [b] E H1(R, =Gu)= Z2 and a generator [A]
E H2(R, =Gu) = Z are given by the following cycles [12, Thm. 4.8]

which yields a sort of ’homological correspondence’ between the virtual space (R,
=Gu) and the torus T2, together with some geometric intuition of the former.

Algebraically, all this is in accord with the ’interpretation’ of R/G.0 as the C*-
algebra Au, which has the same K-theory groups as the torus; but note that here
we loose the order information, and we cannot recover u, at any extent. (A deeper
accord was obtained in [12, 4.2b], with a different cubical set, C* = ( 0 l’R)/Gu,
constructed with the order-preserving cubes In - R: its directed homology is able
to recover the ordered group lGu up to isomorphism and the irrational number -6
up to the previous equivalence relation, described in 4.4.1. This can also be
obtained with an ordered equilogical space, C’u = (R, , =Gu ), as it will be shown

in a sequel.)

4.6. Foliations on the torus. The C* -algebra A.0 is also used as an

interpretation of a space of leaves with a trivial topology. And again, similar results
can be obtained with the corresponding equilogical space of leaves.

The Kronecker foliation F’ of the torus T2 = R2/Z2, with irrational slope 1D,
is induced by the foliation F = (Fk,) of the plane whose leaves are the lines of slope
u

The set T2u = T2/=F of its leaves comes from the following equivalence relation
= on R2

Each leaf is dense in T2, and the set T2 inherits the coarse topology. In [12,
4.3], we have shown that the quotient cubical set 0 T2/(=F)* (identifying the cubes
of the torus which have the same projection to T2/=F’) is isomorphic to the
previous cubical set o R/Gth whence again it has the same homology as T2.

Now, the argument used there can be adapted, to show that the equilogical
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spaces (R, mG,) and (R2, =) are isomorphic. The isomorphism is induced by the
following maps (in Top):

which are coherent with the equivalence relations of

moreover, pi = idR while ip induces the identity, because

Finally, using also the fact that the canonical projection
a local isomorphism (by 2.2), the equilogical set of leaves (T2, =p) gives:

4.7. Other applications. Extending our example, as in [12, 4.4], take an n-
tuple of real numbers ’6 = (u1,..., ’6n), linearly independent on the rationals, and
consider the additive subgroup G.0 = ij ujZ = Zn, acting freely on R. (The
previous case corresponds to the pair (1, u).)

Again, the group Gu is totally disconnected, and its action on the line is
pathwise free; applying 4.2.3, we can extend the previous case to the new
equilogical space (R, aGO)

The foliation F of Rn, formed of the hyperplanes Lj ujxj = À, induces a

foliation F’ on the n-dimensional torus; the equilogical space of leaves (Tn,=F) is

locally isomorphic to (R, =Gu) and has the same homology.
In all these cases, the homology of the equilogical quotients, (R, =Gu) or

(Tn, =F’), is relevant, while the one of the underlying spaces, R/Ga or Tn/=F’, is

trivial. Other examples can be found in [ 12, 4.5].

5. Complements on homology

The remaining classical results are easily extended, including the Eilenberg-
Steenrod definition of an abstract homology theory. We end considering the
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topological and equilogical realisations of a cubical set.

5.1. Remark. It will be useful to note a simple fact, which is less obvious than its
topological analogue and might be overlooked. Given an equilogical space X and
two equilogical subspaces U, V, one has the following relation between
subcomplexes of C*(X)

Indeed, since U# is saturated in X, a non-degenerate cube a: In - X

belongs to C*U if and only if every lifting a’: In - X# has an image contained
in U#.

5.2. Subdivision Theorem. Let X be an equilogical space and = (Ai)iE I a
family of parts of its support X# whose interiors cover X*. Let C*(X; A) c
C*(X) denote the subcomplex generated by those cubes a: In - X which have

some lifting In - Ai. Then, this embedding induces isomorphism in homology.

Proof. It is the obvious extension of the proof of the classical Subdivision
Theorem, for cubical singular homology [17,II.7]. We have already extended the
geometric construction, in the lemma on the subdivision Sd: C*(X) - C*(X)
(3.4), showing that there is a chain homotopy T: id = Sd (3.4.2). Note that, if a:
In -&#x3E; X# is any lifting of a, Im (â.nv) c Im(a) (with the notation of 3.4.2); it

follows that (p is consistent with A: it sends Cn(X; A.) into Cn+I(X; A).

Now, a (global) cube a: In - X has a continuous lifting a: In - Xo,
producing an open cover (a-1(Ai))iEI of In; by the Lebesgue Lemma, there is
some ke N such that any ’subcube’ of In with edge 2-k is contained in some

subset a-I(Ai), so that the iterated subdivision Sdk(a) belongs to C*(X; A)).
Since Sdk is also homotopic to the identity, by a homotopy consistent with A,
one shows that the homomorphism Hn(C*(X; A)) - Hn(X) is injective and
surjective, as in the classical proof (and much in the same way as in the previous
proof of the Comparison Theorem, 3.5). 0

5.3. Theorem [The Mayer-Vietoris sequence]. Let the equilogical space X be
covered by the interiors of its equilogical subspaces U, V: X# = int(U#) u int(V#).
Then we have an exact sequence

with the obvious meaning of brackets.
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The maps u: are inclu-

sions and the connective A is:

The sequence is natural, for a map f: X - X’ which restricts to

Proof. As in the topological case, one applies Subdivision (5.2) to the cover A =
(U#, VO), together with the algebraic theorem of the ’long’ exact homology
sequence, for the usual short exact sequence of chain complexes

The exactness of the latter needs one non-trivial verification, at its centre, and

depends on a previous remark on C*(UnV) (5.1.1). Take a E CnU, b E CnV
and assume that u*(a) = v*(b); therefore, each cube really appearing in a (and b)
belongs to C*UnC*V = C*(UnV); globally, there is (one) normalised chain c E
Cn(UnV) such that i*(c) = a, j*(c) = b. 0

5.4. Theorem [Excision]. Let X be an equilogical space, with equilogical
subspaces U, A such that the closure of the subspace U# is contained in the

interior of A# (with respect to the space X*). Then the inclusion of (X B U, A B U)
into (X, A) induces isomorphisms in homology.

Proof. The subsets are also saturated for - X.

Applying Subdivision to the family = (A#, X# d) (whose interiors cover X#)
and the Five Lemma, one reduces to considering the usual Noether isomorphism of
chain complexes:

where the last equality comes from

5.5. Homology theories. A homology theory for equilogical spaces (and local
maps) can be defined as a sequence of functors and natural transformations

satisfying the Eilenberg-Steenrod axioms [9], in the form already verified for
singular homology: Homotopy Invariance (for local homotopies, 3.3), Exactness
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(3.2), Excision (5.4) and Dimension. It restricts on Top2 to a homology theory
for topological spaces, and is therefore uniquely determined on all equilogical
spaces having the local homotopy type of a finite CW complex.

In this sense, singular homology of equilogical spaces and local maps is a
homology theory with integral coefficients, which extends the classical singular
homology of topological spaces. One obtains a (co)homology theory with
coefficients in an abelian group G, in the usual way

and the Universal Coefficient Theorem holds (its proof being purely algebraic).

5.6. Realisations. A cubical set K has a well-known geometric realisation

which is a colimit in Top, the pasting - along faces and degeneracies - of a copy of
a standard cube In(a) for each cube a of K of dimension n(a). The equivalence
relation - is generated by identifying the points which corresponds themselves,
along the mappings induced by faces (Sa) and degeneracies (Fi)

(This colimit can be obtained as a coend, cf. [16]). The functor R is left adjoint to
the functor o : Top - Cub of singular cubical sets.

Similarly, we can construct the equilogical realisation, left adjoint to the functor
o : Eql - Cub, by the ’same’ colimit in Eql

Thus, the topological realisation is the space underlying the equilogical
realisation

and the following theorem proves that these objects are homotopically equivalent in
EqL.

5.7. Theorem [Comparing realisations]. The projection p: E (K) - R(K),
induced by the identity of supports, is a local homotopy equivalence.

Proof. It is a generalisation of constructions we have already used in 2.5, and will
be omitted, for brevity. It can be found in the Preprint [13]. 0
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5.8. Comments. One is clearly tempted to view the local homotopy equivalence
of all equilogical circles Ck = (kI, Rk) ( 1.4.4) as a particular case of the preceding
theorem. This is essentially true, but not straightforward.

Indeed, the k-gonal cubical set Ck (with k vertices and k edges) has an
equilogical realisation which is isomorphic to Ck but has a much bigger support:
kI° + 2kI1 + ... Of course, most of it is due to degenerate cubes. But, even
restricting to the non-degenerate ones, we would get a support kI° + kIl with k

singletons which are not in Ck (and are not necessary). The drawing below
represents 410 + 4I1, at the left, and the support of C4 = (41, R4) at the right
(with dashed lines for their equivalence relations)

One can prove that, by similar reductions (omitting degenerate cubes and
appropriate faces), we get an isomorphic equilogical realisation, so that Ck gives
precisely Ck, and the cubical set generated by one cube of dimension n gives
precisely In (see Proposition 5.9 in the Preprint [13]). Then, Thm. 5.7 shows that
all Ck are locally homotopy equivalent to the topological realisation, S 1.
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