@article{CTGDC_2003__44_1_39_0, author = {Mackaay, Marco}, title = {A note on the holonomy of connections in twisted bundles}, journal = {Cahiers de Topologie et G\'eom\'etrie Diff\'erentielle Cat\'egoriques}, pages = {39--62}, publisher = {Dunod \'editeur, publi\'e avec le concours du CNRS}, volume = {44}, number = {1}, year = {2003}, mrnumber = {1961525}, zbl = {1067.58003}, language = {en}, url = {http://www.numdam.org/item/CTGDC_2003__44_1_39_0/} }
TY - JOUR AU - Mackaay, Marco TI - A note on the holonomy of connections in twisted bundles JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques PY - 2003 SP - 39 EP - 62 VL - 44 IS - 1 PB - Dunod éditeur, publié avec le concours du CNRS UR - http://www.numdam.org/item/CTGDC_2003__44_1_39_0/ LA - en ID - CTGDC_2003__44_1_39_0 ER -
%0 Journal Article %A Mackaay, Marco %T A note on the holonomy of connections in twisted bundles %J Cahiers de Topologie et Géométrie Différentielle Catégoriques %D 2003 %P 39-62 %V 44 %N 1 %I Dunod éditeur, publié avec le concours du CNRS %U http://www.numdam.org/item/CTGDC_2003__44_1_39_0/ %G en %F CTGDC_2003__44_1_39_0
Mackaay, Marco. A note on the holonomy of connections in twisted bundles. Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 44 (2003) no. 1, pp. 39-62. http://www.numdam.org/item/CTGDC_2003__44_1_39_0/
[1] Holonomy and path structures in general relativity and Yang-Mills theory. Int. J. Theor. Phys., 30 (9):1171-1215, 1991. | MR | Zbl
[2] D-branes, B-fields and twisted K-theory. J. High Energy Phys., 3, Paper 7, 2000. | MR | Zbl
and[3] G-groupoids, crossed modules and the fundamental groupoid of a topological group. Nederl. Akad. Wetensch. Proc. Ser. A79, 38(4):296-302, 1976. | MR | Zbl
and[4] Loop spaces, characteristic classes and geometric quantization, volume 107 of Progress in Mathematics. Birkhauser, 1993. | MR | Zbl
[5] An axiomatic definition of holonomy. Int. J. Math., 5(6):835-848, 1994. | MR | Zbl
and[6] On a family of topological invariants similar to homotopy groups. Rend. Ist. Mat. Univ. Trieste, 30(1-2):81-90, 1998. | MR | Zbl
and[7] On gerbs. PhD thesis, University of Cambridge, 1998.
[8] D-branes in a topologically nontrivial B-field. Adv. Theor. Math. Phys., 4(1):127-154, 2000. | MR | Zbl
[9] Holonomy and parallel transport for Abelian gerbes. To appear in Adv. Math. Preprint available as math.DG/0007053. | MR | Zbl
and[10] Lie groupoids and Lie algebroids in differential geometry. London Mathematical Society Lecture Note Series, 124. Cambridge University Press, Cambridge, 1987. | MR | Zbl