
CAHIERS DE
TOPOLOGIE ET GÉOMÉTRIE DIFFÉRENTIELLE

CATÉGORIQUES

HARRIET LAZOWICK LORD
Functionally Hausdorff spaces
Cahiers de topologie et géométrie différentielle catégoriques, tome
30, no 3 (1989), p. 247-256
<http://www.numdam.org/item?id=CTGDC_1989__30_3_247_0>

© Andrée C. Ehresmann et les auteurs, 1989, tous droits réservés.

L’accès aux archives de la revue « Cahiers de topologie et géométrie
différentielle catégoriques » implique l’accord avec les conditions
générales d’utilisation (http://www.numdam.org/conditions). Toute
utilisation commerciale ou impression systématique est constitutive
d’une infraction pénale. Toute copie ou impression de ce fichier
doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=CTGDC_1989__30_3_247_0
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


247

FUNCTIONALLY HAUSDORFF SPACES

by Harriet LAZOWICK LORD

CAHIERS DE TOPOLOGIE VOL. XXX-3 (1989)

ET GÉOMETRIE DIFFERENTIELLE

CATEGORIQUES

R.eSUMa. Un espace topologique X est dit fonctionelle-
ment Hausdorff si, quels que soient les 616ments distincts
x et s, de X, il existe une fonction continue f: X- IR telle

que f(X)# fCy). La cat6gorie FH des espaces fonctionel-
lement Hausdorff et fonctions continues a la propri6t6
que ses morphismes r6guliers ne sont pas fermes par
composition. De plus, FH est un exemple d’une sous-cat6-
gorie extrémale-épiréflective de TOP pour laquelle il n’y a
pas de structure de factorisation ( E, M) sur TOP telle que
X E FH ssi AXE M.

INTRODUCTION.

A number of versions of the Diagonal Theorem have been
proved by many authors. (See, for example, [2,4,5,8] The
Theorem states that if a category C satisfies certain conditions
and if A is an extremal-epireflective subcategory of C, then
X E A iff 0394x is A-regular. As a Corollary, we showed that if the

A-regular morphisms are closed under composition, then there
exists a strong factorization structure (E’, M’) on C such that

The category of functionally Hausdorff spaces and conti-
nuous functions (denoted FH) is one of the few known examples
of a full subcategory of TOP (the category of topological spaces
and continuous functions) in which the composition of regular
morphisms is not necessarily regular. FH is an example of the
fact that if the condition on A-regular morphisms is omitted
from the statement of the Corollary to the Diagonal Theorem,
the conclusion of the Corollary may be false.

In Section 1 we define the category FH and characterize

FH-epimorphisms and FH-regular morphisms. In Section 2 we
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obtain a factorization structure (for single morphisms) on TOP
in which the left factor is the family of FH-epimorphisms. We
show in Section 3 that the conclusion to the Corollary of the

Diagonal Theorem is false for FH in TOP.

1. F H -EPIM ORPHIS MS AND FH-REGULAR MORPHISMS.

In this section we define functionally Hausdorff spaces,
FH-epimorphisms, and FH-regular morphisms. We then charac-
terize both of these classes of morphisms, and show that FH-

epimorphisms are closed under composition, but FH-regular
morphisms are not.

The category of functionally Hausdorff spaces has been
studied by Dikranjan and Giuli [I] and by Schr6der [11]. Exam-

ples of Hausdorff spaces that are not functionally Hausdorff
can be found in E12L where functionally Hausdorff spaces are

called Urysohn spaces, and Urysohn spaces are called completely
Hausdorff.

DEFINITION 1.1. A topological space X is called functional1.r
Hausdorff if for each pair of distinct points x- and y in X there
exists a continuous function f : X-&#x3E; R such that f( ;) t f(y). We
denote the category of functionally Hausdorff spaces and conti-
nuous functions bN FH. FH is an extremal-epireflective subcate-
gory of TOP, the category of topological spaces and continuous
maps.

DEFINITION 1.2 16,8,91. A morphism f:X-Y in TOP will be
called an FH-epimorphism, or FH-epi, if for all spaces A in FH,

PROPOSITION 1.3. e : X-Y is an FH-epimorphism iff for all

morphisms f: Y-&#x3E;IR, f o e a constant implies that f is a constant.

PROOF. Assume that e is an FH-morphism, and f o e is a con-

stant. Let c = f( e(X)) , for X E X. If f is not constant, then there

exists y E Y. y E. e(X), such that f(y) # c. Define g:Y-&#x3E;IR by

Then

This contradicts the fact that e is an FH-epimorphism.
Assume that f o e constant implies that f is constant for

all I morphisms f: Y -&#x3E;IR. If e is not an FH-epimorphism, there
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exist Cl,f3 such that a o e = B oe but a#b where a,B: Y-&#x3E;A, A an
object in FH. Thus there exists I- E Y, j- X e(X) such that a(y)
t- f3C,r). There exists, therefore, g: A-&#x3E;IR such that

Let h = gooe- goB. Then h o e is constant. (In fact, /?oe(Y)=0
for X-E X.) However, h(..v) * 0, and h is therefore not constant.

Thus, e must be an FH-epimorphism.

COROLLARY 1.4. In the ca tegory FH , e : X-Y is an epimorphism
iff for all morphisnls f: Y-&#x3E;IR, f o e a constant implies that f is a

cons tan t.

PROPOSITION 1.5 . FH-epimorphisms are cl osed under composi-
tion.

PROOF. Let e1:X-&#x3E;Y, e2:Y-Z be FH-epimorphisms, and let f:
Z-&#x3E;IR be a morphism such that f o(e2oe1) is constant. f o( e2o e1)
constant implies ( Fo e2) o e1 constant. Thus f o e2 is constant sin-
ce el is an FH-epimorphism. This implies that f is constant sin-
ce e2 is also an FH-epimorphism. Therefore, we have that if

fo(e2oet) is constant, then f must be constant, and so e2 o e1 is

an FH-epimorphism.

DEFINITION 1.6 11, 8, 101. Let I:S-X be a morphism in TOP

such that there exist r, s:X-A, A in FH, with (S, i) = Equ( r, s) .
(Recall l that in TOP, the equalizer of r and s is given by

i will be called an FH-regular morphism.

PROPOSITION 1.7 [1]. i: S -&#x3E; X is a t-egul ar morphism in FH iff i
is a closed embedding, and. for each X E i(S) . there exists f:
X-lR such that f (X)# 0 and f (i (s))=0 for all s E S .

PROOF. Assume that i is a closed embedding such that for each
x E OS) there exists f : X-&#x3E;IR such that

We will show that

where ui, u2 are the injections from X into Y = XII X, the dis-

joint union of X with X, and q is the quotient map from Y on-
to Z, where Z = Y/- and - is the relation defined on Y by the

following:
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and y1~ y2 if J’l = u1(i(s)) and .Y2= u2 (i(s)), for some s in S.

Both Y and Z are functionally Hausdorff.
To show that Y is functionally Hausdorff, let y1, y2 E Y,

.r 1 * y2. Consider the following diagram:

If y1= u1(X1), .Y2 = U1(X2), let f be a function f: X-&#x3E;IR with

f (X1)# f(x2). Let f1= f2= f, and let If] be defined so that the
above diagram commutes. Then

The proof is similar for y1 = u2(X1), y2=u2(X2)· If J’1 = u1(X1) and
j-2 = u2(X2), let

Then

Thus Y is functionally Hausdorff.
We now show that Z is functionally Hausdorff. Let z1,

Z2E Z, ZI*Z2- Z1= q(y1), Z2=q(y2)- If

let fi= f, where f: X-&#x3E;IR, f(x1)#f(X2). (Define f similarly for

the case y1= u2(X1) and y2 = u2(X2).) If y1= u1(X1) and y2=

u2(.x2) , define fi as follows: if ’:%’1 =1= Jx’2, define f as above; if X1 =

X2, then X1 E i (S) . Thus, there exists f: X-&#x3E;IR such that

and so

Define f’: Z-&#x3E;IR by:

f ’(z1)# 0 and f’(z2)=O. That F’ is well-defined and continuous
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follows from the definition of [f]. That (S,i) = Equ ( q o u1, qoU2)
is immediate.

Assume that I : S-&#x3E; X is an FH-regular morphism. Then

Y functionally Hausdorff.

is closed since Y is Hausdorff. If x X i(S) , then f(x)#g(x).
Thus there exists h: Y-lR such that h(f(X))=O and A(g(x))#0.
Then

COROLLARY 1.8. i:S-&#x3E;X is an FH-regular morphism iff i is a

closed embedding. and. for each x E i(S) . there exists f: X-&#x3E;IR
such that f(x)#0 and f(i (s)) =0 for all s E S.

PROOF. The corollary is an immediate consequence of Propo-
sition 1.7 and the fact that i is an FH-regular morphism iff
there exists a regular morphism e: B-A such that A is functio-

nally Hausdorff. e is a regular morphism in FH, and (S,i) is a

pullback of (B, e) . (See Lemma 3.3 in [8].)

The following example shows that FH-regular morphisms
are not necessarily closed under composition. Let X denote the
set of real numbers and T the Smirnov topology on X C12J. T is

defined as follows: Let T’ denote the Euclidean topology on the
reals, and let

V E T iff V=U-B, where L E T’, B C A. Thus every open set in T
that contains A intersects every open set that contains 0. The-

refore, there is no f: X-&#x3E;IR with f(a)=0 for all a E A and F(0) = c

* 0, since this would imply

where

Thus iA: A-lR is not an FH-regular morphism.
Let B=AU{0}. Since B is closed in T’, the Euclidean topo-

logy, and T’ C T, for each x,éB there exists f : X-&#x3E; IR so that f(b)
= 0 for all b E B and f(X) # 0. This follows from the fact that

(X,T’) is completely regular. Define g: B-lR by g(a)= 0 for all l a

in A, g(0) = 1. g is clearly continuous. Thus i’A:A-&#x3E;B and iB: B-X
are FH-regular, but their composition, iA: A-&#x3E;X, is not.
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2. AN (FH-epi. M) -FACTORIZATION.

In this section we describe a class of morphisms M’ that
has the property that (FH-epi,M) is a factorization structure on
TOP. We begin by recalling the definition of a factorization
structure.

DEFINITION 2.1 17,81. Let E and M be classes of morphisms in
the category C. (E, M) is a factorization structure (for single
morphisms) if:

1. E and M are closed under composition:
2. E (1 M contains all isomorphisms:
3. Each morphism f in C is factorizable; i. e. ,

4. C has the (E,M) unique diagonalization property, i. e., if

m o f = g o e , with m E M, e E E, there exists a unique morphism
d that makes the following diagram commute:

If M is contained in the class of embeddings in C, (E, M) is

called a strong Factorization structure.

LEMMA 2.2. M’ is closed Linder composition.
PROOF. Let m1: X-&#x3E;Y. 1112: Y-4Z E M’. Then m2o m1: X-&#x3E;Z. Assume
m2omltX) is contained in, but different from, S.

If S c m2(Y)’ then

so there exists g: m-12(S)-&#x3E;IR such that

g(m1(X)) = 0 for all X E X. g( m-12 (s))# 0 for some s E S.

Let m: Y- m2(Y) be defined by m(y)=m2(y) for all j E Y, and

let f = gom-1|S.
If S is not contained in 1112(Y)’ there exists f:S-41R such
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that f(m2(y)) =0 for all y E Y, f(s)#0 for some s E S . Thus

f(m2om1(X)) =0 for all X E X and f(s)#O for some SES.

LEMMA 2.3. M’ is closed undet- intersections.

PROOF. Let Xj C Y be such that the inclusions ix,: X;-yY are in

M’. For each i, if Xi C S C Y, then there exists fi: S-&#x3E;IR such that

fi(X) = 0 for all l .x E Xi, fi(s) #0 for some s E S. If n X; C S C Y and
n xi#S, then there exists Xio such that Xio* S. Define T by

T = Xi0U S # XiO. Since XI,CTCY, there exists F:T-IR such that

f(X)= 0 for all X E Xi0, f(t) #0 for some t E T, and so t E S since

t)it Xjo’ Thus f(X) = 0 for all X E n Xi, f(S)#0 for some s E S. fl S
is the desired function.

THEOREM 2.4. (FH-epi,M’) is a str-ong factorization structure

on TOP.

PROOF. In Proposition 1.5, we showed that the FH-epimorphisms
are closed under composition. In Lemma 2.2, we showed that M’
is closed under composition. That FH-epi and M’ both contain
all isomorphisms is obvious.

To show that each morphism f has an (FH-epi, M’)-factoriza-
tion, consider the following diagram

where

(C.m) = n{(S.iS)|S C Y, f(X) C S, and iS E M’}.
lD E M’ since M’ is closed under intersections (Lemma 2.3). It re-

mains to prove e E FH-epi. where e(X) =f(X) for al 1 X E X . Let

D ={C|C E C and a(f(X))=0 V X E X implies a( c) = 0 for al I a: C-&#x3E;IR}.

f(X) C D C C. If D#C, then iD: D-&#x3E;Y is not in M’ since iD E M’
contradicts the fact that C is the smallest subspace of Y that
contains f(X) and whose inclusion into Y belongs to M’. Thus
D#C implies iDIZ M’. We will I show that iD E M’, and therefore
D = C. That D = C implies e E FH-epi is immediate.

To show that iD E M’, we must show that if D C S, D 1= S.
there exists g: S-&#x3E;IR such that g(d) = 0 for all de D and g( s) # 0
for some s E S. If S C C. we know that D # C implies that there
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exists ex: C-&#x3E;IR such that a(f(X))=0 for all XEX, a(c)#0 for
some c E C . Since a(f(X))=0 implies a(d)=0 for all d E D, we can
let g=a|S. If S is not contained in C, let T = SUC. Since iC E M’
and C4=T, there exists j:T-lR such that j( c) = 0 for all c E C,
j(t)# 0 for some t E T. Thus j( s) # 0 for some s E S, j(f(X))=0
for all X E X and so j( d) = 0 for all d E D. Let g=j|S. We have
shown IDE M’, and so D = C and e E FH-epi.

In order to complete the proof that (FH-epi, M") is a factori-
zation structure on TOP, we must show that if g o e = m o f , the-
re exists a unique d such that the following diagram commutes:

If m(W) = Z, then m is a homeomorphism and d = m-1 og. If
m(W)#Z, we will show that gtY) C m(W) . Then d = r-1og, whe-
re r: W-&#x3E; m(W) is defined by r( w) = m( w) for all wE W.

Suppose that m(W) C S C Z and m(W) * S. Since m E M’, there
exists k: S-lR such that k(m(w)) = 0 for all w E W and k(s)#O
for some S E S. Thus

and so a(g(e(X))) = 0 for all N E X. Therefore a o g o e is constant,
and thus a o g is constant since e is an FH-epi. If there is some

y 0 E Y with g (y0)E m (W), then if S = m(W) U{g(y0)}, we have

a(g(y0))#0 since m E M’ and a og(y0)= 0 since e is an FH-epi.
Therefore g(Y) C m(W).

COROLLARY 2.5. In the categori- FH , m : X-Y is an extremal

monomorphisln iff whene ver m ( X ) C S C Y , m(X):t:S, there exists
f:X-&#x3E;IR such that f ( m (X))=0 for all x E X and f (s) # 0 for some
s E S.

PROOF. Let MFH denote those morphisms in FH that belong to
the class M’. (epi, MFH) is a factorization structure for FH.

(This follows from the fact that extremal-epireflective subcate-

gories of TOP are mono-hereditary.) Since the right factor is

uniquely determined by the left factor (see Corollary 33.7 in 171,
for example) MFH must be the class of all extremal monomor-

phisms in FH.
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3. THE DIAGONAL MORPHISM.

DEFINITION 3.1 171. The diagonal Ax: X-&#x3E;X2 is the unique mor-
phism defined by the categorical product (XxX,t1,t2); i.e., Ax
is the unique morphism such that the following diagram com-
mutes :

In TOP, the diagonal AX: X-4X2 is the function AX(x)= (X,X) for
all X-E X.

We can conclude from the Diagonal Theorem [ ,5,8] that
X is functionally Hausdorff iff Ay is FH-regular. The corollary
to that theorem 181 states that if A is an extremal-epireflective
subcategory of TOP with the property that the A-regular mor-
phisms are closed under composition, then there exists a facto-
rization structure (E, M) on TOP such that X is an object in A
iff AXE M.

We have already shown that the FH-regular morphisms
are not closed under composition. The following theorem shows
that without this condition on the A-regular morphisms, the co-
rollary is false.

THEOREM 3.2. There is no factorization structure (E.M) on

TOP that has the properti- that X is functionally Hausdorff iff
AXE M.

PROOF. Let X be a Hausdorff space that is not functionally
Hausdorff which contains exactly 2 points a , b such that there
exists no continuous f: X-&#x3E;IR, with f (a ) #f(b). Let Ax:X-&#x3E;X2 be
the diagonal map (i. e., AX(X) = (x, x) for all x E X). If

Ax(X) C S C X2 and AX(X) t S, then if there exists (x,y) E S for
which there exists f: X-lR, with f(x)# f(y), define

Then f’((x,x))=0 for all l x E X, f’((x,y))#0. If there exists no

such pair (x,y), then
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Define f: S-&#x3E;IR as follows :

f is continuous since X is Hausdorff. Thus Ax E M’.
If (E, M) is a factorization structure on TOP such that

E C FH-epi , then M’ C M. If there were a factorization structure

(E. M) on TOP with the property that X is functionally Haus-
dorff iff AX E M, then E C FH-epi. (See Lemma 2.8 in 181.) The

space X cited above is an example of a Hausdorff space that is
not functionally Hausdorff and whose diagonal Ax is in M whe-
never (E. M) is a factorization structure on TOP with E C FH-epi.
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