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INFINITESIMAL AND LOCAL STRUCTURES
FOR BANACH SPACES AND ITS EXPONENTIALS

IN A TOPOS

by Eduardo J. DUBUC and Jorge C ZILBER

CAHIERS DE TOPOLOGIE ET

GEOMETRIE DIFFERENTIELLE C4TEGORIQUES
Volume ,XLI-2 (200f))

RESUME. Dans [9] nous avons construct une immersion de la ca-
tégorie des ouverts d’espaces de Banach et des fonctions holomor-
phes dans un topos modele analytique de la GDS [8]. Cette immer-
sion preserve les produits finis et elle est compatible avec le calcul
diff6rentiel
Nous 6tudions ici, dans un cadre g6n6ral, la structure topoioiique

interne h6rit6e par un objet d’une topologie dans 1’ensemble de ses
sections globales Et nous tenons compte des cas particuliers d’un
ouvert d’un espace de Banach et de 1’exponentielle de celui-ci avec
un objet du site
Dans ce dernier cas, nous avons introduit une topologie qui gene-

ralise la topologies canonique (consideree dans [10]) dans 1’ensemble
des morphismes a valeurs complexes d’un espace analytique Cette

topologies tient compte de la convergence uniforine sur des com-

pacts et de la topologies limite inductive dans les anneaux de germes

Introduction.

In [9] we have constructed an embedding j : B -&#x3E; T from the category B
of open sets of complex Banach spaces and holomoiphic functions into the
analytic (well adapted) model of SDG T introduced in [8]. This embedding
preserves finite products and is consistent with the differential calculus. Here
in aection 1 we study in a general context the topological structure (in the
sense of [1] ) inherited by an object in the topos from a topology on the
set of glohal sections, and compare it with the Penon ol- intrinsic topology.
We show. under a very general assumption, that the inherited topology is

subintrinsic, and that its infintesimals are exactly the intrinsic or Penon

infinitesimals. Then, in sections 2 and 3 we apply these rewlts to the objects
of the foiiii j 11 and the exponentials j /1 B . w ith A any object in the site of
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definition (see 0.1.1). We introduce a topology in the sets of global sections
of these exponentials which is related to uniform convergence on compact
subsets and the inductive limit topology on spaces of banach valued germs
of holomorphic functions. When B = C, and X is a complex space, this
topology is the "canonical" Frechet topology considered in [10]. However,
in our general case it is complete but not metrizable.

For the convenience of the reader and to set the notation we start recalling
some facts.

0. Recall of some definitions and notation.

The topos T is the topos of sheaves on the category H of (affine) analytic
schemes.

0.1.1 Recall briefly from [9] the construction of T . We consider the

category H of (affine) analytic schemes. An object E in H is an A -ringed
space [7] E = (E, OE) (by abuse we denote also by the letter E the

underlying topological space of the A -ringed space) which is given by two
coherent sheaves of ideals R , S in OD , where D is an open subset of

Cm, R C S, and where:

The arrows in H are the morphism of A -ringed spaces. We will denote
by T the topos of sheaves on H for the (sub canonical ) Grothendieck
topology given by the open coverings. There is a full (Yoneda) embedding
H -&#x3E; T . Notice that for an infinite dimensional banach open B , the A -
ringed space (B, OB) is not in H.

Let B be the category of open sets of complex Banach spaces and
holomorphic functions. The embedding j:B -&#x3E; T is defined in [9] as
follows:

0.1.2 Let E be an object in H, E = (E, OE) as above, let B be an
open subset of a complex Banach space, and let t = (t, T) be a morphism
of A-ringed spaces, t: (E, OE)-&#x3E; (B, OB) (we adopt the corresponding
abuse of notation for morphisms).



84

We will say that t has "local extensions", if for each x E E , there is an
open neighborhood U of x in cC"z and an extension

The set

jB(E) = {t: (E, OE)-&#x3E; (B, OB) such that t has local extensions} de-
fines a sheaf 3B E T.

If g: F -&#x3E; E is an arrow in H, jB(g): jB(E)-&#x3E; jB(F) is given by
composing with g :

Moreover, given two open subsets of banach spaces, and an holomorphic
function f : Bi - B2 , we consider the morphism

It is clear that if E E H and t E jBl (E) , then ( f, f *) o t E jB2(E). Thus,
we have an arrow:

for alle E H and t E jB¡(E).

This defines a functor j:B -&#x3E; T. It is clear that T(jB) = B for all
B E B , and T ( j f ) = f for all arrows f : Bi - B2 in B .

0.1.3 If E E H, B E B , and q: E --t j B is an arrow in T, q
corresponds to an element q E jB(E) , that is, q: (E, OE) - (B, OB) is
a morphism of A -ringed spaces with local extensions. Then, q = (q, 0)
where q: E - B is continuous, and it is immediate that r(q) = q (notice
here the abuse of language). If E is of the form (U, OU) for an open set
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U C Cm, then q is an holomorphic function and d = q* , see [9, 1.2]. Thus,
if q, r: U - j B are such that r(q) = F(r), then q = r .

Notation. Given any object F E T, we shall write S2[F] = n F for the
internal lattice (locale) of subobjects, and Q(F) = T(nF) for the external
lattice (locale) of subobjects.

We recall now some facts due to J. Penon which hold in a context that
includes the topos T. See [12], also [6], [5].

0.2.0 Let H now be any category with finite limits, and A be a class
of arrows in H containing the isomorphisms, closed under composition and
stable under pull-backs. Consider the Grothendieck (pre) topology in H
which has as covers all families Ucy - X in A such that the global sections
T(Ua) -&#x3E; r(X) are a surjective family of sets, and let T be the topos of
sheaves.

0.2.1 The topos T satisfies the Nullstellensatz. By this we mean:
For any object F in T, F = 0 if and only if F(F) = 0.

0.2.2 Let F E T and S C r(F) . We define the subobject E(F, S) C F
in T by the following universal property :

VX E H, dq: X-&#x3E; F in T, q factors through E(F, S) iff r(q)
factors through S .

It is easy to see that such object E(F, S) exists. In fact, the reader can
check that the definition above actually determines a sheaf lFP -+ Ens on
the site H . If there is no danger of confusion, we will abuse the notation and
write ES in place of E(F, S) .

Notice that the map E:n(TF)-&#x3E; Q(F) is a poset morphism right
adjoint to T: n(F) -&#x3E; n(TF). That is, given any subset S C TF, and
subobject G C F , then, FG C S if and only if G c ES. We have
G c ETG and is clear that that FES = S .

We shall indicate by " - " the negation in the lattices of subobjects in
the topos T as well that in the topos of Sets (in the latter case the usual
complement). From the validity of the Nullstellensatz it follows easily (see
[6]):
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0.2.3 Let F C T and let A be any subobject of F . Then:

and

0.2.4 Given E in H and E F(E) (that is, x: 1 -&#x3E; E in H), an open
neighborhood of x is an arrow 1: V -&#x3E; E in A such that x factors x = i o y
for some y E T(V). Let F C T and let A be any subobject of F . We
say that A is a A -open subobject of F if given any E E H, q: E - F
in T, and E T(E), if q o z factors through A, then there is an open
neighborhood i: V -&#x3E; E of x such that q o i factors through A .

A -open subobjects form a sublocale (sublattice closed under finite in-
tersections and all unions) A(F) C Q(F). A subset of T(F) is A -open
if it is of the form F(A) for a A -open subobject A of F. These subsets
are the open subsets of a topology in the set T(F). Notice that F preserves
finite intersections (in fact all) and all unions (see [5, 2.1 and 2.2]).

Recall that a topological structure A[F] in an object F [1, II, 1.3] is an
internal sublocale A[F] c n[F] = S2F in the topos T. A -open subobjects
generate a topological structure. This structure is the Spectral topological
structure in the topos T [ 1, appendix 1.2].

0.2.5 Given any two topological structures T,E on objects F , G

respectively, we can consider the external sublocale

which has as a base the subobjects of the form U x V , with U E T(T),
V E E(G). This locale defines the product topological structure. If T is

a topological structure in the topos (in the sense of [1, II, 1.12]), it follows
easily that tt(T,T)(F’ x G) C T(F x G) , but in general the equality does
not hold. When considering only one object F with a topological structure
T , we write tt(T, T) = ttT for the product structure in F x F .

0.2.6 Given any F C T , if a subobject A C F is Penon (or intrinsic)
open, then it is A-open. That is, P(F) c a(F) , and thus also P[F] C A[F]
[5, 2.3]. If F is A -separated (or Haussdorf, see 0.2.7 below), then the
converse is also true, that is A(F) = P(F) , A[F]= P[F] [5, 2.6] (for the
definition of Penon or intrinsic open subobjects see [12], or [6], [1], [5]).
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0.2.7 Let F E T , we say that F is A -separated (or Haussdorf ) if the
negation of the diagonal -A C F x F is a A -open subobject.

0.2.8 Let F E T and let A be a A -open subobject of F , then A =
ET(A) . Thus by 0.2.6 this equality also holds for Penon open subobjects
[5, 2.5].

0.2.9 The map E:n(TF) -&#x3E; S2(F) preserves all unions of A -open
subsets. This follows immediately from 0.2.8 and the fact that r preserves
all unions.

1. The inherited topological structure.

Let T be any topos in the context defined in 0.2.0. Suppose we have an
object F in T such that the set of global sections r(F) has a topology
in the usual sense. In this section we shall construct a topological structure
K[F] in the object F which is inherited from the topology of r(F) , and
study some of its properties.

Given any object E E H, the set T(E) is furnished with the topology
defined in 0.2.4. By abuse of notation we shall write E = r(E) for this
topological space. It follows that a base for this topology consists of the
subsets of the form i(r(V)) C r(E) for any arrow z: V -&#x3E; E in A. Given

any arrow q: X-&#x3E; E in H, clearly the function q = F(g):X-&#x3E;E is
continuous.

In the example which concerns this paper, 0.1.1 above, given a ringed
space (E,OE) in H, this topology in E = T (E, OE) is just the topological
space E .

1.0 Basic assumptions and notation.

i) From now on we shall consider a (fixed) object F in T such that the
set r(F) is furnished with a (unnamed) arbitrary topology, and when
we say open of r(F) we shall mean an open set in this topology.

ii) The topology in r(F) is Haussdorf.

iii) Given any arrow q: E -&#x3E; F in the topos T , E E H, the function

is continuous.

1.1 Definition. Let E E H, and let G be a subobject of E x F in T. G
is said to be an inherited test-open iff there is an open subset S C E x F(F)
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such that G = ES. We denote by tK(E x F) C S2(E x F) the set of
inherited test-opens.

1.2 Proposition. With the notations in definition 1.1, if G is an inherited
test-open, then G is a A -open subobject. That is, t k ( E x F) C A(E x F).
This implies that for the topological structure defined in 1.5 below, we have
K[F] C n(F) .

Proof. Let X and E E H, and let q: X -&#x3E; E x F be an arrow in
T . Then, q = r(q): X -&#x3E; E x r(F) is continuous. This follows since the
two components of r(q) (notice that r preserves products) are continuous.
Then the statement follows directly from the definition of A -open , 0.2.4
above. O

1.3 Corollary. Notice that itfollowsfrom 0.2.8 and 0.2.9 that the maps r and
E establish an isomorphism (preserving all the operations) tK( E x F)=
O(E x r(F)), where 0 indicates the local of open sets for the product
topology in E x F . In particular, the inherited test-opens form a sublocale
of S2(E x F) .
1.4 Definition-Proposition. We define the subobject bk[F] C f2[F] of in-
herited opens by the following universal property:

VX E H, Vq: X-&#x3E; n[F] in T, q factors through bK[F] iff the

corresponding subobject Mq C X x F is inherited test-open.

Proof. We have to show that this property actually defines a subsheaf of
Q[F]: 
a) Given r: E -&#x3E; X in H, and q o r: E -+ X -+ n[F],

if Mq E tK(X x F), then Mqor E tK(E x F).

b) Given a covering ri: Ui -&#x3E; X , and q o ri: Ui - X - Q[F],

if Mqori E tK(Ui x F) for all i, then Mq E tK(X x F).

This follows from corollary 1.3 considering the fact that Mqor =
(r x id)-1(Mq). 0

1.5 Definition. The subobject bk[F] is a base for the topological structure
k[F], which is defined internally by the following statement:
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1.6 Remark. Notice that for global sections, that is, the external lattices of
subobjects, we have O(T(F))= tK(F) = bK(F) = k(F) . The isomor-

phism is a particular case of 1.3, the first equality holds by definition, and
the second since by 1.3 the family of subobjects bK( F) is already a local in
the category of sets.

We consider now the product topological structure tt k (F x F) C S2( F x F),
see 0.2.5 above.

1.7 Corollary. The maps rand E establish an isomorphism (preserving
all the operations) 7rK(F x F) = 0(f(F) x r(F)), where 0 indicates the
local of open sets for the usual product topology in r(F) x r(F). Notice
that this holds if we have two different objects with respective topologies, as
in 0.2.5.

Proof. It follows immediately from the previous remark considering
that the maps T and E preserve products in the appropriate sense, and thus
sateliites an isomorphism between the bases. D

1.8 Proposition. The object F is A -separated or Haussdorf, and also k-
separated with respect to 7rK.

Proof. Since T(F) is a Haussdorf topological space, it follows immedi-
ately from 1.7 that the negation of the diagonal -A C F x F is a 7r K -open
subobject. It follows then from 1.2 that it is also a ttA -open, which in turn

implies it is A -open. O

1.9 Proposition. The intrinsic or Penon opens of F are exactly the A -opens.
We have P[F] = A[F] C n[F].

Proof. Follows from the previous proposition and 0.2.6. O

1.10 Proposition. The inherited opens topological structure in F is subin-
trinsic. That is, K [F] C P[F].

Proof. Follows from the previous proposition and proposition 1.2. 1--l

1.11 Observation. With the topology on f(E) defined in 0.2.4 the objects E
in the site have always a canonical inherited topological structure. This struc-
ture coincides with the spectral topological structure. That is, k [E] = A [E] .
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All arrows in the site become automatically continuous. When the topology
on r(E) is Haussdorf, the basic assumption is automatically satisfied, thus,
in this case, for the objects of the site we have k[E] = A [E] = P[E] .

We record now a fact that is often useful when dealing with the inherited
topological structure.

1.12 Proposition. Let Fl and F2 be objects in the topos such that their
sets of global sections r(Fl) and r (F2) are furnished with topologies as
in 1.0 above. Then, an arrow in the topos f : FI -t F2 is continuous for the
inherited topological structures if and only if the function between the global
sections r( f ): r(Fl) -t r (F2) is continuous.

Proof. Assume that r( f ) is continuous. We have to show that if
G E K[F2], then f-1 (G) E k[F1]. We can assume that G is on the base,
G E bk[F2]. Then G is given by an object E in H and an inherited open
subobject G C E x T(F2). G is of the form G = ES for an open subset
S c E x r(F2). But (id x f)-1(ES) = E((id x T( f))-1(S)) . This shows
one implication. The proof of the other follows in the same way taking 
E=1. El

Recall that given any object F in the topos provided with a topolo-
gical structure T[F] C f2[F] = f2F , and a point x E F , the infinitesimal
T -neighborhood of x is defined as the intersection of all T -open neighbor-
hoods :

That is, Tx(F) is defined by the internal validity of the formula:

Given x E F, we will consider now the infinitesimal objects rx(F)
and Px (F) , and relate them with the double negation of {x} (the object of
all Penon infinitesimals), denoted --{x} = AF(X) -
1.13 Proposition. Given any x E F , we have:

Proof. Since F is K -separated (1.7) and therefore satisfies the separa-
tion condition T, , and k[F] is subintrinsic (1.10), the proposition follows
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from [1, II, 1.9 and 1.10]. For the convenience of the reader we reproduce
here the (internal) elementary proof of this result:

We shall show (1) "’x(F) C --n[x}, (2) --{x} C Px(F) and (3)
Px(F) C Kx(F). For (1), let z E kx(F) and suppose that z E-{x}. Then
x E -{z}, and since by condition Tl T(z) E k[F], it follows that z E
-,{z}. This contradiction shows that z E --{x}. For (2), given any Penon
open U and x E U, if (to contains "freshmeat-news@freshmeat.net") then
save " /Mail/freshmeat" it follows immediately by definition that --{x} C
U . Finally, (3) holds since k[F] is subintrinsic. D

2. The inherited topological structure on the objects jB
In this section we shall consider a particular case of the construction devel-
oped in section 1. Here the topos T is the topos of sheaves on the category H
of (affine) analytic schemes (0.1.1 above). There is an embedding j: B - T
of the category B of open sets of complex Banach spaces and holomorphic
functions (0.1.2 above). We consider F to be an object of the form F = j B
for some open set of a banach space B , and the topology in B = T(j B) to be
the topology determined by the banach structure. Recall that in this case the
objects on the site are (affine) analytic schemes (0.1.1 above) E = (E, OE) ,
and that the topology on E = r(E) = r(E, OE) is just the one of the
topological space E .
Clearly the object F = j B satisfy the basic assumption 1.1 in section 1.

2.1 Definition. For each open set of a banach space B, the inherited open
topological structure in j B , denoted k[B], is the topological structure con-
structed in section 1. This structure corresponds to the topology determined
on B by the banach structure.

We make now some considerations that, given an open set B of a Banach
space, will permit to understand better the behavior of the negation on the
object j B , and given a point p in B , the infinitesimal neighborhood of p.

2.2 Observation. Recall that given any A -ringed space (B, () B) and any
subset S C B, there is a ringed space (S, OB/S), where S has the sub-
space topology and 0 B / s is the restriction to S of the sheaf (etal space)
. Thus, for p E S, the fiber over p is just O Bp, the same that the
fiber over p in OB. The sheaf OBIS -&#x3E; S is just the inverse image sheaf
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i* (OB -+ B) induced by the inclusion i:S -+ B. It has the following
universal property :

There is an inclusion i: (S, OB/S) -+ (B, OB) of A -ringed spaces, and
given any other A -ringed space (X, Ox) , a morphism

factors through (S, OB/S) if and only if the function f : X -&#x3E; B factors
through 5.

2.3 Definition-Proposition. Let B be an open subset of a Banach space
and S C B be any subset of B . We define the subobject j S c j B in T as
follows:

Given any X = (X, OX) in H , a section s: X - jS is a morphism
s: (X, OX)-&#x3E; (5,OB/3) of A-ringed spaces such that the composite
i o s: (X, OX) -&#x3E; (B, OB) has local extensions. Thus, by definition, i 0 s

is a section X -&#x3E; jB (see 0.1.2 above). This defines a sub-sheaf jS C
jB. Clearly, a section s:X -&#x3E; jB factors through jS if and only if
T(s): X-&#x3E;B factors through S .

2.4 Proposition. In the situation above , we have ES = j S . Moreover, if S
is an open subset of B , j S is just the object j S defined by the embedding
j:B-+T.

Proof. Straightforward. D

To understand better the negation on the objects 3 B the reader should
consider the statement in 0.2.3 under the light of these last two propositions.
In a way, we can imagine that the negation of a subobject A of jB is given
by the restriction of the ringed space (B, OB) to the complement of T A in
B.

2.5 Proposition. Let B E B be any open set of a banach space. Consider a
point p E B . We have p: 1 -&#x3E; jB in T, and we denote {p} C j B . Then:

and

Proof. It follows immediately from 0.2.3 and proposition 2.4 O
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The objects AB(p) are isomorphic for all the points p in B . They
define the object of infinitesimals of B . We shall write AB for this object.
Thus, if B is finite dimensional, AB = A(n) C en .

3. Topological structures on some exponential objects.
In this section we shall define a topological structure in objects of the form
Fx , where F C jB is any subobject in the topos, B is an open subset of
a banach space, and X is any object in the site H . Notice that a particular
case of this is the exponential of two objects in the site.

This structure corresponds, to a topology in the set T(FX) of global
sections which is defined using uniform convergence on compact subsets and
the inductive limit topology in the rings of germs of holomorphic functions.

Notice that T(FX) c T (j BX) which is the set of sections of j B defined-
on X . We shall see that these are sections of a certain sheaf on X whose

fibers are certain quotients 0" (B) / I,, of the space 0" (B) of B -valued
holomorphic germs, where Ix is the ideal in the definition of the object X .
In this way, there is a natural "pointwise" or initial topology on T(jBX)
derived from the topology on the fibers.

3.1 Definition.

a) Let x be a point x E C" , and let Bee be an open subset of
a complex banach space C . We denote 0"(B) the space of germs
on x of holomorphic functions with values in B , that is, the limit of
the inductive system Hol(U, B) with U running on the filter of open
neighborhoods of x in C" . Thus, Onx (C) = Onx is the ring of germs of
holomorphic functionS on n variables. We consider on each Hol(U, B)
the topology of uniform convergence on compact subsets, and on Onx (B)
the locally convex inductive limit topology (see remark below). Given

an open set U , x E U C C" , and g: U - B , we shall denote by [g] x
the corresponding germ.

b) Let Ix C 0" be an ideal in the ring of germs of holomorphic functions.
We define the quotient Onx (B)/Ix by means of the following equivalence
relation:
Given two germs defined in an open set U , x E U C en , f , g: U - B ,
f = g mod(Ix) if for all continuous linear forms a E C’ ,
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That is, f = g mod(Ix) if for all a E C’ a o f = a o g mod(Ix).
There is a quotient map Onx(B)-&#x3E; Onx(B)/Ix, and we consider on
Onx(B)/Ix the quotient topology.

3.2 Remark. With the notations in the previous definition:

a) The space Hol(U, B) C Hol(U, C) is a subspace, and Hol (U, C) is

a complete locally convex topological vector space, which furthermore
is a Frechet space (11, II, 9.14J. Also, the space Ox-(B) C 0-(C) is

a subspace, and On (C) is a complete locally convex topological vector
space, and its topology is the final topology in the sense of topological
spaces (2, 5.2J. However, it is known that it is not metrizable and a

fortiori not a Frechet space. Notice that in particular it is a Haussdorf
topological space.

b) It is known that all ideals Ix C 0" are closed ideals (3 pp. 194, 4,
lemma 6]. From this it easily follows that the equivalence relation in
b) in definition 3.1 is a closed equivalence relation. It is not difficult to
check that the quotient map is open. It follows that the quotient space
Onx(B)/Ix is Haussdorf.

Next we state an important fact which follows from a lemma we proved
in [9].

3.3 Proposition. With the notations in definition 3.1, b), if f =g mod(Ix),
then f (x) = g(x) = p, andfor all germs [t]p E OBp, [t o f - t o g]x E Ix
(notice that the reverse implication obviously holds).

Proof. Clearly, for all continuous linear forms a E C’ , a 0 ( f - g) (x) =
0 , that is ce(f (x)) = a(g(x)) . By the Hahn-Banach theorem it follows that
f (x) = g(x) . The second part of the statement is lemma 2.6 in [9]. El

In [3] and [4] Cartan considers a notion of convergence of sequences in
the ring 0’ which requires that the whole sequence "lift" to some on (W ) =
Hol(W, C), and converges uniformly over all compact subsets there. It is
known that this characterizes the, convergence of sequences in the inductive
limit topology. This not only holds for 0" , but also more generally for
0" (B) , any B . For the interested reader we give now a proof of this fact.
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3.4 Fact. With the notations in definition 3.1, a sequence fk C Onx (B)
converges to f E Oll (B) in the inductive limit topology if and only if there
is an open neighborhood W of x in C’ such that f and fk for all k
have an holomorphic extension g , respectively gk, defined in W , and gk
converges to g in Hol (W, B) uniforrrily over all compact subsets of W .

Proof. Let Au: Hol ( U, B ) -&#x3E; 0"(B) be the inductive system diagram.
Given a descending chain ... Ui D Ki D Ui+1 D Ki+1 D ... fxl, with
the Ui a basis of open neighborhoods and the Ki compact, and an arbitrary
sequence of real numbers &#x3E; 0 , it is easy to check that the set H =

{[g]x l 3 i g E H ol(Ui, B) and IglKi  Ei} is open for the final topology
defined by the A u , and thus open in Onx (B) (see remark 3.2). Now
let [gk]x be a sequence converging to 0, and suppose that for no index
i , there is a tail of the sequence defined on Ui. It follows that for all
i &#x3E; 1, there exists ks &#x3E; ki-1 and ji such that gki E Hol ( Uji-1, B )
and ji is ther first index such that 9ki E- Hol (Uji, B) (where we have set
jo = 1, k0 = 1). Each integer s lies in an interval ji  s  ji+1.
Let 0  es  inf{lgktlKs,t  il.. Then, for all t and all s , if t  i ,
19ktlKs &#x3E; Es, and if t &#x3E; i , gkt E Hol(Us, B). It follows then that for
the subsequence gkt , [9kt]x f/. H for all t , contradicting the fact that the
sequence [gk]x converges to o . With the same ideas it can actually be
proved that the lifted sequence converges uniformly on compact subsets (on
a perhaps smaller open set). D

For a general converging net it is not the case that it will lift into some
W . Consider the double indexed family f k, n = (kx) n + 1 / k in 01 . Then
fk,n converges (on n ) to the constant function 1/k (for each k ), and 1/k
converges (on k ) to the constant 0 . Thus 0 is in the closure of the set

{fk,n}. Clearly, no net in this set converging to 0 can lift to a same 0 1 (W)
for an open W , 0 E W . By the way, this example, (together with 3.4)
shows that Oõ can not be a Frechet space.

Actually, since Hol ( W, B ) is a subspace of the Frechet space
Hol (W, C), a converging net in Onx (B) has a tail that lifts to the same
Hol (W, B) , for some open W , if and only if it has a subsequence (that is a
subnet which is a sequence).

We consider now a subobject in the topos, F C j B , where B is an

open subset of a complex banach space, and an object X = (X, OX ) in the
site H , X C Cn . Let [X, F] = T( FX ) be the set of arrows X -&#x3E; F in
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T . Remark that [X, F] c T(j BX )= [X, j B], which is the set of sections
of j B defined on X . Thus, an element s E [X, F] is a pair s = (s, (7) ,
s = r(s): X -&#x3E; r(F) C B a continuous function, and for each x E X ,
dx: OB, p -&#x3E; Xx = 0" x / Ix a morphism of A -local rings, where p = s (x),
and I is the sheaf of ideals defining X (see 0.1.1, 0.1.2 above). Since s
has local extensions, for each x there is an open U c C’ , x E U , and
an holomorphic extension g: U -+ B of s , such that (7 x = px o g* , where
px : Onx-&#x3E; Xx is the quotient map (notice that the extension g does not take
values in r(F) , but on the ambient space B).

3.5 Proposition. For each x E X , there is a map -fx: [X, F] -+ Onx (B)/Ix,
defined by yx (s) = [g]x mod(Ix) = px ([g]x), where g is any local extension
of s around x and px is the quotient map Onx ( B ) -&#x3E; on(B)lIx in

definition 3.1, b).
Proof. We just have to check that this map is well defined, that is, it

does not depend on the local extension chosen. Let f , g be any two local
extensions. We have px o f* = px o g* since both composites are equal to
dx . This clearly gives [f]x = [g]x mod( Ix ). 1:1

3.6 Definition. With the notations in 3.5. The CU topology on the set
[X, F] is the initial topology with respect to the family of maps ,

yx: [X, F] -+ Onx(B)/Ix, x E X,

and T: [X, F]-&#x3E; C(X, T(F)) c C(X, B) . Here Onx(B)/Ix is given the
quotient topology of the inductive limit topology on on (B) .(see 3.1, b), and
C (X, B) the topology of uniform convergence on compact subsets (see 3.1,
a).

3.7 Remark. The CU topology in the set [X, F] is Haussdorf.
Proof. It follows immediately from remark 3.2, b) and the obvious fact

that by 3.3 the family yx: [X, F]-&#x3E; Onx (B)/ Ix , x E X , is jointly injective.
0,

Clearly, the CU topology on [X, F] is the subspace topology of the
CU topology on [X, j B] , [X, F] C [X, j BJ .

Example 1. Consider An C en , An = ACn (0) = --{0}. By 1.15.
we have An = j {0}. That is, An is representable by the analytic scheme
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({0}, On). We have then T(CAn)= [An, C] = 0,,,o. the ring of germs of
holomorphic functions on n variables. In this case the CU topology is the
usual inductive limit topology considered in this ring, see [9 pp. 122]

Example 2. Let U C Cn be any open set, and consider F(IB U)
[U,jB] = Hol(U, B) the set of holomorphic functions f: U -t B . Then,
the CU topology is the topology of uniform convergence on compact subsets.

Example 3. Consider T(jBAn)= [An, jB]= [(0, On), (B,OB)] =
{morphisms of A-ringed spaces with local extensions} . By definition such
a morphism is of the form f*:OB,p -&#x3E; On,0, P = f (0) , where f is
an holomorphic function f: U - B defined in an open neighborhood of
0 , U C Cn. Given any other such function g , if g* = f * , it follows

immediately from the Hahn-Banach theorem that g = f on U . Thus,
[An,jB] = On (B)0, the space of germs of B valued holomorphic functions.
in n variables (see 3.1 a)). As in the example 1, the CU topology here
is the inductive limit topology of the inductive system Hol(U, B) with U
running on the filter of open neighborhoods of 0 in C’ .

3.8 Proposition. Let B be an open subset of a complex Banach space and
F C I B be any subobject. Let E , X E H be any two objects in the site,
E C C’ , X C Cn, and let f: E - FX be an arrow in T. Then,
T (f): E -&#x3E; [X, F] is continuous for the CU topology.

Proof. Let sk be a net in E such that sk converges to s in E . We
have to prove that the arrows f (sk): X-&#x3E; F converge to f(s): X - F
in [X, F] with the CU topology. To the arrow f corresponds an ar-
row E x X -3 F C j B in the topos that we denote also f . We

have f (sk ) = f (sk, -) and f(s) = f (s, -). Let now x E X be a

point in X . We have (s, x) C E x X , and there are open neighbor-
hoods v of s in Cm, W of x in Cn and an holomorphic extension
of f , g: U x W - B . Let ko be an index such that, for k &#x3E; ko ,
sk C U. It follows that g(s,-),9(Sk,-):W -t B are extensions of

f(s,-), f (Sk, -) respectively. Since the topology of uniform convergence
on compact subsets is an exponential topology on Hol(W, B), g(Sk, -)
converge to g(s, -) uniformly on compact subsets. This clearly implies
that the corresponding germs converge in the inductive limit Onx (B). Thus,
yx(f(sk,-)) = [g(sk, -)]xmod(Ix)= px ([g(sk, - )]x) (see 3.5), converge
to yx(f(s,-)) in the quotient Onx(B)/Ix. It remains to see that the func-

tions uk = T(f(sk)) converge to the function it = T(f(s)) uniformly on
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compact subsets in C(X, B) . Let K C X be any compact subset. By the
previous considerations, for each x E K, there is a K0 such that for k &#x3E; ko ,
uk and u all have an extension to a comun open set W , x E W . It follows
that there is a finite open covering of K, AI, A2, ... Am, Ai C X , such
that the restrictions uklAi converge uniformly on compact subsets to U I Ai 
for each i . Since X is a Haussdorf topological space, the compact set K
is of the form K - K1 U Ii 2 U ... Km, Ki C Ai , compact subsets of Ai .
It follows that uk converge uniformly to u on K. F

3.9 Corollary. With the notation in 3.5 and 3.6. the object Fx and the
C U topology in the set [X, F] = T (FX) satisfy the basic assumption 1.0 in
section 1.

Proof. Immediate by propositions 3.7 and 3.8. El

3.10 Definition. With the notation in 3.5 and 3.6. The C U topological
structure in FX , denoted CU[FX], is the topological structure constructed
in section I associated to the CU topology in [X, F]= r(Fx). Thus,

CU(FX) O([X,F]), the lattice of open sets for the CU topology on
[X, B].
3.11 Proposition. Let B be an open subset of a complex Banach space
and F C j B be any subobject. Let E, X E H be any two objects in
the site, E C em, X C en, with respective sheaves of ideals J and
I . Let h = (h, N): E - X be an arrow in H. Then, the induced arrow
Fh: FX -&#x3E; FE is continuous for the CU topological structures.

Proof. By proposition 1.12 (see also 3.10) it suffices to show that

the function [h, F]: [X, F] - [E, F] is continuous for the CU topology.
Furthermore, this follows from the continuity of

We have to check that the composites F o h*: [X, B] -&#x3E; [E, B] - CY(E, B) ,
and for each y C E, IY o h*: [X, B] -&#x3E; [E,F] -&#x3E; Onx (B)/Jy, are all
continuous. Consider the following commutative diagrams:
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The diagram on the left is clear. For the diagram on the right, x = h(y) ,
g is an holomorphic extension of h defined in an open set of C’ , W runs
on the filter of open neighborhoods of x , and V is such that g is defined
and g(V) C W . The vertical arrow q can be seen to be well defined since
it can be proved that all extensions g induce the same arrow. This follows
since all extensions g do define the same arrow n: Onx/Ix -&#x3E; Oy /Jy as

they are extensions of the morphism h = (h, 17) .
It is easy to check that T(h)* in the left diagram is continuous, so T o h*

is continuous. In the same way the rightmost arrow g* is continuous. From
this it follows that the other g* and subsequently also 17 are continuous. So

qy o h* is continuous . O

Due to the fact stated in 3.4, convergence of sequences in the CU
topology is some times easily handled. This is the case when the ideal I is
the zero ideal 1 = {0}, and thus Onx(B)/Ix = Onx (B) .
3.12 Proposition. With the notations in 3.5 and 3.6. assume X = (X, Ox)
be defined by a pair of coherent sheaves of ideals I C J, with I = f 01
(see 0.1.1 above). Then, a sequence sk converges to s in [X, F] in the CU
topology if and only if for each x E X there is an open neighborhood W
of x in C" such that s and sk for all k have an holomorphic extension
g, respectively gk, defined in W with values in B, and gk converges to g
uniformly over all compact subsets of W .

Proof. This is clear by 3.4. It only remains to prove that if sk and s
satisfy the condition, then T(sk) converge to T(s) uniformly on compact
subsets in C(X, B) . This is done exactly in the same way that in proposition
3.8. a
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