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DEFORMATIONS OF (BI)TENSOR CATEGORIES
by L. CRANE &#x26; D.N. YETTER

CAHIERS DE TOPOLOGIE ET

GEOMETRIE DIFFERENTIELLE CATEGORIQUES
Volume XXXLIX-3 (1998)

RESUME. Motivds par des probl6mes soulevds par la thdorie topologique des
champs quantiques, les Auteurs introduisent une thdorie de deformation pour des
categories tensorielles et des categories bitensorielles.

1 Introduction

In [5], a new approach was suggested to the construction of four dimensional
Topological Quantum Field Theories (TQFTs), proceeding from a new al-
gebraic structure called a Hopf category. In [7], it was argued that a well
behaved 4d TQFT would in fact contain such a category at least formally.

An approach to construction of Hopf categories was also outlined in [5],
making use of the canonical bases of Lusztig et al [15]. This proceeded
nicely enough, except that there was no natural truncation of the category
corresponding to the case where the deformation parameter was a root of
unity, so all the sums in the tornado formula of [5] were divergent.

This situation is similar to what would have resulted if somebody had
attempted to construct a 3d TQFT before the discovery of quantum groups.
Formal state sums could be written using representations of a Lie algebra
(or its universal enveloping algebra) but they would diverge. In fact such

sums were written in a different context, as evaluations of spin networks [17].
The discovery of quantum groups made it possible to obtain finite TQFTs
by setting the deformation parameter equal to a root of unity [3].

The key to this progress is the theory of the deformation of Hopf algebras,
as applied to the universal enveloping algebras (UEAs) of simple Lie algebras.
Infinitesimal deformations can be classified in terms of a double complex
analogous to the complex which computes the Hochschild cohomology of an
algebra. Certain interesting examples, which lead to global deformations,
correspond to Poisson- Lie algebras, or equivalently to Lie bialgebras, or
Manin triples. Once the interesting infinitesimal deformations of the UEAs

1 Supported by NSF Grant # DMS-9504423
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were known, it turned out to be straightforward to extend them to find the
quantum groups, whence the 3d TQFTs followed.

The purpose of this paper is to attempt an analogous procedure for Hopf
categories. We begin by defining a double complex for a "bialgebra category,"
whose 3rd cohomology classifies infinitesimal deformations of the category.
Next we apply this complex to the cases of finite groups and the categorifi-
cations of quantum groups produced by Lusztig [15]. We obtain suggestive
preliminary results.

Of course, an infinitesimal deformation is not yet a finite one. Still less
is it a truncation. However, contrary to the folk adage, lightning tends to
strike the same places over and over. The double complex we construct can
also be used to compute the obstructions to extension of any infinitesimal
deformation to a formal series deformation, so that at least a plausible avenue
of research is opened.

Let us remind the reader of the suggestion that 4d TQFTs may be the
basis for a formulation of the quantum theory of gravity [4]. If this physical
idea is correct, then 4d TQFTs from state sums should exist, and the program
begun in this paper has a good chance of finding them.

In any case, the deformation theory of categories introduced here is nat-
ural, and of intrinsic interest.

The contents of this paper are as follows: chapter 2 describes the complex
which defines the cohomology of a tensor category, and relates infinitesimal
deformations to the third cohomology. Chapter 3 describes the double com-
plex for a bitensor category, and relates it to infinitesimal deformations of
bialgebra categories. Chapter 4 explores the construction of infinitesimal
deformations in the most interesting cases.

Let us emphasize that this paper has the purpose of opening a new di-
rection for research. We pose many more questions than we answer.

2 Cohomology and Deformations of Tensor Cate-
gories

The deformation theory developed here is very similar in abstract form to the
deformation theory of algebras and bialgebras. Perhaps the not so categorical
reader would do well to study the treatment of that theory in [3] before
reading this chapter. The main formal difference is that deformations appear
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in H3 rather than H2. This is because in a category we deform associators,
rather than products, and similarly for the rest of the structure.

Unfortunately, it will not be practical to make this discussion self con-
tained. The category theoretic ideas can be found in [12], while the definition
of a bialgebra category is in [5, 7, 4].

In the following we consider the question of deforming the structure maps
of a tensor category, that is an abelian category C equipped with a biexact
functor O : C x C - C (or equivalently an exact functor O : C 181 C --&#x3E; C,
where O denotes the universal target category for biexact functors) which is
associative up to a specified natural isomorphism a : 0 (o x1 ) -&#x3E; O(1 x O)
satisfying the usual Stasheff pentagon. A tensor category is unital if it is

equipped with an object I, and natural isomorphisms p : - Q9 I -&#x3E; Idc and
A : I Q9 - -&#x3E; Idc satisfying the usual triangle relation with a.

We will consider the case in which the category is K-linear for K some
field, usually C. We denote the category of finite-dimensional vector-spaces
over K by VECT.

Definition 2.1 An infinitesimal deformation of a K-linear tensor cate-
gory C over an Artinian local K-algebra R is an R-linear tensor category i
with the same objects as C, but with H omë( a, b) = Home (a, b) OK R, and
composition extended by bilinearity, and for which the structure map(s) cx (p
and A) reduce mod m to the structure maps for C, where m is the maximal ideal
of R. A deformation over K[E]/ En+1 &#x3E; is an nth order deformation.

,Similarly an m-adic deformation of C over an m-adically complete local
K-algebra R is an R-linear tensor category C with the same objects as C, but
with Hom C(a,b) = Homc (a, b) 6-KR, and composition extended by bilinearity
and continuity, and for which the structure map(s) a (p and A) reduce mod
m to the structure maps for C, where m is the maximal ideal of R. (Here
O K is the m-adic completion of the ordinary tensor product.) An m-adic

deformation over K[[x]] is formal series deformation.
Two deformations (in any of the above senses) are equivalent if there

exists a monoidal functor, whose underlying functor is the identity, and whose
structure maps reduce mod m to identity maps from one to the other.

Finall y, if K = C (or R), and all hom-spaces in C are finite dimensional,
a finite deformation of C is a K-linear tensor category with the same and
maps as C, but with structure maps given by the structure maps of a formal
series deformation evaluated at x =C for some C E K such that the formal
series defining all of the structure maps converge at C.
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Ultimately our interest is in finite deformations, but their study and con-
struction in general is beyond our present capabilities. In some particularly
simple cases finite deformations can be constructed directly (cf. Crane/Yetter
[6]).

In the present work, we will confine ourselves to the classification of first
order deformations, and consideration of the obstructions to their extensions
to higher order and formal series deformations.

To accomplish this classification, it is convenient to introduce a cochain
complex (over K) associated to any K-linear tensor category:

First, we fix notation for the totally left and right parenthesized iterates
of O as follows:

letting O0 =0 Q9 = Idc.
Now, observe that by the K-bilinearity of composition, the collection of

natural transformations between any two functors targetted at a K-linear
category forms a K-vector space Nat [F, G].

We now define the K-vector spaces in our complex by

Thus elements of X n have components of the form

In order to define the coboundary maps, and in much of what follows, it
will be very convenient to have a notation for a sort of generalized composition
of maps. To be precise, given some maps f1, f2, ..., fK all of whose sources
and targets are variously parenthesized tensor products of the same word of
objects, we will denote the composite

by [f1, f2 ... fk] where ao is the generalized associator from the fully left-

parenthesized tensor product to the source of f l, ai (for i = 1, ..., k -1) is the
generalized associator from the target of f i to the source of fi+1, and ak is the
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generalized associator from the target of fk to the fully right-parenthesized
tensor product.

Except the fact that we need to include r 1 to obtain well-defined formulas
familiar formulas define the coboundary maps for our complexes:

If 0 E Xn, then b(O) E Xn+1 is defined by

It follows from the coherence theorem of Mac Lane and the same argument
which show the coboundary in the bar resolution satisfies 62 = 0 that these
coboundaries satisfy b2= 0. Thus we have a cochain complex associated
to any K-linear tensor category. We denote the cohomology groups of the
complex by b*(C), where the tensor structure on C is understood. 2

The significance of this may be found by considering the pentagon relation
for infinitesimal deformations of the associator.

If in the Stasheff pentagon giving the coherence condition on cx, we replace
all occurences of cx with occurences of a + ea(l) (where E2=0), we find that
the condition that the new Stasheff pentagon to commute reduces to

where a(l) is considered as an element of X3.

Thus, first order deformations correspond to 3-cocycles in our complex.
More, however, is true: consider now equivalences of first order deforma-

tions. The main (only in the non-unital case) structure map has components
of the form

where 0 is some natural endomorphism of 0.
Now, suppose such a natural transformation defines a monoidal functor

from a first order deformation with associator a + ae to another with asso-
ciator a + bE. Writing out the hexagon coherence condition for a monoidal
functor, and evaluating the legs then gives

2In cases where more than one K-linear monoidal structure is being considered on the
same category, it would be necessary to use the notation h. (C, O, a) to distinguish the
structures, since the group depends on the monoidal structure.
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Cancelling equal terms, solving for bA,B,C, and observing that the com-
positions with a are describing the operation oaf [ 1, we find that this is
precisely the condition that

Thus, we have shown:

Theorem 2.2 First order deformations of a tensor category C, O, a are de-
scribed by 3-cocycles in the complex lXn, b}., and they are classified up to
equivalence by the cohomology group S53(C).

Let us now examine the obstructions to extending a first order deforma-
tion to a higher order deformation.

Once again we begin with a commutative Stasheff pentagon, this time
with legs given by components of cx + a(1)E.

Replacing these with corresponding components of a + a(I)17 + a(2)n2
(where r;3 = 0), and calculating as before gives us the condition that

Thus, the cochain on the right can be regarded as an obstruction to the
extension to a second order deformation. It is unclear at this writing whether
(or under what circumstances) this cochain is closed.

In as similar way, the condition needed to extend an n-th order deforma-
tion

to an n + 1-st order deformation
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is given by

3 Cohomology and Deformations of Bitensor Cat-
egories

A bitensor category is a K-linear abelian category C with two fundamental
structures, a (biexact) tensor product O (equivalently, an exact functor C 181
C-&#x3E; C ), which is associative up to a natural isomorphism a which satisfies
the usual Stasheff pentagon, and a tensor coproduct A which is an exact
functor C-&#x3E; C 181 C which is coassociative up to a natural isomorphism 3
which satisfies a dual Stasheff pentagon, and moreover satisfies the condition
that A is a monoidal functor, and Q9 is a cotensor functor (the dual condition),
and the structural transformations are inverse to each other. To be more

precise , A is equipped with a natural transformation with typical component

where the second Q9 is the tensor product in C 181 C, and x satisfies the
usual hexagonal coherence condition for monoidal functors. Moreover, n-1
is the structural natural transformation for O as a cotensor functor, and as
such, satisfies the dual coherence condition. We shall refer to the natural
isomorphism as the "coherer" . A bitensor category is biunital when it is

equipped with a unit functor 1 : VECT - C and a counit functor E : C -
VECT satisfying the usual triangle, dual triangle and conditions that they
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respect the cotensor and tensor structures, up to mutually inverse natural
transformations. In the biunital case, we denote the counit tranformations

by r and and the remaining stuctural transformations by 6 (counit preserves
0), T (coproduct preserves I), and 77 (counit preserves I).

A Hopf category is a biunital bitensor category equipped, moreover, with
an operation on objects, S, generalizing dual objects in a suitable sense.

As in the case of a tensor category, it is the structural isomorphisms which
we deform, subject to the coherence axioms. The isomorphisms are natural
transformations between combinations of structural functors, so the terms in
finite order (or formal series) deformations will live in collections of natural
transformations between the functors, which are vector spaces in the case of
K-linear categories categories and exact functors.

As we had done for O, we fix notation for the totally left and right paren-
thesized iterates of A as follows:

In order for us to place our deformation theory in a cohomological set-
ting, it will be necessary first to examine the coherence theorem for bitensor
categories (whether biunital or not).

Fortunately, the structure is given in terms of notions for which coherence
theorems are well known (monoidal categories and monoidal functors) or their
duals.

To state it properly, however, we require some preliminaries. First, we
will restrict our attention to the case where all of our categories are equivalent
as categories without additional structure to a category A - mod for A a
finite-dimensional K-algebra. In this case C 181 D is given by A Q9K B - mod
when C (resp. D) is equivalent to A - mod (resp. B - mod). In this setting,
the monoidal bicategory structure given by 181 has pentagons and triangles
which commute exactly (the structural modifications are identities), so the
1-categorical coherence theorem of Mac Lane applies, and we may disregard
the parenthesization of iterated 181, and the intervention of associator and unit
functors. Thus we may use the notation COn without fear of ambiguity.

Second, we must note that if C is a bitensor category, so is Con. The

structure functors are given by applying a "shuffle" functor before or after
the 0-power of the corresponding structure functor for C.
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Theorem 3.1 (Coherence Theorem for Bitensor Categories) Given
two expressions for functors O’ from an n-fold 0-power of a bitensor cate-
gory to an m-fold 0-power of the same category, given in terms of Id, Q9, A, I,
e,l8I, and composition of functors, (where the structural functors may lie in
any 0-power of C), and given two expressions for natural isomorphisms be-
tween these functors in terms of the structural transformations for the cat-
egories, identity transformations, 181, and the 1- and 2-dimensional compo-
sitions of natural transformations, then in any instantiation of these ex-

pressions by the structures from a particular bitensor category, the natural

isomorphisms named by the two expressions are equal.

proof: First, observe that this is a coherence theorem of the very classical
"all diagrams of a certain form commute." The proof of the theorem will
consist in piecing together in an appropriate way the two classical coherence
theorems of this form-Mac Lane’s coherence theorem for monoidal categories
[16] and Epstein’s coherence theorem for (strong) monoidal functors [9]-and
their duals. For the same reasons as in those classical theorems, we must deal
with formal expressions for functors and natural transformations to avoid
"coincidental" compositions.

The proof is reasonably standard: for any expression for a functor of
the given form, we construct a particular "canonical" expression for a natu-
ral isomorphism to another such expression for a functor. Then, given two
expressions for functors related by a natural transformation named by a sin-
gle instance of a structural natural isomorphism, identity transformations,
181, and 1-dimensional composition of natural transformations, we show that
the diagram of natural transformations formed by this "prolongation" of the
structure map and the two "canonical" expressions closes and commutes.

(The "canonical" has quotation marks, since it is only once the theorem
is established that we will know that the map named by the composite is, in
fact, canonical. A priori it is dependent upon the construction given.)

Note that this suffices, since

1. by the middle-four-interchange law, any expression for a natural iso-
morphism of the sort described in the theorem will factor into a 2-
dimensional composition of expressions of this restricted sort, and

2. any composite of such expressions is then seen to be equal to the com-
posite of the "canonical" expression for the source, followed by the
inverse of the "canonical" expression for the target.
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Our "canonical" expressions consists of a composite ci of instances of the
structure maps K, J,,r, and n to move all occurences of D and E "inside" all
occurences of O, and remove all applications of A or E to I; followed by a
composite c2 of instances of /3, r, and 1 to remove all occurences of c applied to
a cofactor of A and to completely right coassociate all iterated A’s; followed
by a composite c3 of instances of a, p and A to remove all instances of I
tensored with other objects, and completely right associate all iterated Q9’s.

Note that we have chosen an order to compose the three constituent

composites, but have not specified the order within each composite. This is
possible for c3 (resp. c2 ) by the coherence theorem of Mac Lane, (resp. its

dual), and the functoriality properties of 181 and the 1-dimensional composi-
tion of natural transformations. For ci, the order of application is constrained
by the nesting of the various functors, but within those constraints, the re-
sulting composite is independent of the order of application by virtue of the
functoriality properties of 181 and the 1-dimensional composition of natural
transformations.

In the circumstances of the theorem, we will let ci (resp. ci) i = 1, 2, 3
denote the components of the "canonical" map from 4D (resp. O’) .

We now have three cases

1 The natural isomorphism f from -(b to O’ is a prolongation of x, 6, T, or
n.

2 The natural isomorphism f from O to O’ is a prolongation of /3, r, or 1.

3 The natural isomorphism f from O to O’ is a prolongation of a, p, or
A.

In Case 1, it follows from the same argument that shows that ci is well-
defined that the targets of ci and c’1 coincide, and that c’1(f) = c1.

In Case 2, by using the functoriality properties of 181 and the 1-dimensional
composition of natural transformations, and the dual of the coherence theo-
rem for monoidal functors, we can construct a natural isomorphism f from
the target of ci to the target of c’1 such that f ’ is a composition of prolonga-
tions of (3’s, r’s, and l’s, and ci ( f ) = f!(cl). It then follows from the same

argument that shows c2 is well-defined that the targets of c2 and c2 coincide,
and c2 (f’) = c2 .

Finally, for Case 3, by using the functoriality properties of 181 and the 1-
dimensional composition, and the coherence theorem for monoidal functors,
we can construct a natural isomorphism f’ from the target of ci to the target
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of c’ such that f" is a composition of prolongations of a’s, p’s, and A’s,
and ci ( f ) = f’(c1). By using the functoriality properties of 181 and the 1-

dimensional composition, and the naturality properties of prolongations of
,8, r, and l, we can construct a natural isomorphism f" from the target of c2
to the target of C2 such that f 11 is a composition of prolongations of cx’s, p’s,
and A’s, and c’2 (f’) = f"(c2). It follows by the same argument that shows c3
is well-defined that the targets of c3 and c3 coincide, and C3(/") = c3. 0

We shall call an instantiation of expressions of the type given in the
previous theorem a pair of commensurable functors, and the unique natural
isomorphism obtained by instantiating an expression of the type in the the-
orem the commensuration. Given commensurable functors F and G, we will
denote the commensuration by yF,G.

Now, observe that An(n(O) and [Oi]Ojsh[jA]Oi = Oij[jA]Oi = [Oi]Oj Ai
are commensurable functors, where sh is the "shufHe functor" from [COj]Oi
to [COi]Oj. Given a sequence of natural transformations f1, ...,fn such that
the source of f 1 is commensurable with An(nO), and the target of f Z is

commensurable with the source of fi+1, and the target of f n is commensurable
with [O’]Ojsh[jA]Oi let

denote the composition of the given natural transformations alternated with
the appropriate commensurations.

For any bitensor category, we can now define a double complex of vector
spaces

where Xij is the space of natural transformations between the two (com-
mensurable) functors Ai iO and [Oi]Ojsh[jA]Oi from the i-fold to the j-fold
tensor power of C to itself. (Notice that because our category if k-linear,
these collections of natural transformations are k-vector spaces.) And

and
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in each case for s E xn,m.
In the case of a biunital bitensor category, we can easily extend our com-

plex to include the values of 0 for i and j, interpreting Coo as VECT, O0
and 0 Q9 as the functor I, and 0° and 0A as the functor E.

It follows by a diagram chase from the coherence of the bialgebra category
that d2 = 62 = d6 + 6d = 0. Thus we have a bicomplex whose cohomology
can be defined in the usual manner.

Definition 3.2 The bicomplex described above is the basic bicomplex of
the bitensor category. The total complex of the basic bicomplex, indexed by
Xn= Oi+j=n+1Xi,j is the basic complex of the bitensor category.

Definition 3.3 The larger bicomplex described above is the extended bi-
complex of a biunital bitensor category.

Now we note that the three structural natural transformations of a bial-

gebra category live in the third diagonal of the basic bicomplex. Specifically,
the associator a for the tensor product lives in X3,1 the coassociator B for
the coproduct lives in X1,3, and the "coherer" K lives in X2,2.

By an infinitesimal deformation of a bialgebra category we mean an in-
finitesimal deformation of its structural natural transformations which satis-

fies the coherence axioms to first order in the infinitesimal parameter. This
makes sense because natural transformations are combinations of morphisms,
and all the spaces of morphisms for our spaces are vector spaces.

Concretely we let x’ = x + kE, a’ = a + ae, B’ = B + bE, for E2 = 0. When
we write out the coherence axioms for the new maps, we find the only new
conditions beyond the coherence of the triple a, K, B are

The deformations of our category (as a bitensor category) correspond to
cocycles of the basic complex. Similarly, the equivalence classes of defor-
mations under infinitesimal monoidal equivalence correspond to cohomology
classes.
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Theorem 3.4 The equivalence classes of infinitesimal deformations of a
bialgebra category correspond to classes in the third cohomology of its basic
complex.

proof: Once it is observed that the structural maps for a bitensor functor are
elements of Xl,2 and X2,1, it is easy to check (by writing out the hexagon co-
herence conditions for monoidal and dual monoidal functors) that a bitensor
functor structure for the identity functor given over K[E]/  c2 &#x3E; is described

by a total 2-cochain which cobounds the difference between the two bitensor
structures (as 3-cochains).

(The fact that the third cohomology group appears here, rather than the
second d lá Hochschild, is suggestive in relation to the categorical ladder
picture in TQFT. We know that a TQFT can be constructed from a finite
group plus a cocycle of the group. The cocycle of the group must be chosen
to match the dimension of the TQFT. Thus if a 2-cocycle of a bialgebra gives
rise to a 3d theory, it is plausible that a 3-cocycle of a bialgebra category
would generate a 4d theory. All this raises the question whether there is a
classifying space of some sort for a bialgebra category whose cohomology is
related to the cohomology of our bicomplex.)

This theorem is not very useful in itself, since it does not suggest a way
to find interesting examples of cocycles. However, for a biunital bitensor cat-
egory, we can embed the basic bicomplex into the extended bicomplex. Any
element of XO,3 on which 6 gives 0, or any element of X3,0 on which d gives 0
can be pushed back into the basic bicomplex to give a candidate for a defor-
mation. This is analogous to the process which led to the quantum groups:
the classical r matrix lives in an extended bicomplex, and the vanishing of
the analog of the Steenrod square of its differential is precisely the classical
Yang-Baxter equation. See [3]. (Of course, the classical Yang- Baxter equa-
tion was not for any element of the complex associated to the Hopf algebra,
but only to one of a very special form related to the Lie algebra. At the

moment we do not know an analogous ansatz for the categorified situation.)
Thus, we now have an a pair of interesting new equations to investigate

for Hopf categories :

In addition, we can ask about the equation which says that the infinitesi-
mal defomration contructed from a solution to (Dl) or (D2) can be extended
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to a second order deformation.

In the bialgebra situation, the combination of these two equations led to
the classical Yang-Baxter equations, in the restricted ansatz.

4 Searching for Deformations in some Interesting
Cases

A naive reader might suppose that the deformation equations Dl and D2 are
rather disappointing, since they lead to a sort of cohomology of automor-
phisms of the identity or counit of the category. However, in the important
cases, the unit and counit are not simple objects, so in fact we are led into
interesting ground.

In the case of the quantum double of the group algebra of a finite group,
the identity is a sum of one ordered pair of group elements for each group
element. If we categorify in the natural way, so that each ordered pair of
group elements is a simple object in the category, (see [6]) our equation Dl
reduces to a cocycle on the group. In effect, we have reproduced Dijkgraf-
Witten theory [8] in the language of deformed Hopf categories, since the group
cocycle for Dijkgraf-Witten theory induces a finite (and thus) infinitesimal
deformation of the Hopf category.

The other interesting case to apply our theory to is the categorificatiorl of
the quantized UEA’s constructed by Lusztig in his construction of the canon-
ical bases [14]. In order to get a construction which worked for the entire
QUEA, Lusztig was forced to replace the identity by a family of projectors
corresponding to the weight lattice. (It must be cautioned that Lusztig only
worked things out explicitly in the case of SL(2)). Thus the deformation

equations translate into the coboundary equation for the complex for the
group cohomology of the root lattice. This means that possible infinitesimal
deformations of the bialgebra category correspond to 3-forms on the funda-
mental torus of the corresponding Lie group. We can see that even at the
first order of deformation theory, our procedure seems to produce something
only for certain Lie algebras- those of rank at least 3. Work is under way to
examine the implications of the second order deformation equations in this
situation.

It seems unlikely that a complete deformation can be found order by or-
der. Such an approach is too difficult even for bialgebras. Let us simply cite
the fact [11] that it is an open question whether the vanishing of the obstruc-
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tion to a second order deformation is always enough to ensure a deformation
to all orders for a bialgebra. Nevertheless, our preliminary results suggest
that deformations may exist for the bialgebra categories associated to certain
special Lie algebras only. Whether this could bear any relationship to the
special choices of groups which appear in string theory and supergravity is
not clear at the moment, but the possibility cannot be ruled out.

In order to clarify the situation, it will be necessary to find some global
method for producing deformations. As of this writing, we have only begun
to investigate the possibilities. Several lines of thought suggest themselves:

1. One could search for a categorified analog of Reshetikhin’s proof that
every Lie bialgebra produces a quantum group [18, 10]. In order to

attempt this, we need to single out the part of the bialgebra category of
Lusztig corresponding to the Lie algebra itself. This is rather delicate,
since categories do not admit negative elements, but a way may be
found.

2. It is possible to examine special 3-forms on the groups F4 and E6,
related to their constructions from the triality of ,SO (8) . Perhaps the
relationships of these 3-forms with the structure of the Lie algebras will
make it possible to extend the corresponding cohomology classes of the
root lattices to complete deformations of the corresponding bialgebra
categories. If so, the special Lie algebras for which we can produce
bialgebra category deformations will be physically interesting ones.

3. Lusztig constructed his categories as categories of perverse sheaves over
flag varieties. The flag varieties are known to have q-deformations in the
sense of non-commutative geometry [13]. Perhaps a suitable category
of D-modules over the quantum flag algebras can be constructed.

5 Conclusions

Simple Lie groups and Lie algebras are very central constructions in mathe-
matics. They appear in theoretical physics as the expressions of symmetry,
which is a fundamental principle of that field. It has been a remarkable re-
cent discovery that the universal enveloping algebras of Lie algebras, and the
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function algebras on Lie groups, admit deformations. This discovery came
to mathematics by way of physics.

It is a further remarkable fact that the deformations of the universal

enveloping algebras admit categorifications, i.e. are related to very special
tensor categories.

There is no reason not to try to see if this process goes any farther. The

question whether the categorifications of the deformations can themselves be
deformed is a natural one.

The development in algebra we have outlined has had profound impli-
cations for topology, and at least curious ones for quantum field theory as
well. Perhaps it is puzzling the the categories constructed by Lusztig do
NOT seem to fit into the topological picture surrounding quantum groups.
The direction of work begun in this paper has the potential of widening the
topological picture to include Lusztig’s categories as well.

Finally, it seems that the relationship between topological applications
of algebraic structures and deformation theory can be direct. One of us [19]
has recently discovered a brief proof of a theorem generalizing the well-known
result of Birman and Lins [2] (cf. also [1] that the coefficients of the HOMFLY
and Kauffman polynomials are Vassiliev invariants. The proof makes a direct
connection between the stratification of the moduli space of embedded curves
in R3 and the deformation theory of braided tensor categories (cf. Yetter

[20]). It is plausible to suggest that the deformations we are attempting to
construct may play a similar role.
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