@article{CTGDC_2003__44_2_105_0, author = {Fiedorowicz and Vogt}, title = {Simplicial $n$-fold monoidal categories model all loop spaces}, journal = {Cahiers de Topologie et G\'eom\'etrie Diff\'erentielle Cat\'egoriques}, pages = {105--148}, publisher = {Dunod \'editeur, publi\'e avec le concours du CNRS}, volume = {44}, number = {2}, year = {2003}, mrnumber = {1985834}, zbl = {1052.18002}, language = {en}, url = {http://www.numdam.org/item/CTGDC_2003__44_2_105_0/} }
TY - JOUR AU - Fiedorowicz AU - Vogt TI - Simplicial $n$-fold monoidal categories model all loop spaces JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques PY - 2003 SP - 105 EP - 148 VL - 44 IS - 2 PB - Dunod éditeur, publié avec le concours du CNRS UR - http://www.numdam.org/item/CTGDC_2003__44_2_105_0/ LA - en ID - CTGDC_2003__44_2_105_0 ER -
%0 Journal Article %A Fiedorowicz %A Vogt %T Simplicial $n$-fold monoidal categories model all loop spaces %J Cahiers de Topologie et Géométrie Différentielle Catégoriques %D 2003 %P 105-148 %V 44 %N 2 %I Dunod éditeur, publié avec le concours du CNRS %U http://www.numdam.org/item/CTGDC_2003__44_2_105_0/ %G en %F CTGDC_2003__44_2_105_0
Fiedorowicz; Vogt. Simplicial $n$-fold monoidal categories model all loop spaces. Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 44 (2003) no. 2, pp. 105-148. http://www.numdam.org/item/CTGDC_2003__44_2_105_0/
[1] Homotopy-everything H-spaces, Bull. Amer. Math. Soc. 74 (1968), 1117-1122. | MR | Zbl
, ,[2] Iterated monoidal categories, to appear. | MR | Zbl
, , , ,[3] Sur la notion de diagramme homotopiquement coherent, Cah. Topologie Geom. Differ. 23 (1982), 93-112. | Numdam | MR | Zbl
,[4] Homotopy coherent category theory, Trans. Am. Math. Soc. 349 (1997), 1-54. | MR | Zbl
and ,[5] Théorie des topos et cohomologie étale des schémas, Springer Lecture Notes in Mathematics 269 (1972). | MR
, , ,[6] Topologie algébrique et théorie des faisceaux, Paris: Hermann, 1973. | MR | Zbl
,[7] Braided tensor categories, Advances in Math. 102(1993), 20-78. | MR | Zbl
and ,[8] Quantum Groups, Springer-Verlag, 1994. | MR | Zbl
,[9] The uniqueness of homology for the category of small categories, J. Pure and Appl. Algebra 9 (1977), 221-237. | MR | Zbl
,[10] Categories for the working mathematician, Springer-Verlag, 1971. | MR | Zbl
,[11] The geometry of iterated loop spaces, Lecture Notes in Mathematics, Vol. 271, Springer, 1972. | MR | Zbl
,[12] Higher algebraic K-theory I, Springer Lecture Notes in Math. 341 (1973), 85-147. | MR | Zbl
,[13] Two constructions on lax functors, Cahiers Topologie Geometrie Differentielle 13(1972), 217-264. | Numdam | MR | Zbl
,[14] Homotopy colimits in the category of small categories, Math. Proc. Cambridge Phil. Soc. 85(1979), 91-109. | MR | Zbl
,[15] Symmetric monoidal categories model all connective spectra, Theory and Appl. of Categories 1 (1995), 78-118. | MR | Zbl
,[16] Convenient categories of topological spaces for homotopy theory, Arch. Math. 22 (1971), 545-555. | MR | Zbl
,[17] Homotopy limits and colimits, Math. Z. 134 (1973), 11-52. | MR | Zbl
,