Relational monoids, multirelations, and quantalic recognizers
Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 38 (1997) no. 2, pp. 161-171.
@article{CTGDC_1997__38_2_161_0,
     author = {Rosenthal, Kimmo L.},
     title = {Relational monoids, multirelations, and quantalic recognizers},
     journal = {Cahiers de Topologie et G\'eom\'etrie Diff\'erentielle Cat\'egoriques},
     pages = {161--171},
     publisher = {Dunod \'editeur, publi\'e avec le concours du CNRS},
     volume = {38},
     number = {2},
     year = {1997},
     mrnumber = {1454161},
     zbl = {0877.18001},
     language = {en},
     url = {http://www.numdam.org/item/CTGDC_1997__38_2_161_0/}
}
TY  - JOUR
AU  - Rosenthal, Kimmo L.
TI  - Relational monoids, multirelations, and quantalic recognizers
JO  - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY  - 1997
SP  - 161
EP  - 171
VL  - 38
IS  - 2
PB  - Dunod éditeur, publié avec le concours du CNRS
UR  - http://www.numdam.org/item/CTGDC_1997__38_2_161_0/
LA  - en
ID  - CTGDC_1997__38_2_161_0
ER  - 
%0 Journal Article
%A Rosenthal, Kimmo L.
%T Relational monoids, multirelations, and quantalic recognizers
%J Cahiers de Topologie et Géométrie Différentielle Catégoriques
%D 1997
%P 161-171
%V 38
%N 2
%I Dunod éditeur, publié avec le concours du CNRS
%U http://www.numdam.org/item/CTGDC_1997__38_2_161_0/
%G en
%F CTGDC_1997__38_2_161_0
Rosenthal, Kimmo L. Relational monoids, multirelations, and quantalic recognizers. Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 38 (1997) no. 2, pp. 161-171. http://www.numdam.org/item/CTGDC_1997__38_2_161_0/

[1] S. Abramsky and S. Vickers, Quantales, observational logic and process semantics, Mathematical Structures in Computer Science, Vol.3, No. 2, 1993 | MR | Zbl

[2] S. Ghilardi and G.C. Meloni, Modal logics with n-ary connectives, Zeit.fur Math. Logik und Grund.der Math.36, 1990, 193-215 | MR | Zbl

[3] J.M. Howie, Automata and Languages, Oxford University Press, 1991 | MR | Zbl

[4] J. Lambek, Multicategories revisited, in Categories in Computer Science and Logic, Cont. Math. Vol. 92, Amer. Math. Soc. 1989, 217-240 | MR | Zbl

[5] S.B. Niefield and K.I. Rosenthal, Constructing locales from quantales, Math. Proc. Camb. Phil. Soc. 104, 1988, 215-234 | MR | Zbl

[6] K.I. Rosenthal, Quantales and their Applications, Pitman Research Notes in Mathematics, Vol. 234, Longman Scientific and Technical, 1990 | MR | Zbl

[7] K.I. Rosenthal, Girard quantalcids, Mathematical Structures in Computer Science, Vol.2, No. 1, 1992, 93-108 | MR | Zbl

[8] K.I. Rosenthal, Quantaloidal nuclei, the syntactic congruence and tree automata, Jour. Pure Applied Algebra 77, 1992, 189-205 | MR | Zbl

[9] K.I. Rosenthal, A categorical look at tree automata and context-free languages, Mathematical Structures in Computer Science, Vol.4, 1994, 287-293 | MR | Zbl

[10] K.I. Rosenthal, Quantaloids, enriched categories and automata theory, Applied Categorical Structures 3, 1995, 279-301 | MR | Zbl

[11] K.I. Rosenthal, The Theory of Quantaloids, Pitman Research Notes in Mathematics, Vol. 348, Longman Scientific and Technical, 1995 | MR | Zbl

[12] R.F.C. Walters, A note on context-free languages, Jour. Pure and Applied Algebra 62, 1989, 199-203 | MR | Zbl

[13] R.F.C. Walters, The free category with products on a m,ultigraph, Jour. Pure and Applied Algebra 62, 1989, 205-210 | MR | Zbl

[14] R.F.C. Walters, Categories and Computer Science, Cambridge University Press, 1992 | MR | Zbl