@article{CTGDC_1996__37_2_91_0, author = {Vitale, Enrico M.}, title = {The {Brauer} and {Brauer-Taylor} groups of a symmetric monoidal category}, journal = {Cahiers de Topologie et G\'eom\'etrie Diff\'erentielle Cat\'egoriques}, pages = {91--122}, publisher = {Dunod \'editeur, publi\'e avec le concours du CNRS}, volume = {37}, number = {2}, year = {1996}, mrnumber = {1394505}, zbl = {0856.18007}, language = {en}, url = {http://www.numdam.org/item/CTGDC_1996__37_2_91_0/} }
TY - JOUR AU - Vitale, Enrico M. TI - The Brauer and Brauer-Taylor groups of a symmetric monoidal category JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques PY - 1996 SP - 91 EP - 122 VL - 37 IS - 2 PB - Dunod éditeur, publié avec le concours du CNRS UR - http://www.numdam.org/item/CTGDC_1996__37_2_91_0/ LA - en ID - CTGDC_1996__37_2_91_0 ER -
%0 Journal Article %A Vitale, Enrico M. %T The Brauer and Brauer-Taylor groups of a symmetric monoidal category %J Cahiers de Topologie et Géométrie Différentielle Catégoriques %D 1996 %P 91-122 %V 37 %N 2 %I Dunod éditeur, publié avec le concours du CNRS %U http://www.numdam.org/item/CTGDC_1996__37_2_91_0/ %G en %F CTGDC_1996__37_2_91_0
Vitale, Enrico M. The Brauer and Brauer-Taylor groups of a symmetric monoidal category. Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 37 (1996) no. 2, pp. 91-122. http://www.numdam.org/item/CTGDC_1996__37_2_91_0/
[1] The Brauer group of a ringed space, J. Algebra 4 (1966), pp. 220-273. | MR | Zbl
:[2] The Brauer group of a commutative ring, Trans. Amer. Math. Soc. 97 (1960), pp. 367-409. | MR | Zbl
& :[3] Teoremas de Morita para triples en categorias cerradas, Alxebra 20 (1978). | Zbl
:[4] Topics in Algebraic K-Theory, Tata Institut of Fundamental Research, Bombay (1967). | Zbl
:[5] Algebraic K-Theory, W.A. Benjamin Inc. (1968). | MR | Zbl
:[6] Handbook of Categorical Algebra 2, Encyclopedia of Math. 51, Cambridge University Press (1994). | MR | Zbl
:[7] A Morita theorem in topology, Suppl. Rend. Circ. Mat. Palermo II-29 (1992), pp. 353-362. | MR | Zbl
& :[8] On the notion of bimodel for functorial semantics, Applied Categorical Structures 2 (1994), pp. 283-295. | MR | Zbl
& :[9] Etale cohomology and the Brauer group, to appear.
:[10] Morita equivalences of algebraic theories, Colloquium Mathematicum 55 (1988) pp. 11-17. | MR | Zbl
:[11] Grupes de Brauer y de Galois de un algebra de Hopf en una categoria cerrada, Alxebra 42 (1985). | Zbl
:[12] The Brauer group of a closed category, Proc. Amer. Math. Soc. 50 (1975), pp. 61-67. | MR | Zbl
:[13] Morita contexts of enriched categories, Proc. Amer. Math. Soc. 50 (1975), pp. 55-60. | MR | Zbl
& :[14] Some theorems on Azumaya algebras, L. N. in Math. 844, Springer-Verlag (1988). | MR | Zbl
:[15] La sucesión exacta ..., Ph. D. Thesis, Santiago de Compostela (1994).
:[16] Some exact sequences in algebraic K-theory, Topology 3 (1965), pp. 389-408. | MR | Zbl
:[17] Basic concepts of enriched category theories, London Math. Soc. L. N. 64, Cambridge University Press (1982). | MR | Zbl
:[18] Coherence for compact closed categories, J. Pure Appl. Algebra 19 (1980), pp. 193-213. | MR | Zbl
& :[19] Théorie de Descente et Algèbres d'Azumaya, L. N. in Math 389, Springer-Verlag (1974). | MR | Zbl
& :[20] Morita equivalences of enriched categories, Cahiers Top. Géo. Diff. XV-4 (1974), pp. 377-397. | Numdam | MR | Zbl
:[21] A generalization of Brauer group of graded algebras, Proc. London Math. Soc. 29 (1974), pp. 237-256. | MR | Zbl
:[22] The Brauer group of dimodule algebras, J. Algebra 30 (1974), pp. 559-601. | MR | Zbl
:[23] The Brauer group of the category (R, σ)-Mod, Proc. First Belgian-Spanish week on Algebra and Geometry (1988).
& :[24] Separable algebroids, Memoirs A.M.S. vol. 57 n. 333 (1985). | MR | Zbl
:[25] The Brauer Group of a commutative Ring, L. N. in Pure and Appl. Math 11, Marcel Dekker (1975). | MR | Zbl
& :[26] Non additive ring and module theory IV: the Brauer group of a symmetric monoidal category, L. N. in Math. 549, Springer-Verlag (1976), pp. 112-133. | MR | Zbl
:[27] The bigger Brauer group and étale cohomology, Pacific J. Math. 119 (1985), pp. 445-463. | MR | Zbl
& :[28] Bimodules, the Brauer group, Morita equivalence and cohomology, J. Pure Appl. Algebra 80 (1992), pp. 315-325. | MR | Zbl
:[29] A bigger Brauer group, Pacific J. Math. 103 (1982), pp. 163-203. | MR | Zbl
:[30] The Brauer group of a quasi-affine schema, L. N. in Math. 917, Springer-Verlag (1982), pp. 260-278. | MR | Zbl
[31] Monoidal categories for Morita theory, Cahiers Top. Géo. Diff. Catégoriques XXXIII-4 (1992), pp. 331-343. | Numdam | MR | Zbl
:[32] Groupe de Brauer et distributeurs, talk at Journée de Catégories et Géométrie, Dunkerque (1995).
:[33] Graded Brauer groups, J. Reine Angew. Math. 213 (1964), pp.187-199. | MR | Zbl
:[34] Algebraic Theories, Aarhus University L. N. Series 22 (1970). | MR | Zbl
:[35] Brauer groups, L. N. in Pure and Appl. Math. 26, Marcel Dekker (1977). | MR
: