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COMPACT TOPOLOGIES ON LOCALLY
PRESENTABLE CATEGORIES

by Panagis KARAZERIS

CAHIER DE TOPOLOGIE ET

GEOMETRIE DIFFERENTIELLE CATEGORIQUES
J Illume XXXVIII-3 (1997)

RESUME. Les topologies sur les categories localement

pr6sentables g6n6rallsent les notions famill6res suivantes, d’une part
les topologies de Grothendieck sur des petites categories, d’autre
part les topologies de Gabriel sur des categories abéliennes à

generateurs. Dans cet article on introduit une condition, qui peut
être v6rifi6e pour les topologies pr6c6dentes, appel6e "compacit6".

Dans le cas des topologies de Grothendieck, cette condition
signifie qu’un recouvrement quelconque a un sous-recouvrement
fini. Les topologies compactes correspondantes ont des localisations
ferm6es dans la cat6gorie donnee pour des colimites filtrantes

monomorphiques.
On examine aussi la fermeture des objets s6par6s et des

faisceaux pour les colimites filtrantes. Les topologies compactes sur
une cat6gorie localement de presentation finie forment un locale. Si
cette cat6gorie est un topos coherent, alors le locale est compact et
localement compact. Si le topos est celui des faisceaux sur un

espace coherent, alors le locale en question est celui des ouverts
pour la topologie recoll6e ("path topology") sur cet espace.
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1 Introduction

By a topology on a locally presentable category we mean a universal
closure operator on such a category:

Basic Definition A topology on a category with pullbacks is a

process, which associates to each subobject S &#x3E;-&#x3E; A of an object A,
another subobject jA(S) &#x3E;-&#x3E; A

f-1(jA(S) = jB(f- 1(S)), for all arrows f: B -+ A in the category
and f-1 denoting pulling back along f.

This notion has become a standard category theoretic tool since the
1970’s, but some examplification of it may still be enlightening: To

start with a somewhat trivial case, when the category in question is

a lattice A, a topology on it is nothing else but a nucleus (as in [10],
p. 48). Indeed, there is a one to one correspondence between the two,
sending a nucleus j on A to the closure operator which, to a  b assigns
jb(a) = j(a) A b and, on the other hand, sending a universal closure
operator to the nucleus that has the closure of a in the top element of
A as value on a E A.

On the category of abelian groups we may consider the topology,
which assigns to a subgroup H of G the closure j(H) = {g E G I 3n E
N s.t n.g E H}, i.e the elements of G that are torsion with respect to
H. This example may be held responsible for the term "torsion theory"
used in ring theory to describe topologies on module, or more generally,
abelian categories. It also provides for one possible justification for the
use of the word topology in this setting: Such a piece of data renders the
ring over which we consider the modules linearly topological. The other
and probably more burdensome justification is the use of the word by
Grothendieck in generalizing the notion of covering family from topolog-
ical spaces to small categories, in view of the correspondence between
universal closure operators on presheaf categories and such covering
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families on the indexing category, leading to the developement of topos
theory. 1

In a manner similar to that of topos theory, universal closure op-
erators on a locally a-presentable (I.a - p) category correspond to en-
domorphisms, satisfying the Lawvere- Tierney axioms, of an object Q
that serves as a subobject classifier for the category ([6]). We know,
by the general theory of these categories given in [9], that such an £
is equivalent to a category of those ,S’et-valued functors from a small
category C with colimits of size less than a (a a regular cardinal) that
preserve the colimits in question. The object Q, then, lives in the full
presheaf category SetCoP. When the category happens to be a topos,
the object Q is the subobject classifier for the topos.

A universal closure operator on a locally presentable category cor-
responds also to a family of subobjects of the generators, satisfying
properties analogous to those of a Gabriel topology on an abelian cat-
egory with generators ([17]), or of a Grothendieck topology on a small
category (or better on the corresponding presheaf category) ([14]). An
extra property is required to ensure that, when viewing the objects in
a locally presentable category as left exact functors, the closure of a
subobject is left exact ([5]). (We refer to any of the above variants of a
universal closure operator as a topology.)

Contrary to the classical cases of abelian categories or toposes, a
topology, in the above sense, does not always give rise to a localization,
although a localization uniquely determines a topology. A topology on
a locally presentable category determines a full subcategory of it, the
one consisting of the objects having the unique extension property with
respect to dense monos. Such a subcategory is reflective ([8]) but the
reflection now need not be left exact.

In the first section we introduce a condition on a topology on a locally
finitely presentable (l. f . p) category, that we call compactness, since for

1 We should also mention here the work by Castellini, Dikranj an, Giuli and others
(cf. for example Dikranjan and Giuli, Closure Operators I, Topology and Applica-
tions 27 (1987), 129-143) which places the study of closure operators in categories
in a more general framework and succeeds, among other things, in accounting for
the ordinary closure operators of General Topology as well. We do not pursue these
ideas here though.
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Grothendieck topologies it simply means that every covering has a finite
subcovering. Such kind of finiteness conditions on a topology have been
considered in the past, either for Grothendieck topologies ([21]), or in
the abelian context ([17], [18]). Here we elaborate on that notion of

compactness. We start from what compactness should intuitively mean:
when the supremum of a family of subobjects is dense (with respect
to the topology), then so is the supremum of some finite subfamily.
We do not necessarily require that property for subobjects of arbitrary
objects, but for subobjects of, say, the representables or of the free object
on one generator, in other words for subobjects of objects in a set of
regular presentable generators. We arrive at an invariant equivalent
formulation: A topology is compact if, viewed as a closure operator, it
commutes with directed suprema of subobjects of any object. What we
said here holds for I.a - p categories and notions of 0-compactness (in
the obvious generalized sense), when ¡1 is larger than a.

The condition was considered in connection with the problem of find-
ing when the category of sheaves is closed under filtered colimits (similar
considerations led to it in [21], [17], [18]). This problem is taken up in
the second section. First, we show that the compactness of a topology
implies that the subcategory of separated objects is closed under filtered
colimits. We believe that this result has not been noticed even for the
case of Grothendieck topologies. On that we base the rest of the results
in that section. Concerning the full subcategory of sheaves, we have the
following: It is closed under monomorphic filtered colimits when the
topology is compact and, conversely, the topology induced by a local-
ization is compact when the localization is closed under monomorphic
filtered colimits. When the ambient category is locally coherent, mean-
ing that finitely generated subobjects of finitely presentable ones are
finitely presentable ([7]), the sheaves are closed under filtered colimits.
A condition, stronger than compactness, sufficient for the preservation
of filtered colimits by the inclusion of sheaves is also discussed. That
condition generalizes one, which is known to be equivalent to the preser-
vation of filtered colimits in the abelian case ([18]). Still, the results of
the second section are valid for l.a - p categories and /3-compact topolo-
gies, ¡1 larger than a.

The set of localizations of a topos or of a category of modules over a
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ring; dtdd+qd uiidor inclusion is the dual of a frame. Or, equivalently, )he
set of topologies, with the order induced by the order of subobjects, is a
frame. Similar results hold for the localizations of a locally presentable
category in which finite limits commute with filtered colimits. Despite
the ramification of concepts related to localization, the above results
hold for each of the two branches: In a locally presentable category
satisfying the exactness property mentioned above, localizations form
the dual of a frame ([3]), while topologies form a frame ([6]). The com-
pact topologies on an l. f.p category constitute a subframe of that of all
topologies. When the L. f.P category is a coherent topos then the frame
in question, which in this connection can be thought off as the frame of
coherent extensions of the coherent theory classified by the topos ([13]),
is a locally compact, compact one. More specifically when the topos is
that of sheaves on a coherent space, the frame can be identified as the
frame of opens for the patch topol9gy on the given coherent space.

We should point out here that the aforementioned frame can be
identified with other well known constructions in special cases, notably,
when the l. f .p category is R-modules over a commutative ring R, with
the dual Zariski spectrum of the ring ([11]). This fact though can be
expressed in a more comprehensive way using the formalism of Gabriel
topologies on algebraic quantales. For that we intend to present this
connection elsewhere.

The work presented here is part of the author’s Ph.D thesis ([11]). I
wish to express my sincere gratidude to my teacher Anders Kock for his
skillful teaching and his support. I would also like to thank Professors
F. Borceux and F. W. Lawvere for comments that contributed to the

shaping of this work, as well as M. Adelmann and J. Schmidt for useful
discussions.

2 Compact Topologies
When we are dealing with a Grothendieck topology or a topology on a
category of modules we want to be able to verify whether a topology
has a cerain property by looking at a presentation of it in terms of dense
sieves or dense (topologizing, in the ring-theoreric terminology) ideals.
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In particular the intuitive idea of compactness - a family of subobjects
has dense supremum if a finite subfamily of it does - should be referring
to subobjects of objects of a certain type (free, representable, the ground
ring etc.), without on the other hand depending on the choice of it. This
is the aim of the next Proposition.

2.1 Proposition. Let E be a locally a -presentable (l.a - p) category,
j a topology on it and M a set of regular generators, which are a-

presentable. The following are equivalent:

(i) Whenever a 0-directed family of subobjects of an object in M has
j-dense supremum, there is a member of the family which is j-
dense.

(ii) Whenever a /3-directed family of subobjects of an object in £ has
j-dense supremum, there is a member of the family which is j-
dense.

(iii) Any j-dense subobject of an a-presentable P contains a R- gener-
ated subobject that is j-dense in P.

(iv) The closure operator commutes with /3-directed suprema of subob-
jects of a-presentable objects.

(v) The closure operator commutes with /3-directed suprema of subob-
jects of all objects.

Proof: The implications (v) =&#x3E; (iv) and (ii) =&#x3E; (i) are trivial, while
(iv) =&#x3E; (iii) and (ii) =&#x3E; (iii) follow immediately from the fact that in a
l.a-p category every object can be written as the 0-directed supremum
of the 0-generated subobjects of it. Also the implication (iii) =&#x3E; (ii)
follows immediately if we note that a /3-directed supremum of subobjects
is the monomorphic /3-filtered colimit of those subobjects.

(i) =&#x3E; (ii): Recall from [9] (Satz 7.6) that in a l.a - p category every
a-presentable object can be written as a retract of a colimit of size less
than a of objects in M, where .M is as in the statement above. Let
then P be an a-presentable object, m: P - colimjgk a split monic
with section e, with Gk E .M, cardJ  a. Let fAi &#x3E;-&#x3E; Pli E I} a
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0-directed family of subobjects of P, the supremum of which is dense
in P. Consider the following pullback:

By the universality of the closure operator and the commutation of
0-directed suprema with pullbacks in E we have

The iso in the lower row gives an iso in the corresponding upper row
and then the compactness hypothesis gives an iso j(Az X p Gk) = Gk,
for some 1 E I. For each k E J, now, we have a morphism from Gk to a
j (Ai) (the inverse for the iso we found followed by the projection of the
pullback

to j(Ai)) and, since there are less than a many k’s and I is 0-directed,
we can fix 1 E I so that for all the Gk’s in the colimit there is Gk -&#x3E; j(Ai),
hence there is a factorization g: colim jGk -&#x3E; j(Ai). In that way g.m
becomes a right inverse for the mono j(Ai) &#x3E;-&#x3E; P, so Ai &#x3E;-&#x3E; P is

dense.

(iii) =&#x3E; (iv). Here we have to appeal to the representation of E
as the category of a-lex Set-valued functors, E = a - Lex(COP, Set).
In the representation just mentioned there is a canonical choice for C,
namely C = £a-p. Then the a-presentable objects of E are exactly
the representables. Subsequently we deliberately avoid to distinguish
between the two. Let us then be given a 0-directed family of subobjects
{Ai &#x3E;-&#x3E; Pli E I} of an a-presentable object P. Notice then that the
inequality B/Ijp(Ai)  J?(V7 Ai) always holds. For the other inequality
recall that the closure of a subobject A &#x3E;-&#x3E; P of a representable is
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where by Dj(Q) we mean the set of j-dense subobjects of Q (cf. [5]).
Then x E jp(VIAi)(Q) iff x-l(Ai) = x-’(Ai) E Dj(Q), in which case
(ii) tells us that there is i E I with x-1(Ai) E Dj(Q), so that x E
jp(Ai)( Q). That w4y we have shown that jp(V I Ai)  V I jp(Ai) in the
full presheaf category Set cop . Since the inclusion E -&#x3E; Set cop preserves
0-filtered colimits the same inequality holds in S.

(iv) =&#x3E; (v): We consider an object A of E and a family {Ai &#x3E;-&#x3E; A ]
z E I} of subobjects of it, which is 0-directed. Write A as the a-filtered
col-imit of a-presentable objects above it. Consider then the pullback of

along an injection

The following hold:

using appropriately the universality of the closure operator, the com-
mutation of the closure with 0-directed suprema of subobjects of a-
presentable objects and the commutation in E of pullbacks with /3-
directed suprema. Moreover, the commutation in E of pullbacks with
a-filtered colimits gives:
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So having an arrow j(VI Ai) xA P = VIj(Ai) xA P - VI Ai for
each P E Ea-p/A we get a factorization through the colimit j(VIAi), 
g : j(VI -&#x3E; Ai) VIj (Ai). Chasing the diagram we show for the inclu-
sions i 1 : and the projection

that ii.g.sp = Z2-SP for all P, giving
il.g = Z2, SO 9 is an iso as required.8

The previous equivalences allow us now to say what a compact topol-
ogy is.

Definition Let E be l.a - p category, j a topology on it, /3 a cardinal,
a  0. We say that j is /3-compact if it satisfies any of the equiv-
alent conditions given in Proposition 1.1 above. We reserve the word

compact for the case a = /3 = Ro.

Examples: a. Any Grothendieck topology on a small C given in terms
of coverings with the property that every covering family contains a fi-
nite subfamily which covers, is a compact topology on the l. f.p category
Setc°P. See also the discussion following Proposition 3.4.

b. Any locale with the property that any supremum can be attained
by using less than K elements (K a regular cardinal) gives rise to a K-
compact topology when viewed as a site (with the canonical topology).
If the locale happens to be a boolean algebra, then the condition just
stated is the K-chain condition.

c. The classical closure operator (torsion theory) on the l. f.p. cate-
gory of abelian groups, assigning to a subgroup H &#x3E;-&#x3E; G the closure

j(H) = fg E G I 3n E N such that n.g E H}, is a compact one.
d. It was shown in [4] that when £ is a l.a - p. category with

universal colimits, then the a-lex closure operator is a universal one (the
a-lex closure assigns to a subfunctor G of an a-lex functor F: EoPa- P -&#x3E;

Set the smallest a-lex subfunctor of F that contains G). In the inductive
construction of the a-lex closure each step commutes with a-directed
suprema. Hence, the a-lex closure commutes with a-directed suprema
giving rise to an a-compact topology in this case.
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e. Since a locally presentable category E is well-powered any topol-
ogy j on it will be ,8-compact for some ,8 sufficiently large (in partcular
it will be ,8-compact for a ,8 &#x3E; a, where a is the presentability rank of
E).

3 Preservation of filtered colimits

We consider the following proposition to be the basic one of this section,
since it is the main technical means for arriving at a characterization of
compactness in terms of preservation of monomorphic filtered colimits.

3.1 Theorem. Let .6 be a l.a - p category, j a /3-compact topology
on it with a  /3. Then the inclusion of j-separated objects into f,
sepjf -&#x3E; £, preserves ,8-filtered colimits.

Proof: The following things, well known from topos theory (see e.g
[12]), are general "closure-theoretic" and hold in our case. First, if
the diagonal of an object is j-closed then the object is j-separated and
secondly, if a map P -&#x3E; X x X factors through the closure of the
diagonal of X, then the equalizer

is j-dense in P. Let I -&#x3E; sepjE be a 0-filtered diagram of j-separated
objects.

Let X = colimX2, where the colimit is calculated in S. We want to
show that X is j-separated. For that it suffices to show that the diagonal
of X is j-closed. Since E is locally presentable we check elements defined
over the (a-presentable) generators. Let (x, y): P -+ X x X be such an
element belonging to the closure of the diagonal (so that we know that
the equalizer E of x and y is j-dense). We want to show that x = y.
Since I is 3-filtered and P a-presentable, x and y are defined at some
(common, as it can be chosen) stage k E I and represented by elements
xk and yk, respectively. It suffices to exhibit a later stage of definition
where xk and yk are identified. Consider the category of indices below
k, k/I. It is still 0-filtered. By a theorem of Grothendieck and Verdier
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(proved in detail in [20]) there is a 0-directed poset li cofinal in k/I.
Consider now the equalizer diagrams

of the arrows xi = tik.xk, yi = tik.yk, where tik the transition maps. The
commutation of /3-filtered colimits with equalizers in E gives

the third equality provided by cofinality of K in k/I. But now E, being
the equalizer of an element in the closure of the diagonal of colim¡Xi,
is j-dense. By the 0-compactness assumption one of the Ei -&#x3E; P is

j-dense and since the Xi’s are j-separated the two elements xi, y2 have
to be equal. This concludes the proof. 

Remark: A special case of the theorem above is known. In [16] a
notion of B-valued set was introduced, for B a complete boolean algebra,
which is essentially the same as a separated presheaf on B (seen as a
site with the canonical topology). It is shown there that the category
ModB of B-valued sets is l.k - p if B has the K-chain condition. This

amounts to showing that the inclusion of separated presheaves preserves
K-filtered colimits when the canonical topology on B is k-compact (after
Example (b.) in section 1). The proof there is given by a direct, long
calculation involving the description of colimits in ModB. Except for
that special case above we believe that the result of Theorem 1 is new

even for the case of a Grothendieck topology. For that reason we state
it separately.

3.2 Corollary. If J is a Grothendieck topology on a small category C,
which is a-compact, then the inclusion sep(C, J) -&#x3E; Set cop preserves
a-filtered colimits and hence sep(C, J) is l.a - p.
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We know of no direct proof of the fact that for a topology 3 on a locally
presentable category sepj£ is reflective in £. Combining though the
result of Theorem 2.1 with one of Adamek and Rosicky ([1], see also
[15] for a special case), that a subcategory of a locally presentable one
£’, closed under arbitrary limits and ¡1-filtered colimits, is reflective in
E, we obtain:

3.3 Corollary. Let E be a locally presentable category, j a topology on
it. Then sepj£ is reflective in E and hence it is itself locally presentable.

Proof: As we mentioned in Example (e.) above, the topology j will
be 0-compact for some 0 sufficiently large thus sepj£ will be closed in
E under /3-filtered colimits. On the other hand sepje is trivially closed
in E under arbitrary limits, so we can conclude by the aforementioned
result. 8

As far as sheaves are concerned the following holds:

3.4 Proposition. Let £’ be a l.a - p category, j a /3-compact topology
on it. Then the inclusion shj£ -&#x3E; E preserves monomorphic /3-filtered
colimits.

Proof: Let I -&#x3E; shjE be a monomorphic /3-filtered diagram of j-
sheaves and X = colimlX2 . We wish to show that X is a j-sheaf.
We already know that it is j-separated. We also know that in order to
be a sheaf it suffices to be orthogonal to dense monics with codomain
a-presentable. So consider such a monic A &#x3E;-&#x3E; P, and an arbitrary
A &#x3E;-&#x3E; X. We want to produce an extension of the latter (which will
then be unique). But the subobject A &#x3E;-&#x3E; P can be refined to a

j-dense F - P one, with F being 0-generated:
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We can produce an extension of F &#x3E;- &#x3E; A -&#x3E; X along F &#x3E;-&#x3E; P,
as the following calculation shows :

horraE(F, X) = colimIhomE(F, Xi) = colimIhomE(P, Xi) = home (P, X)

(where the middle bijection is due to the fact that the Xi’s are sheaves).
Then, by the separatedness of X, it turns out that this is also an exten-
sion of A -&#x3E; X along A &#x3E;-&#x3E; P, finishing the proof. 8

If the ambient category E has suitable properties, compactness can
have stronger implications concerning the preservation of filtered col-
imits by the inclusion of sheaves. Namely, in some I.a - p categories
0-generated may coincide with /3-presentable (a  0). Categories with
this property are called locally /3-noetherian. Examples of such cate-
gories are these of boolean algebras and R-algebras over a noetherian
ring R (for a == f3 == Ro), small categories (for a = No, /3= N1) and
commutative C*-algebras (for a = /3 = N1) (see e.g [7], Ch. 5). In

other L.a - p categories a-generated subobjects of a-presentable ones
are a-presentable. Such categories are called locally a-coherent and
have been characterised by S. Fakir ([7], chapter 9). A typical example
is that of R-modules over a coherent ring R. Finally, for in a category of
presheaves on a small category with pullbacks, finitely generated subob-
jects of the representables are finitely generated (See [21], Remark 15,
p. 301). This is so because, if a sieve R &#x3E;-&#x3E; hc is finitely generated
(meaning that there are finitely many Ci -&#x3E; C generating R), then there
is an epi

If the site has pullbacks that epi is the coequalizer of the diagram

(the diagram being the kernel pair of LJni= 1 hc, -&#x3E;&#x3E; R), hence R is
finitely presentable as an object of SetCop By a similar proof we can show
that in a coherent topos finitely generated subobjects of representables
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are finitely presentable. In all the above cases the compactness of the

topology implies the preservation of filtered colimits by the inclusion of
sheaves.

Remark. In the case of sheaves for a site (with pullbacks) the result
of Proposition 2.4 is known (cf. [21], Theorem 11). It follows from an

easy calculation involving the "double plus" construction of the associ-
ated sheaf functor. We do not know which full subcategories of a locally
presentable one closed under limits and /3-filtered colimits, for some
(3, arise as categories of sheaves for a topology. We know, though, that
localizations of such an E arise as categories of sheaves. In connection

with that we have the following:

3.5 Proposition. Let E be a l.a - p category and £ -4 E a localization
of it such that the inclusion preserves monomorphic (3-filtered colimits
(we assume that a  (/3). Then the topology on E inducing ,C is (3-
compact.

Proof: Recall from [6] (Proposition 1.5) that the topology inducing
the localization i : £ 9 £, with left exact reflection r, assigns to a
subobject S &#x3E;-&#x3E; A the pullback

of the monic (by the left exactness of r) irS &#x3E;-&#x3E; irA along the
unit of the adjunction 77A: A -&#x3E; irA. Given now a 3-directed family of
subobjects {Sk &#x3E;-&#x3E; A k E Il the closure of

(since i preserves monomorphic filtered colimits and the latter commute
with pullbacks), as required, t
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Summarizing the facts we have seen so far, we obtain:

3.6 Theorem. When £ is a l.a - p category such that topologies on it
agree with localizations, then /3-compact topologies (a  {/3} correspond
to localizations preserving monomorphic /3-filtered colimits.

We are presented naturally with the problem of characterizing those
topologies, which, in the above context, correspond to localizations
closed under /3-filtered colimits. The problem has been considered for
abelian locally finitely presentable categories by M. Prest in [18]. The
non-abelian formulation of the condition given there turns out to be
sufficient for the preservation of filtered colimits by the inclusion of
sheaves, but not necessary. Yet, as it is weaker than, for example, re-
quiring the local coherence of the ambient category, so we give a proof
for its sufficiency.

3.7 Proposition. Let E be a l.a - p category and j a topology on it

satisfying the following two conditions
(i) j is /3-corrapact (a  /3) 
(ii) If F is a /3-generated subobject of an a-presentable Q, then it

admits a presentation by a coequalizer

where P is /3-presentable and K contains a /3-generated dense subobject.
Then the inclusion shje -4 E preserves /3-filtered colimits.

Proof: Let I -&#x3E; shj£ be a /3-filtered diagram of j-sheaves and X =
colz*mjxi . We wish to show that X is a j-sheaf. We already know that
it is j-separated. It suffices to check orthogonality with respect to a
dense subobject of an a-presentable one A &#x3E;-&#x3E; Q. As in Prop. 2.4,
since X is separated it suffices to take A = F, a 0-generated subobject
of Q. There is a presentation of it

with Ii’ having a 0-generated dense subobject. Consider a map A -&#x3E; X.
In the following diagram
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we get a factorization of P -&#x3E; F -&#x3E; X through an Xi, since P is (3-
presentable. The two composites

are equal (upon replacing Xi with a further Xk in the diagram) since
they agree when preceeded by an injection into the colimit. But
G &#x3E;-&#x3E; I1 is dense and Xi is a sheaf, so the two composites

are equal, since they agree when they are restricted along a dense mono.
That way we obtain a factorization of P - Xi through F -&#x3E; Xi. There
is a unique extension of F - Xi along F &#x3E;-&#x3E; Q and the composite
Q - Xi -&#x3E; X is the required extension to the given map F - X. I 8

The necessity of the condition in the abelian case seems to hinge on
the good combination of exactness and finiteness properties available
for an abelian locally finitely presentable category. Namely, the fact
that the kernel of an epi between finitely presentable objects is finitely
generated (cf. [19] Prop. 1.3.2), as the following proof shows.

3.8 Theorem. (M. Prest, [iB], Th. 2.3) A localization of a locally
finitely presentable abelian category is closed under filtered colimits iff
the corresponding Gabriel topology is compact and has the further prop-
erty that, if a map between finitely presentable objects has dense image,
then its kernel contains a finitely generated dense subobject.

Proof: The sufficiency is clearly implied by the preceeding proposi-
tion. For the necessesity, let P -&#x3E; Q be a morphism between finitely
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presentable objects with dense image, and let Ii be its kernel. Then,
applying the localization functor to the sequence

we get a sequence

where rIi remains the kernel of rP --- rQ, rP and rQ remain finitely
presentable and rP --- rQ is an epi, since the image of P - Q is
dense. So, rIi is finitely generated, which means that there is a finitely
generated subobject of Ii dense in K. 8 

4 The frame of compact topologies
The fact that, under the assumption that filtered colimits commute with
finite limits, the set of all topologies on a l.a - p is a frame was shown
in [6]. It is the analogue of the important result given in [3] that, under
the same assumptions, the localizations of a locally presentable category
form a co-frame.

4.1 Theorem. Let £ be a l. f.p category. Then the set of compact
topologies is a subframe of the frame of all topologies.

Proof: As mentioned in the introduction to this section, topologies are
given pointwise by acting on subobjects of a-presentable objects. The
binary infimum of topologies is then given pointwise by intersection of
subobjects. The supremum, however, of a set J of topologies is given by
the following construction (cf. [6], Theorem 3, p. 313): For a subobject
A &#x3E;- &#x3E; P of an a-presentable object define j’P(A) = VKjk1O...Ojkn(A),
where the supremum ranges over the set Ii of all the finite sequences of
J (hence it is a directed one). Then we repeat the process over j’P(A) 
and so on. The process terminates because locally presentable categories
are well powered. We first show that the set of compact topologies is
closed in the frame of all topologies under arbitrary suprema. Let the
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J be a set of compact topologies and {Ai &#x3E;-&#x3E; P z (E 11 a directed
set of subobjects of a finitely presentable object P. Since each topology
j E J commutes with directed suprema, and suprema commute with
each other we have:

Iterating the application of j’ we will always be getting the supremum
outside the argument of it, so eventually

as required. It is also closed under binary infima because, if j and k are
compact topologies and the Ai’s are as above, we have:

since in E directed suprema commute with intersections. The latter
double supremum, though, can be substituted by a single one, again by
directedness. So finally

i-e j A k is compact, which concludes the proof. 8
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Remark. The above proof shows actually that in a locally presentable
category, where filtered colimits commute with finite limits (so that
there is available a frame of topologies), the topologies commuting with
directed suprema of subobjects form a subframe of that of all topologies.
We might also consider topologies on a special kind of l.f.p categories,
namely algebraic lattices. As we noted in the introduction, topologies
on such a categories are nothing else but nucleui. Notice also that under
this identification, orthogonal elements for the closure operator corre-
spond to closed elements for the nucleus. A compact topology on an
algebraic lattice is, then, a nucleus commuting with directed suprema.
A frame on the other hand is a locally presentable category, where fil-
tered colimits commute with finite limits, so we have:

4.2 Corollary. The set of directed-suprema-preserving nuclei Nw,(A) 
on a frame or an algebraic lattice A is a subframe of the frame N(A) of
all nuclei.

We continue with a calculation concerning directed suprema of com-
pact topologies, which we are going to use in the sequel in studying the
frame of compact topologies on a coherent topos.

4.3 Proposition. If J is a directed family of compact topologies on a
locally finitely presentable category, and if A &#x3E;-&#x3E; P is any subobject
of a finitely presentable object, then

. Consequently, the set of j-dense subobjects of a finitely presentable
object is the union of the sets of j -dense subobjects, j E J.

Proof: In the computation of j’P(A) as above, we can, since J is di-
rected, dominate any finite sequence by a single j and, using the idem-
potency of j, get
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while the other inequality holds trivially. In iterating j’, because of the
compactness of the topologies involved, we get:

where the first supremum in the last expression is taken over all topolo-
gies k, such that each of them dominates a finite sequence in K. By the
same argument as above

i.e, the process stabilizes already after two steps, yielding the desired
result. 8

Recall from [5] that topologies on a locally a-presentable category S,
according to our Basic Definition in the Introduction, are in a one-to-one
correspondence with families D(P) of subobjects (the dense subobjects)
of the a-presentable objects P in £, so that the following are satisfied:

(D1)P E D(P)

(D2) If 5 E D(P) and x : Q -&#x3E; P any map with a-presentable domain,
then x-l(5) E D(Q).

(D3) If P = colirraPi is a colimit of size less than a of a-presentable
objects and S &#x3E;-&#x3E; P is such that, for all si : Pi -&#x3E; P, si-1(S) E
D(Pi), then S E D(P).

(D4) If S &#x3E;-&#x3E; P and there is T E D(P) such that, for all x: Q -&#x3E; P
factoring through T, x-l(5) E D(Q), then S E D(P).
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As we now aim at showing the local compactness of the frame of com-
pact topologies on a coherent topos we are going to need sufficiently
many finite elements of that frame. These come about as the topolo-
gies with the property of being the smallest such that contain a given
finitely generated object. This corresponds to the usual description of
Giothendieck topologies in terms of generating families covering a sin-
gle object. What we get though in that way is just a pretopology, i.e a
collection of upper-closed families of sieves that satisfy the axioms (D1),
(D2) above. We want to ensure that the topology generated by such
a collection (which makes sence to talk about since the intersection of
topologies is a topology) is compact if the generating families contain
finitely many arrows. This is the content of the Lemma that follows,
which is though stated in a greater generality. In the more general set-
ting in which we are discussing topologies, let P be a set of a-presentable
projective generators and D be a pretopology given in terms of dense
subobjects of objects in P. Suppose that, for all P E P, all a-directed
families {Ti &#x3E;-&#x3E; P liE Il of subobjects of P, ViE! Ti E D(P) im-
plies that there is i C I, such that Ti E D(P). Then we say that the
pretopology satisfies the a-compactness property.

4.4 Lemma. Let E be a regular lo- cally a-presentable category, with
a set P of a-presentable projective generators and D be a pretopology
given by subobjects of objects in P. Assume that applying transfinitely
many times the process

taking a directed union at the limit ordinal step, gives a topology on
£ (as it is the case with presheaf categories, with P taken to be the

representables, or with algebraic categories, with P = IFI, F2, ...}, the
set of free objects on finitely many generators, cf. [5J). If the pretopology
D satisfies the a-compactness property, then the topology D = U Do
generated by D is a -compact. 

Remark: The extra assumption that iterating sufficiently many
times the process described above yields a topology is needed because,
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although the process will necessarily cease at some point, what we get
at the end may not satisfy (D3) even if D does. This is a complica-
tion that does not occur in the more familiar situations, e.g in that of
Grothendieck topologies.

Proof: It suffices to show that, given an a-directed family
(ll§ &#x3E;-&#x3E; P liE Il of subobjects of a P E P with Ti E D(P)
then, for some i E I , Ti E D(P). Specifically, we show that for all
ordinals, all P E P and all a-directed families {Ti &#x3E;-&#x3E; Pli E I}, if
ViEI Ti E Dy then, for some i E I, Ti E Dry. Inspecting the inductive
construction of D(P) we realize that the limit ordinal step is immediate.
If Ti E Dy+1(P) then there is an S E Dry(P) such that, for all s : Q -&#x3E;
S &#x3E;-&#x3E; P, Q E P, S-1 (ViEI Ti) = ViEI S-1(Ti) E Dy(Q).

Write S as the a-directed supremum of the a-generated subobjects
F below it. Then, by the inductive hypothesis, one of those F’s is in
Dry(P). To avoid complicated notation we assume that S itself is a-
generated. So, it admits a regular epi e : P’ -&#x3E; S from an a-presentable
P’. The inverse image of Ti along

is in Dy (P’). By the hypothesis, we can find i E I, such that e-1 (Ti) is
in Dy(P’).

Then, for all
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the inverse image x-1 (Ti) is obtained as a pullback of e-l(Ti) along the
factorization Q -&#x3E; P’ of x through e. Thus x-1 (Ti) E Dy(P) and we
are done.8 

Now let C be a small category with pullbacks. Call a sieve
F - hc finitely generated if there are Ck -&#x3E; C, k = 1,..., n, so that
D -&#x3E; C is in F iff it factors through some , for some k. For each D E C
define a family of subobjects of hD by

where F &#x3E;-&#x3E; hc is a given finitely generated sieve. Then the collec-
tion {uF(D)|D E C} is a pretopology on SetCop: Obviously the uF(D)’s
are upper closed, contain hD and if Y E uF(D), for any a: E -&#x3E; D in
C, (ta)-’(F) = a-lt-1(F)  a-’(Y), so a-’(Y) E uF(E). As a matter
of fact it is the smallest pretopology containing F. This pretopology
satisfies tha compactness property because, for all t: D -&#x3E; C, t-1 (F)
is finitely generated. The set IC, xC D -&#x3E; D I Ci -&#x3E; C} is a set of
generators for t-1(F). As a corollary to the above Lemma we obtain
that the smallest Grothendieck topology containing a finitely generated
sieve F &#x3E;-&#x3E; hc is compact. We denote that topology by u F

4.5 Theorem. The frame of compact topologies on a coherent topos is
a locally compact., compact one.

Proof: A coherent topos is the category of sheaves for a compact
Grothendieck topology on a small category with finite limits (see e.g [14],
Ch.IX). Then compact topologies on that topos correspond to compact
topologies on the full presheaf category above the one corresponding to
the given topos (in the pointwise order of topologies). For that it suffices
to prove the claim for the frame of compact topologies on a presheaf
category Set C-P , where C a small category with finite limits. Notice

first that the topologies uF discussed above are finite elements of the
frame of compact topologies: If, for F &#x3E;-&#x3E; hc, uF  V K, where K
is a directed set of compact topologies, then, by Prop.3.3,
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where k(C) is the set of k-dense subobjects of hc. So there is k E I1 with
F E k(C), implying that uF  k. In particular the largest topology,
being the smallest one containing. the empty sieve 0 &#x3E;-&#x3E; h1 (1 denotes
the terminal object of C) is a finite element of the frame, showing the
compactness of the frame in question.

As for local compactness we show that any compact topology j is

the supremum of the topologies uF below it. Or, rephrasing, that if k is
another compact topology such that, for all uF, uF  k implies UF  k,
then *  k. Suppose that X E j(D), for some D E C. j being compact
means that there is F &#x3E;-&#x3E; X &#x3E;-&#x3E; hD, with F finitely generated
and F E j(D). The latter means that uF  j, so by assumption uF  k,
or F E k(D), giving that X E k(D), as required..

By a coherent space we mean one that is sober, compact and has a
basis of compact opens which is closed under finite intersection. They
are also known as spectral spaces since, by a fundamental result of
Hochster (see for example [10], p. 205), they are exactly the ones that
arise as Zariski spectra of commutative rings. They correspond exactly
to coherent frames in the sense that the opens of a coherent space form
such a frame and, conversely, every coherent space arises as the space
of points for such a frame.

On any coherent space we can define a topology having as subbasic
closed sets the closed ones for the original topology and the compact
open ones for the original topology. The patch topology has, thus, the
following frame theoretic description.

Given a space X, a closed subset corresponds to Xc(a), the fixed
points for a closed nucleus c(a) = a V - on the frame of opens of X.
Similarly, a compact open corresponds to Xu(f), the fixed points for
an open nucleus u(f) = f -&#x3E; -, where f is a compact open (finite
element of the frame of opens). Thus a basic closed set corresponds to
Xc(a) U Xu(f)) = Xc(a)Au(f). Finally an arbitrary closed set for the patch
topology is of the form



- 251

In this way we obtain a contravariant equivalence between the set of
closed subsets for the patch topology and the set of nuclei of the form
V{c(a) A u(f) a E I, f compact}. Given, now, a coherent frame A call
the set of nuclei of that form the patch frame of A (being equivalent
to that of patch opens for A the frame of opens of a coherent space.
Alternatively, one could show directly that the set of nuclei with the
above description is a frame).

We identify the patch frame of a coherent frame with that of compact
topologies (nuclei) on the original frame, or equivalently (elaborating on
Corollary IX 5.6 of [14]) with that of compact topologies on the topos
of sheaves for that frame. First we need:

4.6 Lemma. Let A be a coherent frame and f a finite element therein.
Then the open nucleus u(f) = f -&#x3E; - is a compact one (Commutes with
directed suprema).

Proof: We have to show that, whenever I is directed

Since the finite elements generate the frame, it suffices to show that, for
a finite 9 E A, g  f -&#x3E; (ViEI ai) implies that g  ViEI(f -&#x3E; ai). But
g  f -&#x3E; (ViEI ai) means that g A f  ViE, ai and, by the coherence
of the frame g A f is a finite element, so, there is an i E I such that

g A f  ai, or, equivalently, g  f -&#x3E; ai. 8 

4.7 Proposition. The patch frame obtained frorz a coherent frame A
is isomorphic to that of compact nuclei on A.

Proof: By the lemma, whenever f is finite, u(f) is compact; c(a) is

always compact, thus so is any nucleus of the form

compact}
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So the patch frame is contained in the frame of compact topologies.
Now, every compact nucleus j is of the form {k f I f E K(A)}, where
K(A) is the set of finite elements of A and k f = c( j (f)Au(f). For that,
we simply modify the argument in [10], Prop. II.2.7. First, j(f) = kf(f)
and, for all a E A, kf(a)  j(a), so that j is an upper bound of the kf’s.
Then, given any other upper bound l for the k j’s, we have that, for each
f E K(A), j(f) = kf(f) L(f). But A is coherent so any a E A can be
written as a = B/{f E K(A) |f  a} and, j, I being compact, we get

So finally,,

We close with some remarks concerning the functorial character of
our constuction. In [3], § 7, it is shown that a geometric morphism
between two locally presentable categories with finite limits commuting
with filtered colimits induces a pair of adjoint order-preserving maps
between the corresponding co-frames of localizations. Contrary to the
case of localizations the functorial behaviour of the frame of topolo-
gies has not been examined. We can show that a geometric morphism
between two locally presentable categories induces an order-preserving
map between the frames of topologies, coinciding with the right adjoint
in the adjunction given in [3] in the case that topologies correspond ex-
actly to localizations. More presicely if 0* -1 o*: E -&#x3E; T7 is a geometric
morphism between locally presentable categories with regular images,
and j a topology on E, then the assignment

where A &#x3E;-&#x3E; X, defines a topology o§(j) on F (the reader may con-
sult [11] for the straithforward but rather long calculations proving this
as well as the claims that follow in this paragraph). The map we produce
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preserves arbitrary infima, having thus a left adjoint. When we look at
the corresponding frames of compact topologies on two locally finitely
presentable categories and a geometric morphism between them, which
preserves monomorphic filtered colimits, it no longer preserves arbitrary
infima, only the finite ones, but it further preserves directed suprema.
In other words, it becomes a preframe map, according to the defini-
tion given in [2]. Under the identification asserted in the Introduction,
of the frame in question with the dual Zariski spectrum, the geomet-
ric morphism between module categories induced by a commutative ring
homomorphism (cf. [3], §8) further induces, in the way described above,
a frame map, which coincides with the usual map induced between ring
spectra.

Finally, when the geometric morphism is a map of locales then the
induced map o§: N(X) - N(Y) between the frames of nuclei is again a
map of locales, coinciding with the one described in [10], Prop.II 2.8.
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