Local and nice structures of the groupoid of an equivalence relation
Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 45 (2004) no. 1, pp. 23-34.
@article{CTGDC_2004__45_1_23_0,
     author = {Kubarski, Jan and Rybicki, Tomasz},
     title = {Local and nice structures of the groupoid of an equivalence relation},
     journal = {Cahiers de Topologie et G\'eom\'etrie Diff\'erentielle Cat\'egoriques},
     pages = {23--34},
     publisher = {Dunod \'editeur, publi\'e avec le concours du CNRS},
     volume = {45},
     number = {1},
     year = {2004},
     mrnumber = {2040661},
     zbl = {1061.58019},
     language = {en},
     url = {http://www.numdam.org/item/CTGDC_2004__45_1_23_0/}
}
TY  - JOUR
AU  - Kubarski, Jan
AU  - Rybicki, Tomasz
TI  - Local and nice structures of the groupoid of an equivalence relation
JO  - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY  - 2004
SP  - 23
EP  - 34
VL  - 45
IS  - 1
PB  - Dunod éditeur, publié avec le concours du CNRS
UR  - http://www.numdam.org/item/CTGDC_2004__45_1_23_0/
LA  - en
ID  - CTGDC_2004__45_1_23_0
ER  - 
%0 Journal Article
%A Kubarski, Jan
%A Rybicki, Tomasz
%T Local and nice structures of the groupoid of an equivalence relation
%J Cahiers de Topologie et Géométrie Différentielle Catégoriques
%D 2004
%P 23-34
%V 45
%N 1
%I Dunod éditeur, publié avec le concours du CNRS
%U http://www.numdam.org/item/CTGDC_2004__45_1_23_0/
%G en
%F CTGDC_2004__45_1_23_0
Kubarski, Jan; Rybicki, Tomasz. Local and nice structures of the groupoid of an equivalence relation. Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 45 (2004) no. 1, pp. 23-34. http://www.numdam.org/item/CTGDC_2004__45_1_23_0/

[A-B] Aof M. Brown R., The holonomy groupoid of a locally topological groupoid, Topol. Appl., 47 (1992), 97-113. | MR | Zbl

[B-M1] Brown R., Mucuk O., The monodromy groupoid of a Lie groupoid, Cah. Top. Géom. Diff. Cat. 36(1996), 345-369. | Numdam | MR | Zbl

[B-M2] -, Foliations, locally groupoids and holonomy, Cah. Top. Géom. Diff. Cat. 37(1996), 61-71. | Numdam | MR | Zbl

[C-F] Crainic M., Fernandes R.L., Integrability of Lie brackets, Ann. Math. 157(2003), 575-620. | MR | Zbl

[D] Dieudonne J., Treatise on analysis, Vol.IV, Academic Press, New York and London, 1974. | MR | Zbl

[H-H] Hector G. and Hirsh U., Introduction to the Geometry of Foliations, Part A, Braunschweig 1981. | Zbl

[K-K] Kowalczyk A., Kubarski J., A local property of the subspaces of Euclidean differential spaces, Dem. Math. Vol. 11, No 4, 1978, p.876-885. | MR | Zbl

[K1] Kubarski J., On Lie groupoids and Lie algebroids, (in Polish), Ph.D. thesis, Lodz, 1977.

[K2] -, Some generalization of Godement's theorem on division, Proceeding of the Winter School on Geometry and Physics, Srni, 10-17 January, 1987, Supplemento ai Rendiconti del Circolo Matematico di Palermo, Serie II - numero 16 - 1987, 119-124. | Zbl

[K3] -, Pradines-type groupoids, Proceeding of the Winter School on Geometry and Physics, Srni, 10-17 January, 1987, Supplemento ai Rendiconti del Circolo Matematico di Palermo, Serie II - numero 16 - 1987, 125-143. | MR

[P] Pradines J., Théorie de Lie pour les groupoides différentiables, relation entre propriétés locales et globales, Comptes Rendus Acad. Sci. Paris, Sér A, 263 (1966), 907-910. | MR | Zbl

[R1] Rybicki T. On foliated, Poisson and Hamiltonian diffeomorphisms, Diff. Geom. Appl. 15(2001), 33-46. | MR | Zbl

[R2] -,A Lie group structure on strict groups, preprint ESI n. 1076 (2001); Publ. Matem. Debrecen 61(2002), 533-548. | MR | Zbl

[S1] Sikorski R., Abstract covariant derivative, Coll.Math. 18, 1967, p.251-272. | EuDML | MR | Zbl

[S2] -, Differential modules, Coll.Math. 24, 1971, p.45- 79. | EuDML | MR | Zbl

[T] Tamura I., Topology of foliations: an introduction, Transl. Math. Monographs. 97, American Math. Soc., Rhode Island, 1992. | MR | Zbl

[W1] Walczak P. A theorem on diffeomorphism in the category of differential spaces, Bull. Acad. Polon. Sci., Ser. Sci. Math. Astron. Phys., 21. 1973, p. 325-329. | MR | Zbl

[W2] -, On a class of differential spaces satisfying the theorem on diffeomrphism, I, II, ibidem, 22, 1974, p.805-820. | MR | Zbl