The Brauer and Brauer-Taylor groups of a symmetric monoidal category
Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 37 (1996) no. 2, pp. 91-122.
@article{CTGDC_1996__37_2_91_0,
     author = {Vitale, Enrico M.},
     title = {The {Brauer} and {Brauer-Taylor} groups of a symmetric monoidal category},
     journal = {Cahiers de Topologie et G\'eom\'etrie Diff\'erentielle Cat\'egoriques},
     pages = {91--122},
     publisher = {Dunod \'editeur, publi\'e avec le concours du CNRS},
     volume = {37},
     number = {2},
     year = {1996},
     mrnumber = {1394505},
     zbl = {0856.18007},
     language = {en},
     url = {http://www.numdam.org/item/CTGDC_1996__37_2_91_0/}
}
TY  - JOUR
AU  - Vitale, Enrico M.
TI  - The Brauer and Brauer-Taylor groups of a symmetric monoidal category
JO  - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY  - 1996
SP  - 91
EP  - 122
VL  - 37
IS  - 2
PB  - Dunod éditeur, publié avec le concours du CNRS
UR  - http://www.numdam.org/item/CTGDC_1996__37_2_91_0/
LA  - en
ID  - CTGDC_1996__37_2_91_0
ER  - 
%0 Journal Article
%A Vitale, Enrico M.
%T The Brauer and Brauer-Taylor groups of a symmetric monoidal category
%J Cahiers de Topologie et Géométrie Différentielle Catégoriques
%D 1996
%P 91-122
%V 37
%N 2
%I Dunod éditeur, publié avec le concours du CNRS
%U http://www.numdam.org/item/CTGDC_1996__37_2_91_0/
%G en
%F CTGDC_1996__37_2_91_0
Vitale, Enrico M. The Brauer and Brauer-Taylor groups of a symmetric monoidal category. Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 37 (1996) no. 2, pp. 91-122. http://www.numdam.org/item/CTGDC_1996__37_2_91_0/

[1] Auslander B.: The Brauer group of a ringed space, J. Algebra 4 (1966), pp. 220-273. | MR | Zbl

[2] Auslander M.& Goldman O.: The Brauer group of a commutative ring, Trans. Amer. Math. Soc. 97 (1960), pp. 367-409. | MR | Zbl

[3] Barja Perez J.M.: Teoremas de Morita para triples en categorias cerradas, Alxebra 20 (1978). | Zbl

[4] Bass H.: Topics in Algebraic K-Theory, Tata Institut of Fundamental Research, Bombay (1967). | Zbl

[5] Bass H.: Algebraic K-Theory, W.A. Benjamin Inc. (1968). | MR | Zbl

[6] Borceux F.: Handbook of Categorical Algebra 2, Encyclopedia of Math. 51, Cambridge University Press (1994). | MR | Zbl

[7] Borceux F. & Vitale E.M.: A Morita theorem in topology, Suppl. Rend. Circ. Mat. Palermo II-29 (1992), pp. 353-362. | MR | Zbl

[8] Borceux F. & Vitale E.M.: On the notion of bimodel for functorial semantics, Applied Categorical Structures 2 (1994), pp. 283-295. | MR | Zbl

[9] Caenepeel S.: Etale cohomology and the Brauer group, to appear.

[10] Dukarm J.: Morita equivalences of algebraic theories, Colloquium Mathematicum 55 (1988) pp. 11-17. | MR | Zbl

[11] Fernández Vilaboa J.M.: Grupes de Brauer y de Galois de un algebra de Hopf en una categoria cerrada, Alxebra 42 (1985). | Zbl

[12] Fischer-Palmquist J.: The Brauer group of a closed category, Proc. Amer. Math. Soc. 50 (1975), pp. 61-67. | MR | Zbl

[13] Fischer-Palmquist J. & Palmquist P.H.: Morita contexts of enriched categories, Proc. Amer. Math. Soc. 50 (1975), pp. 55-60. | MR | Zbl

[14] Gabber O.: Some theorems on Azumaya algebras, L. N. in Math. 844, Springer-Verlag (1988). | MR | Zbl

[15] González Rodríguez R.: La sucesión exacta ..., Ph. D. Thesis, Santiago de Compostela (1994).

[16] Heller A.: Some exact sequences in algebraic K-theory, Topology 3 (1965), pp. 389-408. | MR | Zbl

[17] Kelly G.M.: Basic concepts of enriched category theories, London Math. Soc. L. N. 64, Cambridge University Press (1982). | MR | Zbl

[18] Kelly G.M. & Laplaza M.L.: Coherence for compact closed categories, J. Pure Appl. Algebra 19 (1980), pp. 193-213. | MR | Zbl

[19] Knus M.A. & Ojanguren M.: Théorie de Descente et Algèbres d'Azumaya, L. N. in Math 389, Springer-Verlag (1974). | MR | Zbl

[20] Lindner H.: Morita equivalences of enriched categories, Cahiers Top. Géo. Diff. XV-4 (1974), pp. 377-397. | Numdam | MR | Zbl

[21] Long F.W.: A generalization of Brauer group of graded algebras, Proc. London Math. Soc. 29 (1974), pp. 237-256. | MR | Zbl

[22] Long F.W.: The Brauer group of dimodule algebras, J. Algebra 30 (1974), pp. 559-601. | MR | Zbl

[23] López López M.P. & Villanueva Novoa E.: The Brauer group of the category (R, σ)-Mod, Proc. First Belgian-Spanish week on Algebra and Geometry (1988).

[24] Mitchell B.: Separable algebroids, Memoirs A.M.S. vol. 57 n. 333 (1985). | MR | Zbl

[25] Orzech M. & Small C.: The Brauer Group of a commutative Ring, L. N. in Pure and Appl. Math 11, Marcel Dekker (1975). | MR | Zbl

[26] Pareigis B.: Non additive ring and module theory IV: the Brauer group of a symmetric monoidal category, L. N. in Math. 549, Springer-Verlag (1976), pp. 112-133. | MR | Zbl

[27] Raeburn I. & Taylor J.L.: The bigger Brauer group and étale cohomology, Pacific J. Math. 119 (1985), pp. 445-463. | MR | Zbl

[28] Schack S.D.: Bimodules, the Brauer group, Morita equivalence and cohomology, J. Pure Appl. Algebra 80 (1992), pp. 315-325. | MR | Zbl

[29] Taylor J.L.: A bigger Brauer group, Pacific J. Math. 103 (1982), pp. 163-203. | MR | Zbl

[30] Verschoren A. The Brauer group of a quasi-affine schema, L. N. in Math. 917, Springer-Verlag (1982), pp. 260-278. | MR | Zbl

[31] Vitale E.M.: Monoidal categories for Morita theory, Cahiers Top. Géo. Diff. Catégoriques XXXIII-4 (1992), pp. 331-343. | Numdam | MR | Zbl

[32] Vitale E.M.: Groupe de Brauer et distributeurs, talk at Journée de Catégories et Géométrie, Dunkerque (1995).

[33] Wall C.T.C.: Graded Brauer groups, J. Reine Angew. Math. 213 (1964), pp.187-199. | MR | Zbl

[34] Wraith G.: Algebraic Theories, Aarhus University L. N. Series 22 (1970). | MR | Zbl

[35] Zelinski D.: Brauer groups, L. N. in Pure and Appl. Math. 26, Marcel Dekker (1977). | MR