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COHERENT CATEGORIES WITH RESPECT TO MONADS
AND COHERENT PROHOMOTOPY THEORY

by M. A. BATANIN

CAHIERS DE TOPOLOGIE

ET GÉOMÉTRIE DIFFERENTIELLE

CATÉGORIQUES

VOL. XXXIV-4 (1993)

RESUME. Le but de cet article est de d6velopper une ap-
proche g6n6rale pour construire des categories homotopi-
quement coh6rentes. On pr6sente une telle cat6gorie com-
me une categorie de Kleisli pour une monade particuli6re.
La m6thode d6velopp6e permet d’obtenir une equivalence
entre la th6orie de la forme forte de Lisica -Mardesic [15]
et celle de Cathey-Segal [7].

1. Introduction.

There are different approaches for the strong shape theory
of all topological spaces [2,7,15]. According to Lisica-Marde-
sic a strong shape category is a full subcategory of some spe-
cial constructed category, CPH-Top, called the coherent proho-
motopy category of topological spaces. The goal of our work is
to give a general construction of the coherent homotopy catego-
ries. This leads us to the proof of the equivalence of the cate-
gories CPH-Top and ho(pro-Top) of Edwards-Hastings [12]. This

implies that the strong shape category of Lisica -Mardesic is

equivalent to that of Cathey-Segal [7].
There exists an immediate link between our work and the

theory developed by J.-M. Cordier and T. Porter in a series of

papers [8, 9,10,11, 25]. Some results of [10] may be obtained by
directly dualizing our construction and applying them to the
comonad Lan on F(A,K) (see §§2, 4 for notation), but in

[8,10,11] this is considered within the general theory of homo-

topy coherence at a purely categorical level. This allows the au-
thors to obtain deep results about the connection between dif-
ferent approaches to homotopy coherence C4,12,1S, 24, 27J, and

give applications to strong shape theory [9,25].
Remark, finally, that the dual construction may be useful

also in stong coshape theory [19] and, for instance, in the theo-

ry of iterated loop spaces (thus we obtain a natural structure of
a comonad on a May bar construction [22,23]). It is possible
also to find other obvious generalizations, for example, one can
consider enriched Kan extensions [14] or the Bousfield-Kan

R-colnpletion on a category of diagrams of spaces, but in this

paper we are not going to consider all possible applications.
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2. The basic notion and definitions.

We shall need some definitions from enriched category
theory C14J. In this section we introduce some notation and pro-
ve necessary auxiliary results. Let A be a monoidal category and
K be an A-category. We denote by homA(X,y) the set of mor-

phisms from X to Y in A. If A is closed [141, then HOMA1(X,Y)
is an internal HOM functor in A that is a representing object
for homA(O X,Y). Let HOMK denote an A-enrichment functor
for K. For K, one can define an underlying categoi-y Ko. It has
the same objects as K, and

where I is the unit object in A H4L

We shall say that an A-category K is complete (cocom-
plete) if the underlying category Ko has all limits (colimits). Let
A’ be a subcategory of A. We shall say that an A-category K
has A’-products (A’-degrees) provided there exist a functor

and a natural isomorphism

For basic examples of symmetric monoidal categories, we
consider the category of simplicial sets S, the category of Kan

simplicial sets Kan, and the category of compactly generated
spaces K. We shall consider also the category Top of topologi-
cal spaces with the natural enrichment

where

is the geometric realization of the standard n-simplex A(n) [5].

For a small category A and an A-category K, we define
F(A,K) to be the category of functors from A to Ko . We denote
its objects as fXx), and consider it with a natural A-enrichment

HOM F(A,K) (X,Y) defined to be the kernel of a pair of mor-

phisms

where ld with index d: y-y’ is defined as the composition
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and wd as

If K has A’-products or A’-degrees, then F(A,K) has them also:

Suppose K has A’-degrees, let M: A-&#x3E;A’ be a functor and {Xy}
be an object of F(A,K). Then we can consider a kernel of the

pair

We call it a realization of {Xy} with respect to M and denote it

by {X}M.

Let A be the category whose objects are finite ordered
sets, [n] = {O,1,..., n}, and whose morphisms are the monotonic

maps. For the categories F(A,K) and F(AxA,K), the categories of

cosimplicial and of bicosimplicial objects of a category K, we
use the standard notations cK and c2K [51 correspondingly. In
cK one can consider a notion of cosimplicial homotopy 122,231.
A family of morphisms in K,

Hi: Xq+1-&#x3E; Yq, 0  1 -,. q, q = 0,1,... ,
is called a cosimplicial homotopy between cosimplicial morphisms
f, g : X-&#x3E;Y provided

For an S-category K, there is a more "geometrical" notion
of homotopy. We say that f,g E HOMK1(X,Y) are homotopic if
there is a 1-simplex

h E HOMK1(X,Y) such that d o h - f, d1h = g.
This relation generates an equivalence relation on homKO(X,Y) .
We shall denote the corresponding factor category by xK, and
homTtK(X,Y) by EX,YL. Thus, for an S-category K, we have in cK
two types of homotopy. We need a lemma to connect these
notions.

Let A be the cosimplicial sirnplicial set which in codimen-
sion n consists of the standard n-simplex 4(n) and for which
the cofaces and codegeneracies are the standard maps between
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them. Let A[S] be the cosimplicial simplicial S-skeleton of A.
Then in these notations, for a cosimplicial simplicial set X* we
get that 

which is the Bousfield-Kan total space. Recall also that in cS
there is a structure of a cosimplicial closed model category L51,
and one can talk about fibrant and cofibrant objects in cS.

LEMMA 2.1. Let X*, Y* be cosimplicial objects in an S -ca tegory
K, and f*, g*: X-&#x3E;Y* be cosimplicial morphisms. Assume there
exist realizations (X*)A, (Y*)A in K, and

are fibran t cosimplicial simplicial sets. If f * and g* are cosim-

plicial homotopic, then (f*)A and (g*)A are homotopic mor-

phisms in K.

PROOF. It suffices to show that f* and g* induce homotopic
morphisms of simplicial sets

Indeed, this means that there is

such that doh = f , d1h- g . Then h (1(x*)A) is the required ho-
motopy. Further, since x-*^, Y*" are fibrant, we have homotopy
equivalences

TotX*" * S(|X*|) |A|), Tot Y*^= S(|Y*||A|).
Therefore, we reduce the problem to the following statement.

Let X* and Y’ be cosimplicial simplicial topological spaces,
f*, g*: X*-&#x3E;Y* be cosimplicial maps and h* be a cosimplicial ho-
motopy between them, then (f*)|A| and (g*)|A| are homotopic.

Let us construct a homotopy H:(X*)|A|-&#x3E; ((Y*)|A|)|A(1)|.
Consider a subdivision of

into subspaces

There is an obvious homeomorphism YPn:IRPn-&#x3E;|A(n+1)|. Let

T : |A|-&#x3E;X* be a cosimplicial map. Then we put
for

The definition of cosimplicial homotopy implies that Hcp t is de-
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fined correctly, and it is evident that

Lastly we recall the notions of a monad on a category
and of the corresponding Kleisli category C20J.

Let A be a monoidal category, and K be an A-category.

DEFINITION 2.1. Let R be an A-endofunctor on an A-category K,
u:R2-&#x3E; R and E: I-&#x3E;R be A-natural transformations, where I is the

identity A-functor. We say that a triple (R,03BC,E) is an A-monad
on K, with unit s and multiplication p, provided the following
diagrams are commutative:

One can associate, with any monad (R,p ,s) on a category
K, a category whose objects are those of K and whose set of

morphisms from X to Y is homK(X, RY) . The identity morphism
is defined by s: X-RX and the composition of f: X-&#x3E;RY and

g:Y-&#x3E; RZ by 

DEFINITION 2.2. The above category is called the Kleisli catego-
rv of the monad (R, E, 03BC ), and denote it by KIR-K.

We need finally a lemma from IS], that we call the Bous-
field-Kan Lemma.

BOUSFIELD-KAN LEMMA. Let R: K-&#x3E; K be a functor, s: I-R be a
natural transformation. Let there evist a natural associative pai-
ring

and let

Then there is a natural transformation 03BC : R 2-7 R such that (R, 03BC,E )
is a monad on K.

PROOF. We define px as the morphism 03BCR2x,RX,X(1R2X,1RX)
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3. Tensor product of cosimplicial objects and cosimplicial H-co-
monoids.

Let A be a category with finite colimits, and let X ={Xp,q}
be a bicosimplicial object in A. Let us construct a sequence
Bn(X), n z 0 as follows:

B°(X) - X0,0,
Bn+1(X) is the colimit of the diagram

p+q= n

For 0 s k s n+2, consider a system of morphisms

and for 0 £ k £ n+1, a system

PROPOSITION 3.1. The systems (3.1), (3.2) define morphisms

correspondingl)’. The sequence Bn(X) Hrith the morphisms sk and
dk is a cosimplicial object in A.

PROOF. Immediate from the definition of B*(X).

Let now A be a closed symmetric monoidal category with
tensor product Q9A, unit object I and finite colimits. For two co-

simplicial objects X and Y in A, 0 nee an construct a bicosimpli-
cial 1 object
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We shall denote the constant cosimplicial object {In} by I. Then
we define a tensor product of cosimplicial objects X and Y by
the formula

PROPOSITION 3.2. There exist natural isomorphisms

v4,hich make cA a monoidal category.

Let now A be as above and let in addition A be a com-

plete S-category with enrichment HOMA: AoPxA-&#x3E;S, with finite

S-products. We shall say then that A is a monoidal S-category
provided there is a natural isomorphism kx(XOAY) = (k x X)OAY
for each finite simplicial set k.

PROPOSITION 3.3. Let A be a monoidal S-categor..y. Then cA and
c2A are S-categorties with finite S-products and B :C2A-&#x3E; cA is a
simplicial functor. Furthermore, there are natural isomorphisms

for each finite simplicial set k and X, Y E A. Finall v we have a

natural transformation

and a map d: A(O)-&#x3E; HOMCA(I,I) which make HOMCA: (cA)oPxA-&#x3E;S
a monoidal functor.

PROOF. We prove the last statement only, because the others
are obvious. In cA we have a natural transformation

But

Define Dn by the composition

The last map is induced by

where d:A(n)-&#x3E;A(n)x A(n) is the diagonal map.

As basic monoidal S-categories, we shall consider the ca-
tegories S and K. Note that the functor of fibrewise realization
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1-1:cS-4CK is simplicial and strong monoidal.

DEFINITION 3.1. Let A be a monoidal simplicial S-category, and
N a cosimplicial object in A. Let p:N-&#x3E;NON, n:N-&#x3E;I be two

cosimplicial morphisms. We shall call a triple (N,p,1) a cosim-

plicial H-comonoid provided the following diagrams are commu-
tative up to homotopy:

THEOREM 3.1. For each s&#x3E;-1 there is a mor phism

in cK which, with n(s): |A[s]|-&#x3E; |A[-1]| makes |A[s]| into a co-

simplicial H-comonold.

PROOF. The idea of the proof of this theorem is based on the
Lisica-Mardesic construction of the composition of coherent

maps [15]. Consider the following subdivisions of |A(n)| [15]. For
0 s t2, p, q &#x3E; 0, p+q = n, let

For let

let

For let

And finally let

be the maps from to defi-
ned as follows:

correspondingly. Now we define a map p : |A(n)|-&#x3E;Bn(|A|O|A|) with

the help of the formula
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where b is the canonical map to the colimit. The sequence of

maps pn defines a cosimplicial morphism p:|A|-&#x3E;|A|O|A|. Consider
a cosimplicial morphism h: |A(1)|x|A|-&#x3E; |A|O|A| defined by the for-
mula

Then hn(t,u) E Bn(|A|O|A[-1]), and we have: for u E Pp,q[1],

for U E PP,7 [2], h(l, u) = b(ap,q[2]). But

an,0[2]=1:|A(n)|-&#x3E;|A(n)|. Then h is a homotopy between 1 and

(1On)op. Similarly we have a homotopy between 1 and (nO1)op.
Finally the map

H(t,u) = b(lr,s,t[t](u), wr,s,t[t](u), tr,s,t[t](u)),u E Qr,s,t[t],
O  i  1 gives us a homotopy between (pO1)op and (1Op) op. Re-
mark now that p, and the homotopies constructed above, map
the s-skeleton of IAI to itself. Thus p[s]: |A[s]|-&#x3E;|A[s]|O|A[S]| is

defined.

4. Coherent homotopy categories.
Let A be a monoidal S-category, and K an A-category. We

can define for K an "underlying" S-category Ks by the formula

Then we can define a category xK as 7tKs. An A-functor bet-
ween A-categories induces an S-functor between the "under-

lying" categories, the same holds for A-natural transformations.

Let now (K,p,s) be an A-monad on the category K. Then
we have also an S-monad on K., and a usual monad on xK. Let
us associate with each object Y of K a cosimplicial object R*Y.
By definition

There is a natural augmentation morphism E : Y-&#x3E; R*Y. We obtain
also a cosimplicial object in the category A by applying
HOMK(X,-) to R*Y fibrewise. We shall denote it by
HOMK(X,R*Y). For objects X, Y and Z in K, consider the family
of morphisms 
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This family gives a morphism

Define also by the composition

for n &#x3E; O. It is easy to check that we thus obtain an enrichment
of K in cA.

Let now (N, p, n) be a cosimplicial H-comonoid in A.

DEFINITION 4.1. We shall call the coherent homotopy category
of the monad (R,p,s) with respect to (N,p,n) the category, deno-
ted by CHRN-K, defined as follows:

CHRN-K has the same objects as K,

CHRN-K(X,Y) = t0(HOMcA (N,HOMK(X,R*Y)),
an identity morphism is the image of the point * under the

composition

a composition px y z is defined by the map

The category CHRN-K admits another description.

PROPOSITION 4.1. If in the category Ks there e.x:ists (R*X)N for
each object X , then we have a monad (RN, 03BCN,EN) on 1tK, such
tha t CHRN-K is isomorphic to KlRN-tK.
PROOF. Define RN(X) = (R*X)N. The augmentation E:X-&#x3E;R*X in-

duces a natural transformation EN:I-&#x3E;RN. We shall use the
Bousfield-Kan Lemma for the definition of the multiplication in

RN. By construction (R*)N is the kernel of the pair of mor-

phisms
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Applying

It is evident that for the identity functor 1 and the co-

simplicial H-comonoid I in cA, there is an isomorphism
CHII-KR::1tK. Then s: I-R and I:N-I induce a canonical functor
PN : xK-CHRN-K. Assume that the condition of Proposition 4.1

holds, then we obtain immediately that PN has a right adjoint
QN:CHRN-K-&#x3E;tK, and QN opN = RN .

The case A = S will play an important role in our work.

Unfortunately the cosimplicial simplicial set A is not a cosimpli-
cial H-comonoid. To rectify this kind of difficulty we introduce
some additional notions.

DEFINITION 4.2. We say that the S-monad (R,03BC,E) on an S-cate-
gory K is fibrant provided HOMK(X,R*Y) is a fibrant object in

cS for every objects X and Y in K.

DEFINITION 4.3. Let (N, p,n) be a cosimplicial object in S. We

say that N is a cofibrant cosimplicial H-comonoid provided that
N is a cofibrant object in cS and INI is a cosimplicial H-como-
noid in K.

Finally remark that for N cofibrant and X fibrant objects
in cS, there is a natural homotopy equivalence

Therefore we can now give a definition of the category CHRN-K
putting

where R is a fibrant monad and N is a cofibrant cosimplicial
H-comonoid.

EXAMPLES. 1. As shown in 151, the cosimplicial simplicial sets

A[s], O s00 are cofibrant cosimplicial simplicial objects in cS.

2. Let R be a commutative ring with unit. For a simplicial set

X, let ROX denote the simplicial R-module freely generated by
the simplices of X. Then RXCR0X is the subset consisting of
the simplices 7-rixi with Eri =1. There are maps p:I-R and

w: R2-&#x3E;R, which make R into a fibrant S-nionad on S CSJ. We

shall call it a Bousfield-Kan monad.

3. Let A be a small category, and K an S-category. As was
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remarked above, F(A,K) has a natural S-enrichment. If in addition
K has products, then on F(A,K) the following S-monad (Ran,03BC,E)
can be defined:

Let Ao be a maximum discrete subcategory of A. The inclu-
sion i:A0-&#x3E;A induces a functor i*:F(A,K)-4F(AO,K). Then i* has a
right adjoint Rani (a right Kan extension along i ) 1201. The pair
( *,Rani) induces a monad Ran=Ranio* on F(A,K). More explici-
tly, (Ran,03BC,E) may be described by the formulas:

where Ey =TTdEy,d, Ey,d with index d: y-&#x3E;y0 is the morphism
X(d): Xy-&#x3E;Xy0 and 03BCy is the projection on the factor with index

y1- y0 - y.

DEFINITION 4.3. An S-category K is called a locally Kan cate-

gory provided for any object X and Y in K, HOMK(X,Y) is a

Kan simplicial set.

PROPOSITION 4.2. Let A be a small categor)f, and K a localky
Kan category. Then the monad (Ran,/l,E) on F(A,K) is fibrant.

N N N

PROOF. Let A*. be the nerve of A. Let X eA P)
Then we can write

The codegeneracy sl for the factor with index

is defined as the composition

We recall now the condition for a cosimplicial simplicial
set X* to be fibrant [5].

For n &#x3E; 0 let M" denote the limit of the following diagram

For m - -1, one puts M-BX) = A(O) - The maps si: xn+1 -&#x3E; Xn induce
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rn: Xn+1-&#x3E;Mn(X). Then, according to E5], X* is fibrant iff all r",
n &#x3E; -1 are Kan fibrations. We prove the following lemma for

application to HOMF(A,K)(X,Ran*Y).

LEMMA 4.1. Let Ã. be a simplicial set, (Fx) a family of sets 
with index from A=Un&#x3E;oAn. Let C be a category whose objects
are subsets of A and whose morphisms are their inclusions.
Consider the following cofunctor F from C to the category of
sets: F(U) = IIÀEuFÀ’ and for UCV, the map F(V)-F(U) is the
obvious projection. Since in Ã. all degeneracies are inclusions,
we can consider the following diagram

The degeneracies Si:Ain-&#x3E; Ain+1, 0  i  n induce a map from

F(A n+ 1) to the limit of the diagram (4.2). Then this map is a

projection on a factor.

PROOF. Let Dn(A) be a colimit of the diagram of sets

Then we have a map w:Dn(A)-&#x3E;An+1 induced by the degeneracy
maps Si: Ain-&#x3E;Ain+1, 0  i  n. Let us prove that w is an inclu-

sion. Indeed, if yi, yj E An are such that si(yi) = si(Xi), then

Thus we obtain

If j = I +1, then yj= dj si (yi)= Xi, and if j&#x3E; 7+1 then

The subsequent part of the proof is evident.

Now Lemma 4.1 implies the conclusion of Proposition 4.2
because K is a locally Kan category.

Finally we remark that the above theory may be easy to

develop for the pointed S,,-categories. Instead of Aisl we may
use in this case the pointed cofibrant cosimplicial H-comonoids
A+[S]=A[s]UA(0).
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5. Coherent homotopy categories and localization.
Here we consider S-categories and fibrant 5-monads. As a

cosimplicial H-comonoid, we shall use one of the cosimplicial
simplicial sets A[s]. For the category CHRA[S]-K, we shall write
simply CHRs-K, the monad RA[s] will be denoted by Rs, the ca-
nonical functor from xK to CHRs-K will be denoted Ps, and the
adjoint to PS by Q.. Then we have a commutative diagram

Let Ls be the class of morphisms f in tK such that Psf
is an invertible morphism, and let ER be the class of morphisms
f in xK such that Rf: RX-RY is invertible in xK.

PROPOSITION 5.1. E00 = ... = 7- v ... =E0= 7-R-
PROOF. Make one useful remark. Let (R, p, s) be a monad on K
and let EMR-K be the category of R-algebras of this monad
1201. If G: K-M is a functor with a right adjoint D, then it

yields a monad (DoG,p ,l) on K. Assume (R,03BC,E)=(DoG,p,l).
Then the following diagram is commutative [201

where A and e are canonical functors. Let £k, ZG, Ee be the
classes of morphisms f in K such that the morphisms k(f),
G(f) , e(f) are invertible correspondingly. From the above dia-

gram, we see that EkC EGCEe. Let f: X-&#x3E;Y be a morphism with

fe Ee. Then there exists g: RY-RX such that the diagram

commutes and Rf o g =1Ry , g oR f= 1RX. Consider the morphism
g in KIR-K, defined by the composition
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It is easy to see that g is the inverse to k( f) in KIR-K. Conse-
quently Ek= LG = Lee

Let us return to the proof of the proposition. From the
remark above and the diagram (5.1), we see that

Let F: X-Y with f E ER. Then for each object Z in K, and p z 0,
f induces a homotopy equivalence of simplicial sets:

This means that we have a weak equivalence of fibrant cosim-

plicial simplicial sets:

Therefore for each Z, the morphism f induces a bijection

EXAMPLES. 1. Let (R,p ,E) be the Bousfield-Kan monad. Then the
class ER consists of such f: X-&#x3E;Y that Rf : RX-RY is a homoto-

py equivalence. The last condition is equivalent to

being an isomorphism.
2. Let A be a small category and A0 CA be its maximum dis-

crete subcategory. Since Ran=Ranioli’l, we have 7-Ran-- F-Eil*ll
so it is a class of levelwise homotopy equivalences.

If G: K-&#x3E;M is a functor, with a right adjoint, then the
class LG satisfies the Gabriel-Zisman axioms for a calculus of
left fractions and one can define a category K[E-1G] C13J. By
Proposition 5.1, we have the following commutative diagram of

categories and functors

where P:¿R’ L,, 0 s00 are the canonical functors [13].

THEOREM 5.1. Let (R,M,E) be a fibrant S-monad on as-category,
K, and suppose for some s there exists a monad (RS,03BCSS,ES).
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Then the functor Ls: tK[ER-1R]-&#x3E; CHRS-K is an equivalence of

categories iff for each object X in K, the morphism ES: X-&#x3E;RSK
belongs to 2R.
PROOF. Assume L. is an equivalence of categories. Then QS is

fully faithful, and the morphism of adjunction, D: PSQS-&#x3E;I, is an

isomorphisms [13], but the composition

is an identity morphism, hence PSEs is invertible in CHR,-K and
by Proposition 5.1, ESE ER.

Let now Ës E7-R- We shall show that Q, is fully faithful.
This will be sufficient for the proof of Theorem 5.1. Let
f: X-&#x3E;RSY be a morphism in xK, that is a morphism from X to
Y in KIQsPs-tK. The functor Q. maps it to the composition

The map q: tK(X,RsY)-&#x3E;t(RsX,RsY) induced by Qs has a right
inverse p, which is defined as follows: for g: RsX-&#x3E;RsY, p asso-
ciates the composition

It is evident that p o q=1. To show that q o p = 1, it is sufficient
to show that the following diagram is commutative in tK:

By Proposition S.1, we have RsE : RSX-&#x3E;R2S is an invertible mor-

phism, therefore EsRs=RsEs= us 1. Now the commutative diagram

yields the commutativity of (5.2).

EXAMPLE. As was shown in 151 for the Bousfield-Kan monad
on S., the unit E00: X -&#x3E; R00X does not necessarily induce an iso-

morphism in R-homology. However on the category of nilpotent
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spaces we have an isomorphism [51

THEOREM 5.2. Let (R,p,s) be a fibrant S-monad on the S-cate-

gorv K , and suppose R preserves limits and S-degrees. If there
exists a monad (R00,03BC00,E00), then the functor Lco:
CHR00-K-&#x3E;t[E-1R]] is an equivalence of categories.
PROOF. From the conditions of the theorem, we have a homoto-

py equivalence of RR00(X) and (R(R*X))A, where R(R"X) is a co-

simplicial object obtained’ by fibrewise application of R to R*X.
Let (RX)* be the constant cosimplicial object with (RX)n = RX.
Then E induces a cosimplicial morphism RE : (RX)*-R(R*X). Thus
there exists a cosimplicial morphism p: R(R*X)-&#x3E; (RX)* such that

poRe = 1 and there exists a cosimplicial 1-ioniotopy between RE op
and 1 [22]. Then for any object Z in K, we have a bijection

and hence E00 E 2:R.

COROLLARY 1. Let K be a local] y Kan S-category, and A a

small categotw. If there exists a monad (Rance,pco,Ëco) on F (A, K),
then CHRan00-F(A,K) is the localization of nF(A,K) with respect
to levelwise homotopy equivalences.

COROLLARY 2. Let K be a simplicial closed model category, Kf
be its full subcategory of fibrant objects, and suppose each ob-
ject of K is cofibran t. If there evists Ran. on F(A, Kf), then the

categories CHRanco-F(A,Kf) and ho(K A) of Edwards -Hastings [12]
are equivalent.

COROLLARY 3. CHRanço -F(A,Top) is equi valen t to the category
xA of Vogt 1271.

Consider now the category naturally associated with a co-

herent category. This category has the same objects as K. As

set of morphisms, we take the kernel of the pair of morphisms

We shall denote this category by WR-K. By construction we ha- 
ve a natural functor W0: WR-K -&#x3E; CHRo -K . We can also con-

struct functors WS: CHRS-K-&#x3E; WR-K for each s oo. Indeed, if

X* is a cosimplicial simplicial set, then we have a map p:
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t0 Tot1X*-&#x3E;t0 Tot0X*. From the definition of Tot, we obtain

d0p = d1p , where d0, d1: t0 X0-&#x3E;t0X1 are induced by the coface
maps. The remark above applied to HOM(X,R*Y) yields a com-

mutative diagram of categories and functors

Let EWR denote the class of morphisms f in 7rK such that W(f)
is invertible. From (5,3) we see that

PROPOSITION 5.2. A morphism f: X-&#x3E;Y in CHRs-K is invertible
iff W sf is invertible in WR-K.
PROOF. As above, let Qs be adjoint to P s. Then PSQ S f = f , but

is invertible by assumption. This means that Qsf EWR = Es, and
consequently P sQsf = f is invertible.

EXAMPLES. 1. For the Bousfield-Kan monad on S., we have
that WR-S*(X,Y) is E0,02 term of the unstable Adams spectral
sequence 161.

2. W Ran- F(A,K)= F(A,tK) .

Finally remark that in any S.-categoi-y, we have a spectral
sequence of Bousfield-Kan type

Here E is the suspension functor.

6. Coherent prohomotpy categories.
Now we shall expand the above constructions on a cate-

gory pro-K. Let us recall some definitions. As usually we can

consider an ordered set A as a small category. Then an inverse
system over A in a category K is defined as a functor on A to

K. We shall denote an inverse system by X={Xy}yEA or simply
{Xy}, and the morphism corresponding to by P yy:
Xy-&#x3E;Xy. A directed set A is called cofinite if each element of A
has only finitely many predecessors.
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Let A, M be directed cofinite sets and let 9: M-A be an

increasing function. Then we have a functor p*: F(A,K)-&#x3E; F(M,K).
We define then a morphism from the inverse system {Xy}yEA to
{Yu}uEM as a pair (cp, f) , where f is a morphism p*{Xy}-&#x3E;{Yu} in

F(M,K). A morphism (p,f) is called a level morphism provided
A=M and p=1A:A-&#x3E;A. We have thus a category inv-K, whose

objects are all inverse systems in K and whose morphisms are

morphisms of inverse systems.
Let (cp, f), (w,g): {Xy}-&#x3E;{Yu} be two morphisms of inverse

systems. The morphism (4J,g) is said to be congruent to (p,f)
provided 4; ¿ cp and for for each u e M the following diagram com-
mutes

The category pro-K will be the following category. The

objects of pro-K are all inverse systems in K over cofinite di-
rected sets. A morphism f: X-&#x3E;Y is an equivalence class of mor-
phisms of inverse systems with respect to the equivalence rela-
tion generated by the relation of congruence above. As is proved
in 1211, this definition of pro-K is equivalent to the usual defi-
nition of

pro-K(tXx),(Y.1) = lim.colim),homK(XX,y 11)
A last formula prompts the definition of S-enrichment for

pro-K, provided K is an S-category [121 :

HOMpro,-K({Xy},({y 9} = limu coliny HOMK(Xy, Yu) .
If K has S-degrees, then pro-K also has S-degrees:
{Xy}E = {XyE} and HOMpr--K ({Xy}’{Yu}) = pro-K({Xy},{YA(n)u}).

We are going to construct now a monad (Ranoo,uoo,Eoo) on
7r(pro-K). Notice that we have a monad (Ran,u,e) on inv-K. As

above, for X=(Xx), let (RanX)y=TT)y0yXy0. For a morphism
(p,f): {Xy}-&#x3E;{Yu}, as Ran(cp,f) we take ((p.Ranf), where Ran f is

the composition of p*: RanX-&#x3E;Ranp*X and Ran f : Ranp*X-&#x3E;RanY.
A multiplication u, and a unit E are induced by the multiplica-
tion and the unit of the monad (Ran,p,s) on F(A,K). It is easy
to see that we cannot consider (Ran,p,e) as a monad on pro-K,
because Ran does not preserve the congruence relation on mor-

phisms. Nevertheless we can define a monad (Rancc,pcc,Ecc) on

7r(pro-K).
Let A* be the nerve of a directed set A. We shall denote
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by the symbol Xn a m-simplex of A*, that is a chain

y0 ...yn. If p:M-&#x3E;A is an increasing function, then cp ((7 n) will

be the n-simplex cp(u0) ...  p(un). The notation yn y will

mean that Àos... sÀnsÀ, and XAn for yn = (y0... yn) will

mean the object Xy0 With these notations, we can write

Rann+1{Xy} as an inverse system over A of the type

Now assume that, for each directed set A, there exists

the monad Ran. on F(A,K). Then we define a functor Ran. on
inv-K by the formula

PROPOSITION 6.1. Let (cp,f), (w,g):{Xy}-&#x3E;{Yu} be two morphisms
in inv-K, and let (4;,g) be congruent to (cp, f) . Then there is a

morphism F in inv-K such that:
1. F is congruent to Rancof.
2. F is homotopic to Ran,,,,g.

PROOF. We define F by the composition

Then F is congruent to Ran_f by construction. On the other

hand, F is a realization of the following morphism of cosimpli-
cial inverse systems:

for unu, defined by the composition
- I

where 7rp(,I,) is a projection to the corresponding factor, but

Rann+1g, for unu, is defined by the composition

Then we can construct a family of morphisms

with the help of the composites

where
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It is easy to show that the family H7 is a cosimplicial homoto-
py between F* and Ran*g. Then the realizations are homotopic
in inv-K.

According to Proposition 6.1, we have a functor

The unit and the multiplication of the monad (Ranco,pco,Eo:) on

7rF(A,K) induce natural transformations on rc(pro-K), namely
u0..,: Ran2 oo-&#x3E;1Ranoo and Eoo: I-1Ranco’ Thus we have obtained a mo-

nad (Ranoo:,uoo,Eoo) on x(pro-K).

THEOREM 6.1. The category KIRan.-n(pro-Top) and the cohe-

r-ent prohomotopy category (CPH-Top) of Lisica-Mardesic are

equivalent.
PROOF. Let f: {Xy}-&#x3E;1{Yu} be a morphism in KIRanço-1t(pro-Top),
defined by cp: M -&#x3E;A and fu: Xp(u)-&#x3E; (Ranoo Y) u From the defini-

tion, Ran_Y is a subspace of the space TTnoTTunuYun|A(n)|. Thus,
for each unu, we have a morphism

The exponential law gives a map

For un = (u0...un), we define

It is easy to verify that the function Gp(un) = p(un) and the family
(Gf)un,un E Mn, produce a special coherent morphism in the sense
of [151. It is clear in addition that G may be expanded to the map

Now we shall construct a map H inverse to G. Let f: {Xy}-&#x3E;{Yu
be a special coherent morphism defined by 

u

For unu, we can consider the composition

where fu corresponds to f (1 by the exponential law. Thus we
have a 111asp
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The coherent conditions [151 show that it is a morphism with
codomain (Ran,,Y),. It is easy to check that we have HoG=1
and GOH=1. Thus the conditions of the Bousfield-Kan Lemma
hold and we obtain a monad (Ranoo,uoo,Eoo) on x(pro-Top) such

that CPH-Top is equivalent to KlRan’oo-t(pro-Top). In addition

(Ran’oo,u’oo,E’oo) can differ from (Ranoo,uoo,Eoo) by multiplication
only, but the multiplication in Ran’oo is defined by a composition
of level morphisms in CPH-Top. Therefore it suffices to prove
that the composition of level morphisms in CPH-Top and that in

CHRanoo-F(A,Top) coincide. By definition a morphism in

CHRanoo-F(A,Top) is determined by the cosimplicial map f:

A-&#x3E;Hom({Xy}, Ran*{Yy}). Hence, for each y= (y0 ...yp), we have
a map

and for the family {fyp}, the coherent conditions hold. If now a

morphism g:A-&#x3E;HOM({Yy}, Ran*{Zy}) is defined by the family

then g of is defined by the composition:

or

for t E Pp,q[1], but this is the formula for the composition of
coherent level morphisms [15].

This theorem justifies the following definition.

DEFINITION 6.1. Let K be a locally Kan S-category, and suppose
that for each directed ordered set A and for each inverse system
(Xx) in K, there exists Ranoo{Xy}. We now define the coherent

prohomotopy category for the category K as the category
KlRanoo-t(pro-K). We shall denote it by CPH-K. If K’ is a full

S-subcategory of K, then we can consider the full subcategory
of CPH-K generated by the objects of K’. We shall denote it by
CPH-K’.

THEOREM 6.2. The category CPH-K is the localization of the

category- 7-c(pro-K) vvith respect to levelwlse homotopy equivalen-
ces.

PROOF. It is clear that P co: t(pro-K)-&#x3E;CPH-K inverts the level-
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wise homotopy equivalences. In addition Eoo : X-&#x3E;RanooX is a le-

velwise homotopy equivalence too. Let F: t(pro- K) -&#x3E; L be a func-
tor inverting the levelwise homotopy equivalences. We define
F’: CPH-K---)L as follows: on objects, F’(X) = F(X), and for

f:X-&#x3E;RanooY, the morphism F’(f) is F(Eoo)-1oF(f): F(X)-&#x3E;F(Y).
As in Theorem 5.1, one can prove that the functor Q. ad-

joint to Poo is fully faithful, and therefore the counit of the ad-
junction D:PooQoo-&#x3E; I is an isomorphism 1131. Now for the func-
tor G: CPH-K-L such that G oPoo = F, and for f:X-Y in CPH-K
we have a commutative diagram

If for another functor G’: CPH-K-&#x3E;L, we have G’oPco =F, then
G’((D)oG-1(D): G-&#x3E;G’ is an isomorphism of functors.

COROLLARY 1. Let K be a simplicial closed model category, K f
be its full subcategory of fibrant objects, let each object of K
be cofibrant and let the Edwards -Hastings conditions for the
e.vistence of ho(pro-K) hold [12]. Then CPH-Kf and ho(pro-K)
are equivalent categories.
COROLLARY 2. The strong shape category of all topological
spaces of Lisica-Mardesic 1151 and that of Cathey-Segal 171 are

equivalent.

Finally we make some remarks about homology theories
on the strong shape category of pointed topological spaces. Let
E be a cofibrant simplicial spectrum in the sense of Thomason
1261. For an inverse system {Xy} of pointed topological spaces,
we define the homology with coefficients in E by the formula

where S is the singular complex functor, for each spectrum E,
Q gives an equivalent fibrant spectrum (it may be defined by the
formula Qn = colimknkExooXn+k [26]). Now we can define the

E-homology of a topological space X as the E-homology of its

ANR-resolution. The resulting theory on the strong shape cate-

gory has the following properties:
1. If X is a paracompact Hausdorff space, and A is a closed

subspaces, then there is an exact sequence
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2. If p: X-&#x3E;{Xy} is the Mardesic resolution such that all X,
are normal topological spaces, then there is the spectral se-

quence of Thomason [26]

In particular on the category of compact Hausdorff spaces, we

have a homology theory for which all Steenrod-Sitnikov axioms
hold [3,121. The details are in the author’s preprint [1]. Remark
that the relations between our homology and that of Lisica-
Mardesic [16,17,18] are not clear.
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