
CAHIERS DE
TOPOLOGIE ET GÉOMÉTRIE DIFFÉRENTIELLE

CATÉGORIQUES

JOHN L. MACDONALD

ART STONE
The natural number bialgebra
Cahiers de topologie et géométrie différentielle catégoriques, tome
30, no 4 (1989), p. 349-363
<http://www.numdam.org/item?id=CTGDC_1989__30_4_349_0>

© Andrée C. Ehresmann et les auteurs, 1989, tous droits réservés.

L’accès aux archives de la revue « Cahiers de topologie et géométrie
différentielle catégoriques » implique l’accord avec les conditions
générales d’utilisation (http://www.numdam.org/conditions). Toute
utilisation commerciale ou impression systématique est constitutive
d’une infraction pénale. Toute copie ou impression de ce fichier
doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=CTGDC_1989__30_4_349_0
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


349

THE NATURAL NUMBER BIALGEBRA

by John L. MACDONALD and Art STONE

CAHIERS DE TOPOLOGIE

ET GÉOMÉTRIE DIFFÉRENTIELLE

CATÉGORIQUES

VOL. XXX-4 (1989)

ReSUMe. Dans cet article, on montre que les definitions
famili6res de Peano de 1’addition et de la multiplication en
terme de 1’operation successeur, plut6t consideree comme
co-op6ration, s’expliquent mieux comme exemple d’une loi
distributive de bialgebre. Cet exemple de Peano est un cas
particulier d’une situation souvent rencontr6e en program-
mation informatique ou les donn6es peuvent etre pens6es
comme faisant intervenir des co-op6rations de meme que
des op6rations. Ces co-op6rations retiennent de 1’espace
(pour la m6moire, dans 1’ordinateur) alors que les op6ra-
tions lib6rent de 1’espace.

ABSTRACT.

Where an Eilenberg-Moore algebra is a pair (X,a) with a:

XT-X (satisfying axioms), a bialgebra is a triple (X,a,c) for
which the pentagon

commutes, that is, .cT.XX.aG = .a . c. Here T is the endofunctor
of a monad, G is the endofunctor of a co-monad, and X is a

bialgebra distributive law as defined in the third section (cf.
Beck 131, Van Osdol [11]), The main point of this paper is that
the familiar Peano definitions of addition and multiplication in

terms of the successor (co-)operation can perhaps best be un-
derstood as defining an instance of a morphism .XB such as
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appears in (0.1). Further, this Peano eyample is an instance of

something we see often in computer programming where data
structures can be thought of as involving co-operations as well
as operations. Peano’s successor operation, being a unary opera-
tion, can be thought of as either an operation or a co-operation.
But we can give a clearer interpretation of the definitions of
addition and multiplication regarding it as a co-operation. In

general, the co-operations of programming data structures create
space (mark storage space, or set it aside, in the machine),
while operations release or free space.

The first section introduces some background material on

categories of adjunctions. Adj (Cat) is introduced as the category
whose objects are adjunctions in Cat and whose morphisms are

pairs commuting with right adjoints. The definitions of allo na-

tural transformation and modification are recalled and Adj(X) is
described as the 2-category whose objects are strict 2-functors

Adj-X, whose 1-cells are allo natural transformations and who-
se 2-cells are modifications for X a 2-category and Adj the
"free 1-adjunction". We show how Adj(X), although described

differently from Adi(Cat), differs only slightly when X =Cat.
This is because we can show that Adj(Cat) has for 1-cells those

pairs of functors commuting with right adjoints up to "coherent"
isomorphism rather than pairs strictly commuting as in &#x26;(Cat) .
Various generalizations are possible at this point, namely, we

could use para instead of allo to give 1-cells commuting (up to
isomorphism) with left adjoints or we could start from "free"
structures other than Adj but given by objects, 1-cells and
2-cells subject to certain equations.

The second section on distributive squares and n-cubes

gives Beck’s description of a distributive square as a commutati-
ve adjoint square in which a certain induced map is an isomor-

phism. The objects of Adj (Adj (X)) are then shown to be simply
the distributive squares in X for X = Cat. The 2-category struc-
ture of Adj (Adj (X)) carries with it a "built in" definition of

morphisms (and 2-cells) between distributive squares. The same
remarks hold for

whose objects are defined to be the distributive n-cubes in X.
This section also refers to the distributive laws generated by a

distributive square, one type at each vertex.

The third section on bialgebras and the natural numbers
describes a bialgebra distributive law B : GT-TG associated with
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a monad (T,n,u) and a comonad (G,s,8) on X in X. This law can
be used to build a distributive square on X in which the missing
vertex (the "ghost category") is that of the category of bialge-
bras (cf. 13,111). A few general propositions about bialgebras
and a description of augmented bisimplicial objects are given
before looking at the example of the natural number bialgebra
over Set., in which the X given is derived from the Peano postu-
lates. Finally we have indicated how these ideas may be applied
to computer science.

We use the following notation. The vertical composite of
2-cells in a 2-category is denoted 9 - - y and displayed as in

The composite of 1-cells X and Y or the horizontal composite
of a 1-cell X and a 2-cell x are denoted by the symbols X;Y or
X;TT respectively and displayed as

We further indicate the context by the symbol by letting.b de-
note a morphism in a 1-category and the composition of such

morphisms by .a . c (or a.c). Setsl is the category of pointed sets

(with point = 1).

1. CATEGORIES OF ADJUNCTIONS.
Let Adj(Cat) be the following 2-category. It has objects

where So is an adjunction in Cat with left adjoint FS and 1-cells
(Qr Pr)
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satisfying QT;UT = US;PT and 2-cells (Qs,Ps)

satisfying Qs ; UT = US ; Ps.
Let S and T be strict 2-functors X-Y. We recall that an

allo natural transformation F:S = T assigns to each Y: X-Y in
X a diagram

such that YT:XT;YT =YS;YT is a 2-cell and the following 3
axioms hold.

(1.5) Given 1x:X- X it is required that the morphism 1xT be
the identity 2-cel 1 Xr = XT. 

Secondly for each 2-cell

it is required that
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be a commutative diagram of 2-cells.

(1.7) Given

in X it is required that XF;YT.. XS;YF = [X;Y]I’.
Suppose that a diagram

is given where F and G are strict and O and F are allo natural
transformations. Then a modification s :O =T consists of
2-cells

in A, one for each object X of X, such that for each 1-cell Y:
X-Y of X the associated diagram

(2, 0)-commutes in A. This means that the diagram

of 2-cells commutes in A. In equational form we have

Now let Adj denote the "free 1-adjunction" - the 2-cate-

gory
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with

described in Schanuel-Street 1101 (cf. Auderset [1]) and denote

by Adj(X) the 2-category of strict 2-functors Adj - X with allo
natural (lax natural) transformations for 1-cells and modifica-
tions for 2-cells.

Let S and T be strict 2-functors Adj-X pictured

in X and let r: S BT be an allo natural transformation. Then

using (1.4) and (1.14) we can extract the picture

From this diagram we extract a key part, namely

where m(FT) : US; PT ==&#x3E; QT; UT, called the mate of Fr, is the

composite
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In Beck’s terminology ([3], p. 139), FT and m(Fr) are adjoint
morphisms.

PROPOSITION 1.18. The 2-cell m ( FT) of (1.16) is the inverse of
ur.

PROOF. m(Ff) followed by ur may be pictured

Then given

commutes by (1.6) where (FU)T = FT: UT.. FS; ur (by (1.7)). Thus
(1.19) becomes
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As in (1.19) UT followed by mtFr) may be pictured

which is, using successively that ur and 7iT can be composed in
either order and (1.7) :

which equals

by the commutativity of

Then we combine (1.24) and (1.25) to obtain

which equals 1QT;UT.
In particular (1.16) becomes
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where o is the isomorphism ur whose inverse is m(FT).

Thus the description above of Adj (Cat) turns out to be a

simplified version of Adj(Cat) in which the isomorphic 2-cell

of (1.16) is the identity, as in (1.2).

The functor u: Adj(X)-X taking each adjunction (1.1) to

PS has a soft left adjoint F taking PS to its identity adjunction
(cf. 17,81). 

_ _

2. DISTRIBUTIVE SQUARES AND n-CUBES.

An example of a distributive square appearing in Beck (131,
p. 135) is

An adjoint square is a diagram

of 4 adjunctions as pictured. It is commutative if there are na-

tural isomorphisms

which are mates, that is, as in (1.17), u = m( f) is the composite
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A distributive square is a commutative adjoint square such
that the induced map e: UAF1-F2UB is an isomorphism where e
is defined by 

PROPOSITION 2.6. The objects of Adj(Adj(X)) are the distribu-
tive squares in X , namely

where the o ’s at the lower left and upper right denote the iso-
morphisms u and f of (2.3) and the lower right that of (2.5).

PROOF. An object of Adj(Adj(X)) is an adjunction

where

are adjunctions in X and Fo = (F2,Ft) and U[I = (LI2, U1) are Adj(X)
morphisms. Thus we have a diagram of the form (2.7) in which
the vertical pairs are adjunctions and U0 = (U2, U1) and F0=
( F2’ Ft) are Adj (X) morphisms. This implies that there are iso-

morphisms

determined as in (1.16). The usual adjunction equations hold for

Fo = (F2’ Ft) left adjoint to Uo = (U2, U1) and these yield equations
showing F2 left adjoint to U2 and F, to U1. Thus we have an
adjoint square. It is commutative since u, being an isomorphism
of right adjoints, has a mate f: FIFB-FAF2 which is also an

isomorphism. It is not hard to show using allo natural transfor-
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mation rules that the inverse of the isomorphism g is the same
as the morphism e defined from u and f in (2.5). ·

In general a distributive square generates a different kind
of distributive law at each vertex as pictured in the diagram

An object of will be called a

distributi’tle n-cube.

3. BIALGEBRAS AND THE NATURAL NUMBERS.

Where (T,n,u) is a monad and (G,s,8) is a comonad on X
in X, a bialgebra distrlbutivits- of (T, 11, (1) over (G,s,8) is a natu-

ral transformation B : GT =&#x3E;TG for which

These axioms (two triangles and two pentagons) are ana-

logues of Beck’s (cf. [3] as well as VanOsdol [11]),

The "ghost category" problem is one of the following ty-
pe. Given

fill in the dotted arrows and describe B on the left hand side or
A on the right so that the resulting squares are distributive.
There are analogous problems at the other two vertices as well
as higher order analogues when there are three or more struc-

tures at a given vertex. For a description of A see Beck [3].

Where X is a bialgebra distributivity of (T,1),(l) over (G,E ,d)
on a category X , a bialgebra for X is a triple:
(3.3) (XX,a,c) in which (X,a) is a (T,1),t!)-algebra and (X, c) is a

(G,Ë,S)-coalgebra and a’c = cT.XÀ.aG.
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Bi-homomorphisms are morphisms which are algebra and coalge-
bra homomorphisms.

PROPOSITION 3.5 ( The Bialgebras of the Pentagon). If ( X , a , c) is

a bialgebra. then so are

The underlying objects of these bialgebras are vertices in

the pentagon (3.4) for (X,a,c). The elements of these biaigebras
may be called

Repeated application of the Bialgebras of the Pentagon
Proposition 3.5 gives us an infinite diagram, an augmented bi-

simplicial object.
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In the following paragraphs we show how the Peano

axioms for the natural numbers, with addition and multiplica-
tion, give us an example over Set,.

Let 0 and . s denote Peano’s zero and successor operation.
The Peano axioms for addition and multiplication

are such that, over 0 in Set or over {I} in Setl, the binary ope-
rations produce no new terms. Peano’s set of elements is deter-
mined by 0 and . s alone.

We will think of s as a co-operation. (T,n,u) will be the
monad for the category CS, of (pointed) commutative semi-rings
with zero. Explicitly this means that CS, has binary operations +

and * and constants 0 and i such that + is associative and
commutative with identity 0 and * is associative and distributive
with respect to + and

(G,s,8) will be similar to the product comonad of Lambek as

described in 151, page 285 and in [6], page 62.

To define X we need recursive definitions of T and G. Let

X be a pointed set. Then XTf is by definition the set containing
X as a subset, with further elements

(3.10) 0 (zero element), a + b and a*b for all a, b E XTf,
Let XT be the set of equivalence classes of XTf determined by
the axioms of CSI. The definition of 11 and V (and the extension
of T to a functor) is straightforward. We define XG f recursively
by
(3.11) X is contained in XGf and a. s is in XG f for all a E XG f.
Then XG is the set of equivalence classes respecting the opera-
tion s determined by I rI.s. We let [a] denote the equivalence
class of a. 

Let .XE: XG- X and Xd : XG- XGG be the identity on X,
and

for x E X, where .ae denotes the successor (co-)operation of XGG.

Let XB: XGT-XTG be the map induced from XB f: XGTf - XTG
where first we define XXf on XG by

[x]-XBf = [[x]] for x in the subset X of XG f
(3.13) { x is in XTf as well) and

[a.s]. XBf = ([a].XBf).s,
i f a is in XGf and [a] is in Dom ( . XBf) ,
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then we extend the definition of XXf to XGTf by:
(3.14) 0.XBf = [[0]], and by letting a+b.s be in Dom(.XBf) if

a + b is, and

and by letting a* b. s be in Dom(. XB f) if a *b is, and

Specific instances of (3.4) involving the natural numbers may be
pictured as follows, noting that the pointed natural numbers N1
are by definition equal to PTG where P={I}.

The algebraic structure a = PTÀ; P(lG of N1 embodies the defini-
tion of + and *. In particular, PTX is called the Peano imple-
mentation.

The coalgebraic structure on the pointed natural numbers

N1 is the diagonal map N1- NI X N I (modulo a.I=I=I.a). Such
a map is a special case of what in programming languages is
called simple assignment.

Computer science provides many more examples of bialge-
bras. For a machine with word size n the endofunctor G will

"multiply" by a pointed set with 2n’ defined elements, and it is

appropriate to call (G,s,8) a space defining comonad.
Machines are inherently bialgebraic - since machine opera-

tions are always defined in terms of predefined space. Input -
which occupies new space - is co-algebraic, and output - which
releases space - is algebraic.
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