Fibrewise exponential laws in a quasitopos
Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 40 (1999) no. 4, pp. 242-260.
@article{CTGDC_1999__40_4_242_0,
     author = {Min, Kyung Chan and Kim, Young Sun and Park, Jin Won},
     title = {Fibrewise exponential laws in a quasitopos},
     journal = {Cahiers de Topologie et G\'eom\'etrie Diff\'erentielle Cat\'egoriques},
     pages = {242--260},
     publisher = {Dunod \'editeur, publi\'e avec le concours du CNRS},
     volume = {40},
     number = {4},
     year = {1999},
     mrnumber = {1734245},
     zbl = {0944.18002},
     language = {en},
     url = {http://www.numdam.org/item/CTGDC_1999__40_4_242_0/}
}
TY  - JOUR
AU  - Min, Kyung Chan
AU  - Kim, Young Sun
AU  - Park, Jin Won
TI  - Fibrewise exponential laws in a quasitopos
JO  - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY  - 1999
SP  - 242
EP  - 260
VL  - 40
IS  - 4
PB  - Dunod éditeur, publié avec le concours du CNRS
UR  - http://www.numdam.org/item/CTGDC_1999__40_4_242_0/
LA  - en
ID  - CTGDC_1999__40_4_242_0
ER  - 
%0 Journal Article
%A Min, Kyung Chan
%A Kim, Young Sun
%A Park, Jin Won
%T Fibrewise exponential laws in a quasitopos
%J Cahiers de Topologie et Géométrie Différentielle Catégoriques
%D 1999
%P 242-260
%V 40
%N 4
%I Dunod éditeur, publié avec le concours du CNRS
%U http://www.numdam.org/item/CTGDC_1999__40_4_242_0/
%G en
%F CTGDC_1999__40_4_242_0
Min, Kyung Chan; Kim, Young Sun; Park, Jin Won. Fibrewise exponential laws in a quasitopos. Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 40 (1999) no. 4, pp. 242-260. http://www.numdam.org/item/CTGDC_1999__40_4_242_0/

[1] J. Aámek and H. Herrlich, Cartesian closed categories, quasitopoi and topological universes, Comment. Math. Univ. Carolinae 27.2 (1986), 235-257. | EuDML | MR | Zbl

[2] H.J. Baues, Algebraic Homotopy, Cambridge Univ. Press, (1989). | MR | Zbl

[3] P.I. Booth, The exponential law of maps, I, Proc. London Math. Soc. (3) 20 (1970), 179-192. | MR | Zbl

[4] P.I. Booth, The section problem and the lifting problem, Math. Z. 121 (1971), 273-287. | EuDML | MR | Zbl

[5] P.I. Booth, The exponential law of maps, II, Math. Z. 121 (1971), 311-319. | EuDML | MR | Zbl

[6] P.I. Booth, Local to global properties in the theory of fibrations, Cahiers de Top.et Geo.Diff. Cat., Vol.XXXIV-2 (1993), 127-151. | EuDML | Numdam | MR | Zbl

[7] P.I. Booth, P.R. Heath and R.A. Piccinini, Fibre preserving maps and function spaces, Algebraic topology, Proceedings, Vancouver 1977, Springer Lecture Notes in Math. Vol. 673, 158-167, Springer-Verlag (1978). | MR | Zbl

[8] P.I. Booth and R. Brown, On the application of fibred mapping spaces to exponential laws for bundles, ex-spaces and other categories of maps, Gen. Top. Appl. 8 (1978), 165-179. | MR | Zbl

[9] P.I. Booth and R. Brown, Spaces of partial maps, fibred mapping spaces and the compact-open topology, Gen. Top. Appl. 8 (1978), 181-195. | MR | Zbl

[10] A. Heller, Relative homotopy, (1989) (preprint). | Zbl

[11] H. Herrlich, Topological improvements of categories of structured sets, Top. and its Appl. 27 (1987), 145-155. | MR | Zbl

[12] L.G. Lewis Jr., Open maps, colimit and a convenient category of fibre spaces, Topology Appl., 19 (1985), 75-89. | MR | Zbl

[13] K.C. Min and S.J. Lee, Fibrewise convergence and exponential laws, Tsukuba L. Math. Vol.16, No.1 (1992), 53-62. | MR | Zbl

[14] K.C. Min, S.J. Lee and J.W. Park, Fibrewise convergence, Comm. K.M.S., 8, No.2 (1992), 335-344.

[15] K.C. Min and L.D. Nel, Intrinsic functional analysis of sequential convergence spaces, Quaestiones Mathematicae 13(1), (1990), 113-122. | MR | Zbl

[16] C. Morgan, Characterizations of F-fibrations, Proc. of Amer. math. Soc. Vol.89, No.1 (1983), 169-172. | MR | Zbl

[17] C. Morgan and R. Piccinini, Fibrations, Expo. Math. 4 (1986), 217-242. | MR | Zbl

[18] L.D. Nel, Topological universe and smooth Gelfand-Naimark duality. Mathematical Applications of Category Theory, Contemp. Math. 30 (1984), 224-276. | MR | Zbl

[19] G. Preuß, Some categorical aspects of simplicial complexes, (1987), (preprint). | MR | Zbl

[20] E.H. Spanier, Algebraic Topology, McGraw-Hill (1966). | MR | Zbl

[21] N.E. Steenrod, A convenient category of topological spaces, Michigan Math. J. 14 (1967), 133-152. | MR | Zbl

[22] R.M. Vogt, Convenient categories of topological spaces for homotopy theory, Arch. Math. XXII (1971), 545-555. | MR | Zbl