@article{CTGDC_2000__41_4_255_0, author = {Yanofsky, Noson S.}, title = {The syntax of coherence}, journal = {Cahiers de Topologie et G\'eom\'etrie Diff\'erentielle Cat\'egoriques}, pages = {255--304}, publisher = {Dunod \'editeur, publi\'e avec le concours du CNRS}, volume = {41}, number = {4}, year = {2000}, mrnumber = {1805933}, zbl = {0989.18005}, language = {en}, url = {http://www.numdam.org/item/CTGDC_2000__41_4_255_0/} }
TY - JOUR AU - Yanofsky, Noson S. TI - The syntax of coherence JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques PY - 2000 SP - 255 EP - 304 VL - 41 IS - 4 PB - Dunod éditeur, publié avec le concours du CNRS UR - http://www.numdam.org/item/CTGDC_2000__41_4_255_0/ LA - en ID - CTGDC_2000__41_4_255_0 ER -
Yanofsky, Noson S. The syntax of coherence. Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 41 (2000) no. 4, pp. 255-304. http://www.numdam.org/item/CTGDC_2000__41_4_255_0/
[1] Category Theory for Computing Science. Prentice Hall (1990). | MR | Zbl
and[2] Two-dimensional monad theory. Journal of Pure and Applied Algebra 59 (1989) 1-41. | MR | Zbl
, and[3] Day. Universal algebra in a closed category. Journal of Pure and Applied Algebra 16 (1980) 133-147. | MR | Zbl
[4] Natural anadeses and catadeses. Cahiers Topo. et Geom. Diff. Vol XIV-4(1973) 1 - 45. | EuDML | Numdam | MR | Zbl
[5] Bifibration induced adjoint pairs. Reports of the Midwest Category Seminar, V (Zurich, 1970) Lecture Notes in Math Vol 195. 70 - 122. | MR | Zbl
[6] Coherent extensions and relational algebras. Trans. Amer. Math. Soc. 197 (1974) 355 - 390. | MR | Zbl
[7] Algebra valued functors in general and tensor products in particular. Colloquium Mathematicum XIV (1996) 89-106. | EuDML | MR | Zbl
[8] Quasi-Kan extensions for 2-categories. Bulletin of the A.M.S. Vol. 80, Number 1, January (1974) 142-147. | MR | Zbl
[9] Formal Category Theory: Adjointness for 2-categories. Springer-Verlag LNM391 (1974). | MR | Zbl
[10] 2-Algebraic theories and triples, Cahiers Topologie Geom. Differentielle XIV (1974), 178 - 180.
[11] Coherence for the Tensor Product of 2-Categories, and Braid Groups. Algebra, topology, and category theory (a collection of papers in honor of Samuel Eilenberg), Academic Press, New York, 1976. 63-76. | MR | Zbl
[12] Braided tensor categories,revised. Macquarie Math. Report no 86081.
and[13] Braided tensor categories. Adv. Math.102 (1993) 20-78. | MR | Zbl
and[14] Quantum Groups, Vol 155 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1995. | MR | Zbl
[15] Functorial semantics of algebraic theories, Proc. Nat. Acad. Sci. U.S.A. 50 (1963) 869-872. | MR | Zbl
[16] Some Algebraic Problems in the Context of Functorial Semantics of Algebraic Theories, Springer Lecture Notes in Mathematics No. 61, Springer-Verlag (1968), 41-61. | MR | Zbl
[17] Ordinal Sums and Equational Doctrines, Springer Lecture Notes in Mathematics No. 80, Springer-Verlag (1969), 141-155. | MR | Zbl
[18] Models for operads, Comm. Algebra 24 (1996), no.4 1471-1500. | MR | Zbl
[19] Naural associativity and commutativity. Rice Univ. Studies 49 (1963) 28-46. | MR | Zbl
[20] Soft Adjunction between 2-categories. Journal of Pure and Applied Algebra 60 (1989) 155-203. | MR | Zbl
and[21] Modeling computations: a 2-categorical approach. Proc. Symposium on Logic in Computer Science, 1987 (Computer Society of the IEEE, 1987) 65-71.
[22] Two constructions on lax functors. Cahiers Topo. et Geom. Diff. Vol XIII - 3 (1972) 217 - 264. | Numdam | MR | Zbl
[23] Discrete models for the category of Riemann surfaces. Math. Proc. Camb. Phil. Soc. 121,39 (1997). | MR | Zbl
[24] The Swiss-Cheese Operad. Preprint available as math.QA/980737. July 1998. | MR
[25] Algebraic semantics. Handbook of logic in computer science, vol 3. Pg 323 - 393 (1994). | MR
[26] Obstructions to Coherence: Natural Noncoherent Associativity and Tensor Functors Thesis of City University of New York (1996).
[27] Obstructions to Coherence: Natural Noncoherent Associativity. Accepted for publication Journal of Pure and Applied Algebra. Available in Quantum Algebra http://xxx.lanl.gov/QA/9804106. | Zbl
[28] Natural Noncoherent Commutativity. in preparation.
[29] Relative Coherence Theory. work in progress.
[30] Quantum groups and representations of monoidal categories, Math. Proc. Camb. Phil. Soc. (1990), 108, 261-290. | MR | Zbl
,