@article{CTGDC_2000__41_3_162_0, author = {Booth, Peter I.}, title = {Fibrations and classifying spaces : overview and the classical examples}, journal = {Cahiers de Topologie et G\'eom\'etrie Diff\'erentielle Cat\'egoriques}, pages = {162--206}, publisher = {Dunod \'editeur, publi\'e avec le concours du CNRS}, volume = {41}, number = {3}, year = {2000}, mrnumber = {1784217}, zbl = {0991.55010}, language = {en}, url = {http://www.numdam.org/item/CTGDC_2000__41_3_162_0/} }
TY - JOUR AU - Booth, Peter I. TI - Fibrations and classifying spaces : overview and the classical examples JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques PY - 2000 SP - 162 EP - 206 VL - 41 IS - 3 PB - Dunod éditeur, publié avec le concours du CNRS UR - http://www.numdam.org/item/CTGDC_2000__41_3_162_0/ LA - en ID - CTGDC_2000__41_3_162_0 ER -
%0 Journal Article %A Booth, Peter I. %T Fibrations and classifying spaces : overview and the classical examples %J Cahiers de Topologie et Géométrie Différentielle Catégoriques %D 2000 %P 162-206 %V 41 %N 3 %I Dunod éditeur, publié avec le concours du CNRS %U http://www.numdam.org/item/CTGDC_2000__41_3_162_0/ %G en %F CTGDC_2000__41_3_162_0
Booth, Peter I. Fibrations and classifying spaces : overview and the classical examples. Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 41 (2000) no. 3, pp. 162-206. http://www.numdam.org/item/CTGDC_2000__41_3_162_0/
On the classification of fiber spaces, Math. Z. 92 (1966), 110-125. | EuDML | MR | Zbl
,B1 Local to global properties in the theory of fibrations, Cahiers de Topologie et Géométrie Différentielle Catégoriques, XXXIV-2 (1993), 127-151. | EuDML | Numdam | MR | Zbl
,B2 Fibrations and classifying spaces: an axiomatic approach I, Cahiers de Topologie et Géométrie Différentielle Catégoriques, XXXIX-2 (1998), 83 - 116. | EuDML | Numdam | MR | Zbl
,B3 Fibrations and classifying spaces: an axiomatic approach II, Cahiers de Topologie et Géométrie Différentielle Catégoriques, XXXIX-3 (1998), 181 - 203. | EuDML | Numdam | MR | Zbl
,B4 On the geometric bar construction and the Brown representability theorem, Cahiers de Topologie et Géométrie Différentielle Catégoriques, XXXIX-4 (1998), 271 - 285. | EuDML | Numdam | MR | Zbl
,BHMP H-spaces of self-equivalences of fibrations and bundles, Proc. London Math. Soc. 49 (1984), 111-127. | MR | Zbl
, , and ,D1 Partitions of unity in the theory of fibrations, Ann. of Math. 78 (1963), 223-255. | MR | Zbl
,D2 Halbexakte Homotopiefunktoren, Lecture Notes in Math., vol.12, Springer-Verlag, Berlin, 1966. | MR | Zbl
,DL Principal quasifibrations and fibre homotopy equivalence of bundles, Ill. J. of Math. 3 (1959), 285-305. | MR | Zbl
and ,FP Cellular structures in topology, Cambridge University Press, Cambridge, 1990. | MR | Zbl
and ,A modified Dold-Lashof construction that does classify H-principal fibrations, Math. Ann. 192 (1971), 328-340. | MR | Zbl
,M1 Classifying spaces and fibrations, Mem. Amer. Math. Soc. vol.155, Providence, 1975. | MR | Zbl
,M2 Fibrewise localization and completion, Trans. Amer. Math. Soc. 258 (1980), 127-146. | MR | Zbl
,Mn Algebraic Topology, Van Nostrand Rein-hold, London and New York, 1970. | Zbl
,Mi Construction of universal bundles II, Ann. of Math. 63 (1956), 430-436. | MR | Zbl
,Mo Characterizations of F-fibrations, Proc. Amer. Math. Soc. 88 (1983), 169-172. | MR | Zbl
,P Homomorphisms of principal fibrations: applications to classification, induced fibrations and the extension problem, Ill. J. of Math. 16 (1972); 41-60. | MR | Zbl
,PPP On the classification of F-fibrations, Top. and its Applics. 87 (1998), 213-227. | MR | Zbl
, and ,Sc The Brownian classification of fibre spaces, Arch. Math. 39 (1982), 359-365. | MR | Zbl
,Sib Existence theorems for H-space inverses, Proc. Camb. Phil. Soc. 65 (1969), 19-21. | MR | Zbl
,Sie On a space between BH and B∞, Pacif. J. of Math. 60, No. 2, (1975), 235-246. | Zbl
,Sp Algebraic Topology, McGraw-Hill, NewYork, 1966. | MR | Zbl
,Sta A classification theorem for fibre spaces, Topology 2 (1963), 239-246. | MR | Zbl
,Str The homotopy category is a homotopy category, Arch. der Math. XXIII (1972), 435-441.
,Va On fibrations and category, Math. Z. 88 (1965), 267-273. | MR | Zbl
,