@article{CTGDC_2001__42_4_285_0, author = {Sioen, M.}, title = {Symmetric monoidal closed structures in $\mathit {PRAP}$}, journal = {Cahiers de Topologie et G\'eom\'etrie Diff\'erentielle Cat\'egoriques}, pages = {285--316}, publisher = {Dunod \'editeur, publi\'e avec le concours du CNRS}, volume = {42}, number = {4}, year = {2001}, mrnumber = {1876868}, zbl = {1004.18008}, language = {en}, url = {http://www.numdam.org/item/CTGDC_2001__42_4_285_0/} }
TY - JOUR AU - Sioen, M. TI - Symmetric monoidal closed structures in $\mathit {PRAP}$ JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques PY - 2001 SP - 285 EP - 316 VL - 42 IS - 4 PB - Dunod éditeur, publié avec le concours du CNRS UR - http://www.numdam.org/item/CTGDC_2001__42_4_285_0/ LA - en ID - CTGDC_2001__42_4_285_0 ER -
%0 Journal Article %A Sioen, M. %T Symmetric monoidal closed structures in $\mathit {PRAP}$ %J Cahiers de Topologie et Géométrie Différentielle Catégoriques %D 2001 %P 285-316 %V 42 %N 4 %I Dunod éditeur, publié avec le concours du CNRS %U http://www.numdam.org/item/CTGDC_2001__42_4_285_0/ %G en %F CTGDC_2001__42_4_285_0
Sioen, M. Symmetric monoidal closed structures in $\mathit {PRAP}$. Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 42 (2001) no. 4, pp. 285-316. http://www.numdam.org/item/CTGDC_2001__42_4_285_0/
[1] Abstract and Concrete Categories, John Wiley, New York (1990) | MR | Zbl
and[2] Tensorproducts and Bimorphisms, Canad. Math. Bull., 19(4) (1976), pp. 385-402 | MR | Zbl
and[3] Handbook of Categorical Algebra I, II, III, Encyclopedia of Mathematics Vol. 50, 51, 52, Cambridge University Press (1994) | Zbl
[4] Limit Tower Spaces and Probabilistic Metric Spaces, Appl. Categ. Struct., 5 (1997), pp. 99-110 | MR | Zbl
and ,[5] On a Tensorproduct in Initially Structured Categories, Math. Slovaca, 29(3) (1979), pp. 245-255 | EuDML | MR | Zbl
[6] Closed Categories, Proc. Conf. on Categorical Algebra, La Jolla 1965, Springer Verlag, New-York (1966), pp. 421-562 | MR | Zbl
and[7] On Simultaneously Reflective and Coreflective Sub-constructs, to appear in G.C.L. Brümmer Festschrift | Zbl
and[8] Reflexive cum Coreflexive Subcategories in Topology, Math. Ann., 195 (1972), pp. 168-174 | EuDML | MR | Zbl
[9] Monoidal Closed Structures on Categories with Constant Maps, J. Australian Math. Soc. (Ser. A), 38 (1985), pp. 175-185 | MR | Zbl
and[10] Characterization of Convergence in Fuzzy Topological Spaces, Internat. J. Math. Math. Sci., 8(3) (1985), pp. 497-511 | EuDML | MR | Zbl
and[11] A Quasi-topos Containing CONV and MET as Full Subcategories, Int. J. Math. Math. Sci., 11 (1988), pp. 417-438 | EuDML | MR | Zbl
and[12] Topological Quasitopos Hulls of Categories Containing Topological and Metric Objects, Cah. Top. Géom. Diff. Catég., 30 (1989), pp. 213-238 | EuDML | Numdam | MR | Zbl
and[13] Exponential Objects in the Construct PRAP, Cah. Top. Géom. Diff. Catég., XXXVIII(4) (1997), pp. 259-276 | EuDML | Numdam | MR | Zbl
, and[14] Exponential Objects and Cartesian Closedness in the Construct PRTOP, Appl. Categ. Struct., 1 (1993), pp. 345-360 | MR | Zbl
and[15] Convergence in fuzzy topological spaces, Gen. Top. Appl., 10 (1979), pp. 147-166. | MR | Zbl
[16] Approach Spaces: a Common Supercategory of TOP and MET, Math. Nachr. 141 (1989), pp. 183-226 | MR | Zbl
[17] Approach Spaces: the Missing Link in the Topology-Uniformity-Metric Triad, Oxford Mathematical Monographs, Oxford University Press (1997) | MR | Zbl
[18] Convergence Using Generalizations of Filters, to appear
, and[19] Natural Associativity and Commutativity, Rice Univ. Studies, 49 (1963), pp. 28-46 | MR | Zbl
[20] Categories for the Working Mathematician, Graduate Texts in Mathematics, Springer Verlag, New-York (1971) | MR | Zbl
[21] Initially Structured Categories and Cartesian Closedness, Canad. J. Math., 27 (1975), 1361-1377 | MR | Zbl
[22] Tensorprodukt als Universelles Problem, Math. Ann., 171 (1967), pp. 247-262 | EuDML | MR | Zbl
[23] Aspects of Categorical Algebra in Initialstructure Categories, Cah. Top. Géom. Diff., XV (1974), pp. 419-444 | EuDML | Numdam | MR | Zbl