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A GENERALIZED GLOBAL DIFFERENTIAL CALCULUS:
APPLICA TION TO INVARIANCE UNDER A LIE GROUP. I

by Joseph JOHNSON

CAHIERS DE TOPOLOGIE

ET GÉOMÉTRIE DIFFÉRENTIELLE
CATÉGORIQUES

Vol. XXVII-3 (1986)

RESUME - La th6orie du Calcul Diff6rentiel sur les vari-

étés diff6rentiables est généralisée (sans l’affaiblir) en

utilisant des fonctions localement définies C°° (ou analytiques
reel les, ou analytiques complexes) de 1, 2, 3, ... variables comme

operateurs, et en introduisant des relations de commutativite

appropri6es. La th6orie est de plus précisée par des axiomes qui
permettent de recoller les informations locales en une

information globale. Ce qu’on obtient poss6de les principales
propri6t6s de l’algèbre commutative, en particulier la

possibilite d’ajouter des indéterminées et de r6soudre des

systèmes d’equations . De plus, on peut prendre des limites et

colimites aussi générales (mais petites) que 1’on veut. La

th6orie est appliquee pour genéraliser les théorèmes de Lie aux

espaces de dimension arbitraire (mdne infinie) et sans

restriction sur la nature des singularités qui peuvent
intervenir.

INTRODUCTION.

In synthetic differential geometry one can discern at least two

distinct trends. One of these is the "global approach" as represented
by the theory of CCÐ-algebras C9L At the other extreme is the "local

approach", where something concrete is hypothesized about the local

nature of what is being studied 110). This paper, while hewing to the
global point of view, obtains very detailed information about local

structure (cf. discussion preceding (6.7)). What we seem to learn from

the approach used here is that one can carry differential calculus

very far without knowing anything whatever about the underlying
topological structure of the spaces involved. This approach has

therefore an obvious advantage for studying geometric structures so
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highly "fractal" that one cannot easily lay down a minimal set of

axioms for them. The theory pursued here somewhat resembles the

theory of C°°-algebras, but our operators are certain functions of 1,
2, ... variables whose domains are arbitrary open subsets of euclidean
space (rather than the entire euclidean space itself) In this way a; c

are able to handle the real-analytic and complex-analytic cases

together with the Cm-case. Also we can look at functions like 1/z as

operators. Of course, requiring more operators than for Cco-algebras
also gives our objects more structure.

The paper is in two parts. Part I constructs a tower of

categories U 3 C Z K such that each inclusion has a left adjoint. We

finally arrive at a category K in which a lot of the usual business

of differential geometry can be done. Each of these categories is

both complete and cocomplete. The potential usefulness of U and C,

except as approximations to K needed to derive the properties of K,
is only hinted at here (cf. (3.2), (8.2), and the discussion that

precedes (3.2)).

Even though the theory of this paper makes no specific
hypotheses about the local nature of the spaces studied, it does

nonetheless provide a framework for ideas such as are found in 161.

Also it is possible that the dual of the category K is cartesian

closed, so that, since K°P contains manifolds as a full subcategory,
we would get an embedding of the manifold category into a cartesian

closed one. However, obtaining an embedding of the manifold category
with this property is in no wise the goal of this paper.

Rather the justification for the approach followed here is that

the categories we generate allow us to practice differential or

analytic geometry by imitating commutative algebra. This application
of the theory is shown in Part II of the paper, where the theory of

Part I is used to derive a treatment of invariant theory that is more
flexible and also much more general than the traditional one. The

proofs on occasion are hard to find, but once found (sometimes by
using geometric intuition and dualizing, sometimes from algebraic
intuition) are elegant and simple. The extra generality one gets and
the possibility of using algebraic as well as geometric intuition

justify the added measure of difficulty. The fact that the present
approach rides roughsod over singularities (like a large horse

galloping over little bits of cactus) makes it a very convenient tool .

In the case of complex-analytic geometry, the approach followed here
is more thoroughly algebraic (and more general) than for instance

that of [7J.
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The notion that seems to most fundamentally underlie the

mathematics of this paper is that of commutative inverse semigroup.
It was my understanding of the related concept of prering (cf. [8D

that caused me to realize the approach taken here could be viable.
The contents of this paper have been circulated in two (larger)

preprints since 1984, and I have received many constructive comments

about them. Conversations with Paul Cherenack, Anders Kock, Fred

Linton and David Yetter in particular have been helpful in crafting
the present version.

For more detail, the reader can consider the following outline

and the paper itself.

PART I. GENERAL THEORY OF UNIVERSES.

91. Definitions and elementary properties of universes.

Defines the operators for the particular type of universal algebra
(weak universe) studied here and makes clear the type of

commutativity relations that are imposed on these to define the

notion of a universe (object of 60.

§2. Structure theory of universes. Studies the additive

inverse semigroup associated to a universe and gives information on

how universes are put together. It is shown how equalities and

inequalities can be solved within the category of universes and how
one can adjoin indeterminates to a universe.

§3. Piecing together global information from local

information. Takes up the question of how local data can be harvested
into global information. This is done through introduction of the

category C of cohesive universes.
§4. Phantom decomposition of universes. A very spiritual

section that speaks for itself.
§5. Representability of certain functors C -&#x3E; sets. Shows us

how to construct the kinds of cohesive universes needed in the

sequel.
§6. Local theory of cohesi ve uni verses. Introduces points

for a cohesive universe and defines the local universe at a point. It

is shown that a local universe is essentially a special type of local
ring, and that dividing this local ring by an arbitrary proper ideal
produces a new local universe (cf. (6.5). In (6.6) it is shown that

solving systems of equations in a local universe amounts to modding
out by ideals.

§7. Topological universes. Defines the category K of

topological universes. These are the cohesive universes that have

enough points to allow one to distinguish between open sets.
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§8. Sober spaces and the spaces SC. Shows that the

category of sober spaces is exactly the category we get when we

consider the set of points for various cohesive universes. The spaces
SC, where C is a limit or colimit in K, are shown to be easily
computable in principle

§9. Derivations and tangent spaces. This essentially
introduces the tangent bundle and the notion of admissible

derivation.

§10. Infinitesimals and Taylor polynomials.
§11. Integration of one-parameter families and Taylor’s

Theorem. Shows that every one-parameter family of elements of a

topological universe has an integral which is also a one-parameter
family of elements of that universe. This is used to show that, for

arbitrary topological universes, Taylor’s Theorem with the integral
form of the remainder is valid.

PART II. INVARIANCE UNDER A LIE GROUP.*

This part of the paper only uses universes that are in the

category K. In Part II we show how the theory of Part I can be used

to provide a vast generalization of a part of differential geometry
which, in its classical form, requires the use of a number of

different techniques.
§12. Actions of a group universe on a universe. It is shown

that an element that is locally invariant and has an invariant domain
is invariant. Right-invariant vector fields are introduced. A group
action is shown to have an orbit space which is itself the set of

points of a universe. There is no apparent general need for "slice

theorems" in this theory (cf. [11]).

§13. Action of a local group universe on a universe. It is

shown that local invariance of c is equivalent to all Lie derivatives
of c being equal to zero.

§14. Low-ord er terms in th e power series expansion of y.
Taylor’s Theorem is used to show that the set of right-invariant
vector fields and the Lie alebra of the group are isomorphic as Lie

algebras.

*’ This Part will be published in Volume XXVII- 4 (1986),
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O . NOTATION.

This paper has some very special conventions.

Categories. If A, B E Z, Z a category, (A,B) = (A,B)z is the
set of morphisms A A B. AtB is the canonical morphism from A to B

when the context makes clear what AtB would be (e .g . , if A is an

initial object of Z ). The conventions of [1] are generally followed
here. Z-Z for Z in the category Z is the category of morphisms in Z
with domain Z,

We define Z-Z analogously . S H T means S is a left adjoint of T. If I

is a diagram scheme (cf. [1]). Cr is the constant diagram of scheme I

associated to C.

Sets. lAl denotes the underlying set of A when the context

makes its meaning clear. CIB means the image of C in B if C C A or

C E A, when the context specifies a map A -&#x3E; B. If S, T E sets,

means for some set U C S.

Write U = dom f’, The category of weak sets denoted wsets has the

same objects as sets, but

If S, T, V E wsets, f e (S,T), g E (T,W) , then gof E (S,T) is defined

by

Our abbreviation for closure, say in a topological space, is cl.

In what follows, K = R or K = C. If P is any finite set,

and is called a euclidean manifold. If X is any set, define
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Define Bp = Kmp if #P  ooJ Bp = B[],p] if p E I, where

Ve note that if a p K, we have a. e Bp defined by

for every x.

If f : P -&#x3E; Q, P, Q f inite, define M r: MQ -&#x3E; Mp by M, (b) = b o f.

The euclidean manifold Xp. has coordinate functions zpP E Bmp defined

by

If 1 q S p, we write ZqP for Zp[]1. p]. As usual, K = M1, and x E M,
can be identified with

Ve note that M[],0] = Mes has exactly one element 0 (considered as

equal to the empty graph). We can identify Bo with Kll {Oo} , where 0.

is a symbol , by

If F e Bp and Fi, ..., Fp E Kx , p &#x3E; 0, we have an element denoted

F (F, , ..., Fp) of Kx defined by

with dom F (F, , ..., Fp) defined as all x e X such that the right-hand
side of this equation makes sense. The paper that follows is

basically a particular way of generalizing this observation about Kx.

We note that Kx has a unique element 0x such that dom 0x = 0.

The reader must now pick one of the following as a synonym for
admissible: CC» real-analytic, complex-analytic. One must then let

K = R if "admissible" means CQI) or real-analytic, K = C if it means

complex-analytic. Let Ar C Br consist of all those functions with

open domain which are admissible functions of the points of that

domain. If the reader wishes to axiomatize the theory that follows

more fundamentally than is done here, he will note that initially we
use very few special properties of K and the sequence A, , A2 , ..., but

that by the end of the paper, the list of properties used grows quite
long.
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PART I: GENERAL THEORY OF UNIVERSES

1. DEFINITION AND ELEMENTARY PROPERTIES

OF UNIVERSES,

A set U is called a weak universe if for each h = 1, 2, ... (but

not for b = 0), and each element (F, u) of AhxUh, an element

of U is given. Put another way, U is a universal algebra with set of

operators Ai 11 Az 11 As ll..., the elements of Ah acting with arity h.

If U, V are weak universes, f E (lUl, lVl) is called a 11lorphism if

whenever h &#x3E; O, F £ Ah , u e Uh, we have

where

(It is tiresome to endlessly repeat the caveat h &#x3E; 0, so we usually
will not do that, and shall consider that h &#x3E; 0 is understood.)

We note that since the elements of Ah are not necessarily
globally defined functions, the definitions given- here do not fit

within the framework of "Lawvere theories" (cf. [1]. p. 220). We let V

be the category of weak universes, and note that w is a category of
sets with algebraic structure as defined in 11.1.9 of [1] In time we

shall, in the spirit of [1]. introduce commutativity relations to

define the subcategory of V that we shall be studying.

For the case where admissible means CW. we get examples of weak
universes by considering a Cr=manifold X and letting U C K 1M’ consist

of all Cs functions (for a fixed s S r) whose domains are open
subsets of M. Such examples, however, do not even begin to suggest
the range of possibilities.

We fix a countable sequence of symbols Z1, Z2, .... The set of

elementary expressions is defined inductively by arbitrary use and

reuse of the following two rules:
1) Zi. is an elementary expression, 1 = 1, 2, ... ;

2) If E, , ..., Eh (h &#x3E; 0) are elementary expressions and

F E AM. then F (E, , ..., Eh) is an elementary expression.
For instance
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is an elementary expression. If we use a different sequence of

symbols, say w, , w2, ..., we shall speak instead of elementary expres-
sions in w, , W2, .... We can speak of an elementary expression in a

fini te sequence of symbols w, , ... Wp. If E is an elementary expression
in w, ..., Wp , b t net in W1, ..., W1-1 , W1+1, ..., ’rip we shall say that

E effectively involves wi, or that E is not free of Wi. We write E =

E (W1, ..., wp) if E is an elementary expression in W7, ..., wp. The

example that was given is an elementary expression in Z7 Z2, Z.3, Z4,

zs free of Z4J hence also is an elementary expression in Z7, Z:z, Z3,

zs. If an elementary expression has a nest of brackets ((... ( ) ...)) 

with n pairs of brackets, but none with more than n pairs, we call

c(E) = n the complexity of E. In the example, O (E (Z7, ..., zs)) = 3. We

have

An equation E1 = Ez where Ei, Ez are elementary expressions is

called an elementary equation. If u1, ..., up E U E W, and if

E (Z1, ..., zp) is an elementary expression, then E (U1, ..., up) E U can

be defined by replacing Z1 by Ui for every 1 and evaluating by using
the maps AnxUh -&#x3E; U that define the weak universe structure on IUi.

Thus, in our example,

where

Given any elementary equation

and a weak universe U, we say u E U h is a solution of E1 = E2 if

E, (u) = E2 (U) An elementary equation E, (Z1, ..., Zp) = E2 (Z1, .. Zp)
which has every element of UP as a solution is called an elernen tary
identity for U. We shall then say that U satisfies E = E2. We ob-

serve that every Kx satisfies the identity O, (Z1)= Ø1 (Z2), where

0r e A, is defined by dom 0r = 0.

An elementary equation E, (Zl ..., Zp) = E2 (Z1, ..., zp) is called

balanced if zi is effectively involved in E, and E2 for every
I = 1, ..., p. If an elementary equation is balanced and is an

elementary identity for each of the weak universes A, , A2, A3 , ..., we

shall say it is a fundamental identity. A weak universe for which

every fundamental identity is an identity will be called a universe.

Let U be the full subcategory of W supported by the universes. We
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shall see that there are interesting examples of universes for which
the identity O(Zy) = Ø (Z2) fails.

If we would show that the weak universe U is a universe, we

would need, according to our definition, to show that if E, = E2 is

any fundamental identity, then U satisfies E, = Ez. The list of fund-

amental identities is uncountably infinite, however, and though for

example any Kx is a universe, that is not apparent at this point. We
shall proceed now to develop a "constructible" list of fundamental

identities such that any weak universe which satisfies all of them

will be a universe.

We have first that

is a fundamental identity, since to say that U E W satisfies (1.1.1) 

just means

where

A weak partition of 1, ..., p ( p &#x3E; 0) is given by writing

where pi &#x3E; 0 for every i. Given such a weak partition and any family
U1, ..., Up, we set

and write Ui* for the sequence Ui.7, ..., Uip1. If F E An and F t E Api
for 1 i  h, then

where E = F (F, (Z,*), ..., Fh (Zn*)) is a fundamental identity. To prove
this, note that if U E W and u e Up, then (1.1.2) means that

This equation holds if U = Kx for any set X, hence for any Ah since
A,-, C Bn = KM,, as a weak subuniverse. Any fundamental identity of

type (1.1.1) or (1.1.2) will be called a serninal identity. We note that
any fundamental identity, in particular any seminal identity, is a

"cornmutativity relation" in the sense of 11.1.9 of [1]
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PROPOSITION (1.2). An y weak universe that satisfies every seminal

identity is a universe.

For (1.2) we use a lemma that generalizes (1.1.2).

LEMMA (1.2.1). Let U E W satisfy every seminal identity,
and let E (’z" ..., Zp) be an elementary expression that is not free of
a n y z,. Then U satisfies

Ve use induction on r = C(E). If r = 0, then p = 1 and

E (Z1) = Z1. Then

by (1.1.1). Now let r &#x3E; 0 . We can write

using an appropriate weak partition of 1, ..., p, where each Ei (Ziw.) is

elementary with complexity  r. Using induction on r and (1.1.2) with

F1 = Ei (Z1,P1, ..., Zpi pi) we get, if u E UP, that

proving (1.2.1).

To prove (1.2), let U be as in (1.2.1) and let

be any fundamental identity. If u E UP, then, since Ap satisfies

E1 =E2, we have

proving (1.2).
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It is evident that if X is any set, Kx will satisfy every
seminal identity. If U is any universe and V -&#x3E; U a one-one morphism
in V, then V is also a universe. Also, any surjective morphism U -&#x3E; V

in W where U E U implies V E U. Thus from Kx we get a whole host of
universes, and we see that every weak universe we have considered so
far is in fact a universe.

It follows from 11.5.1 of [1] that U is complete and from 11.5 .3

that I I : U -&#x3E; sets preserves limits. In particular, if (Ui) i£I is a

family of universes, then TT i£I lUi l has the universe structure defined

by

if

and this is TT i EI Ui. In the next pages we shall also see that U is

cocomplete.

To establish that U is cocomplete, we need to look at a cons-

truction which can be done in U that seems not to be expressible in

terms of standard notions of category theory. We shall consider any
ordered set I as a category where (i,j) : i -&#x3E; j is unique if i  j and
doesn’t exist otherwise (so

Let I be an upper semi-lattice (the sup iYj of I and ..1 always exists) ,
T: I 4 U any functor. We define a universe U with lUl = Ll i£I lTil. If

t E Ti C U, let y = 1. Assume that F E Ah, t1, ..., th e U, and set

where

Let tjlTi denote the image of t.1 under T ("i.1) -) Ti, and define

using the fact that Ti is a universe to form the right-hand side of

the equation. This makes U into a weak universe Ll T that we shall call

the concatenation of T. It is easily seen that 11T satisfies any given
balanced elementary equation iff every Ti satisfies this equation.
Thus Ll T is a universe.
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It should be observed that any one-element set is a universe in

a unique way, a so-called one-element universe. Concatenations of

one-element universes can be used to disprove many naive conjectures.
Ve note that if i #j, ti E Ti, tj E Tj, then 0, (ti) E T1, so 0, (ti) #
O (tj), O, (Z)- O, (Z) is not dll identity fûr Ll T if #I &#x3E; 1 .

Let S be any set, and let I be the upper semi-lattice of all

finite non-empty subsets of S where if P, Q £ It P  Q means P C Q.
Ve have a functor T: 1 -&#x3E;4 U defined by T (P) = Ap where Ap C Km, con-

sists of all admissible functions MP --1 K with open domain. Define

Ux e U to be lIT. We. let Tu = Au : Ar e AQ if u : : P -&#x3E; Q is any map of

finite sets.

LFJMM (1.3). I l-&#x3E; U1 is a left adjoint for I I U -&#x3E; sets.

We need to show that for any given I, U1 represents the functor
U -&#x3E; sets defined by U k) (I, IU 1) (cf. [1] 16.4.5). Define

Ve need to show that if f : 1 -&#x3E; IU I, there exists a unique morphism

LEXXA (1.3.1). Suppose u : [1, q] -&#x3E; [1 .p) i s surjecti ve and
F E Aq. Th en

is a fundamental identity.

To show that ft- is unique, note that if P = {x1 ..., Xp) C I,
then F (Zx1 P, ...,Zxpp) for F E AP is a typical element of AR. Neces-

sarily

SO Of is unique.
To show ø f exists, let X1, ..., .xp c I be all distinct, and let

P = ( X1, ..., yp }. Let Wj = Zxjp, Then F ( w 1 ..., wp) e U:c can be

written thus for only one F e AP. We define
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When øf is so defined, we note that the formula just given will

continue to hold even if the Xi are not distinct or are chosen in

some other order. Indeed, let

have cardinality p and let G c A,. Let us show that

Let y.y = Xuj 1  j  q where u : [1,q]-&#x3E;-&#x3E; [1,p]. Then

using (1.3.1).

LEMMA (1.3.2). O f E U.

Let U1, ..., u,, e Ui, F e Ah. Write

where

Set

i.e., we have here a weak decomposition of 1, ..., p, and this is the

indexing associated to it. Then

THEDREll (1.4). U .is cocomplete.

Let D : I e U be a diagram in U, and let S = Ifi£ lD(i)l. Let

U c U and T: D -&#x3E; Iv a morphism of D into the constant diagram
associated to U. Then define fT : Us e U by (fTS*)l Di = Ti for each

i t I. Define u - v for u, v E Us if fT u = jfrv for every T: D -&#x3E; Iu.
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Let V = Us/-. The natural maps Di -i V constitute an element of (D, Iv) 
that exhibits V as a colimit of D.

2. STRUCTURE THEORY OF UNIVERSES.

From now on, fundamental identities will be, in most cases,

treated as obvious and be used without any special explanation. We

use the addition function

to define an addition on a weak universe U as follows:

Similarly we let

If U is a universe, fundamental identities give us

u + v = v + u, uv = vu, u (v+w) = uv + uw

and associativity laws for addition and multiplication. Our study of

an arbitrary universe U will first focus on the additive structure

of U. 

The function neg: K -&#x3E; K defined by neg (a) = -a is in A,, so we

can define -u = neg(u), u E U. As usual we write u - v f or u + (-v).

Then x = -u solves u+x+u = u (because of a formal identity) , so CU,+ 
is a "regular" semigroup (121, p. 10). By v.4.5 of [2]. p. 159, U is an

"inverse semigroup", a notion which has an abundant literature (cf.

[3]). It is this discovery about U that led me to realize that the

present approach to differential calculus might be a viable one. It

lies at the heart of the entire theory.
We can use the fact that U is a universe to give quick proofs

of facts that hold as well for arbitrary commutative semigroups. If

u E U, define Ou = 0 , (u) (where 0, : K -&#x3E; K is defined by 01 (a) = 0).

If U = Kx, X any set, 0 u is just the zero function on the domain of u.

Thus for an arbitrary universe U, we shall think of 0 u as being
somehow the domain of u, an analogy that will be endlessly exploited
here.
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Define u j v (u, v e U) if u + Ov = v. (In our analogy,

We note that :

since

(since i

Also

The set Ou = {Ou I u E U} plays a very special role in the

theory and acts like our family of "open sets". The elements n in OU

are characterized by the equation n + n = n, i.e.,

We note that

In fact, if n, p c OU, then nfp - np. Note n E 0U n n = On.
If n £ OU, let Un = { u e U l Ou = n }. Then IU = Ll n£OU Un. We

shall see that this decomposition of U into the sets Un has very

agreeable properties.

LEMMA (2.1). Let n, p E OU,* = plus or times (+ or x). Then

Let Then

In particular, U n* Un C Un. If u E Un, then

SO U,, is an associative ring with n = OUn, 1 (n) = identity of Un.

LENNA (2.2). OU, with the order induced from U, is an upper
semilattice.
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If n, p E OU, then n, p  n + p. Suppose n, p S u £ U. Then u =

n + Ou E OU, so n + p  u + u = u. Thus n + p is the sup n V p of n

and p in OU (and in U as well).

If a, h E U, n, p E 0U, * = + or x, then

since

defined by

respects + and x. Also

so r" n’ is a unitary ring morphism. Thus we have lUl = Ll n£ou Un, where

{ Un l n E 0U } is a family of rings directed by an upper semilattice.

We pause to observe that we can work in U in very much the

same way that we can work in the category of rings. Let U E U, u, v

in U. We shall write (u,v) as "u = v" when we wish to think of c’u,v)
as representing an equation. Let E = { Ui = Vi, liE I ) be a family
of equations on U (Ut, v, E U all i) where I is any indexing set. If

f E (U,W)v, f is a solution of E if fui = fv, for every 1 E I. Let

TW = { f E (U,W) I f is a solution of E ) = (Sol E) (W).

If Sol E is represented by g : U -&#x3E; Z E (Sol E) (Z) (so that TW =

(Z,W)) we shall say that g is a generic solution of E.

PROPOSITION (2.4). Let E be a family of equations on U E U. Then E

has a generic solution U 4 U/E.

If u, u’ E U, define u - u’ if for any solution f of E we have

f (u) = feu’). If u, - i-i 1.,, 11p and F E Ap, then

Obviously U e U/- is a generic solution of E. Notation for this map
will be u H u/E, u e U.
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The reader able to imagine many equations one might impose on

the elements of a universe might not observe that using equations, we
can state what it means for elements of a universe to satisfy what
is usually referred to as an "inequality". For instance, let a E K = R,
and let g. (x) = x, x &#x3E; a, ga E A, . Then the inequality u &#x3E; 0 (in the

numerical sense, not in the sense we have been using) can be expres-
sed as go (u) = u. Also u L 0 (numerically) can be expressed by the

system {ga (u) = u I a  0 ) ,

Other ideas from algebra also have counterparts for U. Let

U E U, Y E sets, and let S = IU I Ll Y. Let I : lUl -&#x3E; IUs and

j : Y -&#x3E; !US I be the compositions of SO: S A Us with lUl -&#x3E; S and Y -&#x3E; S

respectively. Now let Us -&#x3E; V be the generic solution of the follow-

ing set of equations of E :

where we consider that IUI C Us using i. We shall define U.Y = Us/E
and let Y H lU.Yl be induced by j. The following is immediate.

PROPOSITION (2.5). Y l-&#x3E; U.Y is a left adjoint for 1 I: U- U -&#x3E; sets.

If 0 E U E U and 0 + u = u for every u c U, we call 0 an

identify element of U, and write 0 = Ou since it must be unique. We
shall denote by Uo the subcategory of U supported by those universes
that have an identity element, defining

If U E Uo, a l-&#x3E; a1 (0v) defines an element of (Ao, U)uo giving us, in a

sense, a 0-ary operator of Ao on U. In fact, Ao is an initial object
of Uo. We define Uo = Uou for U e Uo, and we call Uo the set of

global elements of U. We have a functor ( )o : U- Uo 4 sets defined by
V l-&#x3E; Vo. 

PROPOSITION (2.6). Let U E Uo. Then ( )o has a left adjoint U ( ):

sets e U- Uo.

Evidently U H U.Y for any set Y is an injection as is Y H lU.Y l 

(since U-U possesses objects with more than one element), so we can
consider that U,Y C U.Y . Let U(Y) = (U.Y)/E, where E is the set of all

equations v + Ou for v e U.Y together with all equations Oy = Ou,
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y e Y. Since U.Y -&#x3E; (U.Y)/E is surjective, Ou/E is an identity for U (Y).

Then

We can use (2.6) for a new look at the universes Ah. We have

Ah = Ao ([1, h)).

a. P IEC ING TOGETHER GLOBAL INFOR-

MAT ION FROM LOCAL INFORMATION.

If u, v E U E U, we shall say that u and v match if u + Ov =

v + Ou. A subset M of U is matching if every two elements of M

match. We write M (U) for the set of all matching subsets of U, and
note that any subset of U which has a lower bound is necessarily in

M (U). Also OU E M (U). We note the following axiom that is satisfied

by every universe Kx.

(3.1.1) Every matching subset of U has a greatest lower

bound (g1b).

The reader will note that (3.1.1) resembles the axiom that

distinguishes a presheaf from a sheaf. This statement can be made

exact using the theory of inverse semigroups.

Let U satisfy (3.1.1). Let F, G E Ah , u, v E U h . Define

u + Ov e U h by (u + 0v)t = ut + OVi, and assume u + Ov = v + Ou and

also F + OG = G + OF. Then , using some fundamental identities, we

get

It follows that if F e M(Ah) M1 , ..., Mh E 7f(U), then

Ve consider the following axiom:
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We note that if F, G E Ah, u, v E Uh, F I G, Ui  Vi, for all i,
then F (u)  G (v), so 2.. holds automatically in (3.1.2). Thus in fact

(3.1.2) abbreviated X = Y is equivalent to X  Y and also to OX = OY.

If U E U satisfies (3.1.1) and (3.1.2). we shall call U cohesive. If U

is cohesive, glb OU is an identity element for U since

If U and V are cohesive, any f E (U, V)Uo is called a morphism
provided f(glb M) = glb (-tM) for every M c N(U). We let C denote the

category of cohesive universes.

Let U E C, M, N E M(U), * = + or x . Then, (glb M)*(g1b N) =

glb (M*N) by (3.1.2). In particular, if n E OU and M 0 OU, then

glb (n+M) = n + glb M. The elements of OU under + and x behave like

the family of all subsets of a given set under n and U. Comparison
with a type of algebra commonly considered in quantum mechanics

suggests that the algebra of OU under these operations for the case

when U is an entirely arbitrary universe is analogous to the "logic"
of a quantum mechanical system. Since OU is "Boolean" when U e C, i.e.

glb (n + M) = n + glb M, and the logic of quantum mechanical systems
is non-Boolean, this suggests that the universes which are not

cohesive, or satisfy (3.1.1) but not (3.1.2), can possibly be of

interest. Nonetheless the main thrust of what follows will be the

study of universes which are cohesive. The following is an example of
a non-cohesive universe where the theory which follows gives no

information whatever.

EXAXPLE (3.2). Take K = R. If f, g E A.. define

if for some a e K.

Then U = A1 /- has a unique structure of universe such that Ai fl U

(written f H f/-) is a morphism of universes. Let g : U -4 C be any

morphism of U into a cohesive universe C, and let w = &#x26; where
z = IdK . Since any element of A1 can be written f (z) with f E A, , any
element of g(U) can similarly be written f (w). If a E K, then

since

Therefore

If then
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If M is an admissible manifold, M with all its structure can be

recovered from An. The reader will be able, after reading some more
of this paper, to fashion a proof of this as well as of the fact that

given by

is a bijection.

THEOREM (3.3). C is complete.

We use repeatedly the following (cf. 141, p. 11).

LFMXA (3.3.1). Let (Si) i£I be a family of ordered sets, and
let S = TT i£1Si have the "prod u c t order"

Let TT i: S e S, be the 1-tb projection. If T C S, we have

and either side of this equation is defined whenever the other side

is.

Let C, E C, i E It and let U be the universe TT i £ICi. The order

on U is the product order derived from the order structures that

exist on the C,. If M E X(U)J 1t:.tM E M(Ci) for every i, so glb M

exists and is (g1b C1 (TTi M)) i£I by (3.3.1). Let F E M (Ah), M, ...,

Mh E X(U). Then with X- = glb M, and j a typical element of (1,...,b),

so U E C. Calculations like the above (but easier) show that if

f E (A,U)u, A e C, then f E (A,U)c iff nif E «A.C) 1) c for every i E I.

Thus U is a product in C of the C1. It is easy to show that if f, g :
C -&#x3E; C’ in C, ( c e C I fc = gc ) is the difference kernel in C of f
and 9, so (3.3) follows.
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4 . PHANTTOM DECOMPOSITION OF UN I-

VERSES .

The most general cohesive universe C can be strung together in

a very complicated way. However, there is a crude decomposition of C
into simpler pieces.

LENNA (4.1). Let p E U E U. The following conditions on p are

equivalent:
1) p E OU and Ur, is the zero ring;
2) p E OU and 1 (p) = p ;
3) p = O1 cpa.

Assume 1. Then

so 1 =&#x3E; 2.

Assume 2, and let

Then

Assume 3. Then

Therefore Up = {p} is the zero ring and 341.

Lemma (4.1) characterizes in several ways the elements of

elements which will be called phantoms of U. If h E N, 0(An) = {øh} ,
and there exist cohesive universes C with #0C &#x3E; 1 (e.g., concateno e
101 -&#x3E; {1} to get C = ( 0,1}). In any case, #0C &#x3E; 1 since 0(0c) e Z .

If p E O (U), U E U, let R (p) = I u E U 1 ø (u) = p ) define the realm

of the phantom p. Then U = U pEO(u) R (p) and this union is a disjoint
one. This decomposition is especially nice when U E C.

LEMMA (4.2). Let U E U. Then:

1) ø (U) its a subunj verse of U;
2) Ifp6 0(U), then R (p) is a subuniverse of U.
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PROPOSITION (4.3). Let C E C. Then 0 (C) and all the R (p) are cohesi ve.
Moreover { R (p) I p E 0 (C) ) is directed and C is its concatenation.

The first two assertions hold since

Since O (C) = OO (C), 0 (C ) is an upper semilattice. Let u, , ..., un E C,

F E Ah. Then if Pi = O (ui,

We need to show C is the concatenation of the R (p). First we

make p H R (p) into a f unctor 0C e C. Let

Then Ø (np) = p. Also

so (by the def inition of nP),

p S q, define One sees that

rp a E (R (p), R(q)) c so that R () is now a f unctor Ø C-&#x3E; C. Ve have

already seen that C = Ll p£Oc R (p), so (4.3) will be proved once we

show that when u c Ch, F E Ah and p = O (u1) + ... + ø ((Uh). then
F (u) = F (u1+np, ..., Uh+np) . Now Ou, + ... + Ouh &#x3E; np, since p is its

phantom. It follows that

Then as

5 . REPRESENTAB IL ITY OF CERTA IN

FUNCTORS C fl sets.

We shall write C Cc C’ to mean that C C C’ and that the

inclusion map is a morphism in C. We shall use this same convention

for U and other categories of universes as appropriate.



47

THEOREM (5.1). Let T be a subfunctor of (U, ) u: C -&#x3E; sets where U E U.

Assume T satisfies the following conditions:
1) C Cc C’ =&#x3E; TC = (TC’) n (U,C) U ;
2) If C = TT i£x Ci, the natural bijection (U,C)u = TT i£eI (U,Ci) u
identifies TC wi th TT i£I TCi.

Then T is representable.

The conditions 1 and 2 of (5.1) mean simply that T preserves
limits. By 10.3.9 of [1], to show that T is representable, we need to
show there exists a set D of objects of C such that if C E C and

f E TC, it is possible to write f = hg where g: U e D E D and h : 

D -&#x3E; C. If C E C and S is a subset of C, there exists a smallest C’

such that S C C’ C c C. This smallest C’ will be written clcs, or

clc,c S. Let f : U 4 D be a morphism in U. We shall call f minimal if

clc (f(U)) = D. If also f’ : U 4 D’ is minimal, we shall call f, f’

equivalent if there exists an isomorphism g: D -&#x3E; D’ in C (or equi-
valently, in U) such that gf = f ’. The proof of (5.1) will be complete
once we show the following

LEllKA (5.1.1). Let U E U be t’jxed, C E C variable. The

equivalence classes of minimal elements of (U,C)u form a set.

Let f : U -&#x3E; C be minimal, and let 

If Q, , ... , Q, E Q and F E Ap, then

so Q is a weak universe. Def ine g: Q a C by g(Q) = g1b (f (Q)). Since t
is minimal, (5.1.2) below implies that g is surjective. Also

so g is a morphism of weak universes.
If Q, Q’ E Q, def ine Q - Q’ to mean gQ = gQ’. Clearly we have an

induced isomorphism of universes Ql- 4 C, and it def ines an

equivalence of f with the map U e Q/- given by v H {U}/-. Now,
Q f P(P (U)) and - E P(P(U)xP(U)). The structure of Q/- as an ob ject of
C is entirely determined by (U, Q,-). Therefore the equivalence classes
of minimal morphisms form a set, since they can be indexed by a

subset of P (P(U)) x P(P (U)xP(U)).
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LEMMA (5.1.2). Let C c C and let V be a subuniverse of C

such that Oc = glbc OV. Then clcv = ( gIbcM ) I M e M(V)} .

Let V’ =

and F c As, then

so V’ is a subuniverse of V. We have Oc E V’. Now suppose (g1bcMi) i£i
is some indexed element of X(V’). Let M = U i£IMi. Then M 6 M (V) and

so V’ E C, V’ C c C, so V’ - V .

As the rnain benefit of the following theorem may only be an

esthetic one, its proof will just be indicated. It works for many

categories other than U and C.

THEDREll (5.2). An y represen ta b1 e functor C -&#x3E; sets or U -&#x3E; sets has a

canonical representative.

If T is representable, let A-r = CT, I 1), where I I : C e sets is

the underlying set functor. If C E C and t E TC, let t^: Av e ICI l be

given by ff = fc t, f E AT . If A,- is a set, in particular, if T is

representable, than AT has a unique structure of universe such that

every t" is a morphism of universes AT -&#x3E; C, and it is cohesive. If

T = (B, )c, this representation being given by t E TB, then t" gives
an isomorphism of A-r with B.

Our first application of (5.1) (and (5.2)) is to the functor

(U, ) v itself. Let UIC c C be the canonical representative of (U,),,
i.e., (UIC,C) = (U,CIU) where CIU is the image of C in U under the

forgetful functor Cl U: C -&#x3E; U. We shall let UI C be the left adjoint of

CI U that we get in this way, UI C H CI U.

We now have corollaries to (5.1) that are analogues of results

previously proven for U.

COROLLARY (5.3). C is cocolnplete.



49

Let T: I -&#x3E; C be any diagram in C. We need to show that h :

C le (T, CI) is representable ([1]. 8.1.3). By (1.4), b I : U 4 sets,
h’(V) = (TlU,VI), where TlU = (ClU) oT , is represented by some

e E (TIU.UI) where U E U. Then if C E C,

This last expression T’C defines a subfunctor T’ of (U, )u. Verifi-

cation of the conditions of (5.1) using (3.3.1) is routine, so (5.3) 

follows.

COROLLARY (5.3.1). The forgetful functors I Ic: C -&#x3E; sets has

a left adjolnt setsic.

This follows since (1.3) gives us an adjoint pair

COROLLARY (5.3.2). Let C E C and let E be a set of

equations on C. Then the functor Sol E : C -&#x3E; sets defined by

has a representative C/E .

Indeed, Sol E C (C,)u and satisfies the conditions of

(5.1). We note that C/E and (CIU)/E can be different.

As we now have the same machinery in place for C that was

established previously for U, we can prove as before the following
facts.

PROPOSITID8 (5.4). Let C E C. Then I lc-c : C-C -&#x3E; sets bas a left ad-

joint Y l-&#x3E; C.Y .

PROPOSITION (5.5). Let C E C. Then ( )o : C-C -&#x3E; sets d efi n ed 4y
U H Uo has a left adjoin t Y H C (Y) .

Of course we must distinguish C.Y from (ClU) .Y and C(Y) from

(ClUo) (Y).
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. LOCAL THEORY OF COHESIVE UNI-

VERSES .

Any Kx e C, X a set . If C C c: Kx ,

is the set of open subsets for a topology on X. We shall call this

the topology defined by C. If x E X, define

defining

The following is trivial.

LEMMA (6.1). With C as above, x^ E (C,Ao)c.

If U c U, we define

preserves glbs,

In particular, if C c C, then SC = S(CIT is just (CJAo)c. We call

elements of SU points of U. If f : U -&#x3E; V in C, then Sf : SV -&#x3E; SU is

defined by Q H Q o f.

Let C E C, P E SC, and introduce a symbol 0p=.. Let

observing that { n c OC I Pn = 0 } is an upper semilattice, hence di-
rected. If c e C and P (0c) = 0, we have a ring hornornorphism Coc e Rp,
since Rp is the colirnit of all such Cn. Let Lp = RP 11 (OP) and define

a map P_: C -&#x3E; Lp by

if

if

LEMMA (6.2). Let C E C, P E SC . Then Lp has a unique structure of
universe such that P E (C,Lp)u. We ha ve
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If f, g E C and Pf = Pg, then Pf = Pg. Also P is surjective. Thus
we can write P = QP for a unique set morphism Q : ILPI l e IAo I. To

establish the first claim of (6.2), let F e An, f, g 6 C h and suppose
fif, = Pg, for 1  1 l h. We need to show P (F(f)) = P(F(g)). Now

since

Suppose P(F(f)) # øp, Then we do not have Pfi = 0p or 15gt = 0, for
any i. We have n c OC with Pn = 0 and with fit + n - g1 + n for every
1 (by getting ft + .ni = gi + n, and taking n = n, + ... + nh) . Then

We have 0, = P(Ø(0c)) E OLP. As the ring Rp contains only one
solution of n * n = n, i.e., n = OP, OLp = { Op,øp}. It is obvious

that Op is an identity for LP and that Q E (Lp,Ao)uo.

Any L E Uo such that (L,Ao)uof# 0 and such that #OL = 2 will

be called a local universe. 

PROPOSITION (6.3). Let L be a local universe. Then L E C, (L,Ao)uo = SL
and has exactly one element. Also #ø (C) = 1.

Let Q e (L,Ao) uc 0L. = O (0i-). As Q(OL) = 0 is not a phantom,
OL# 0L, so OL = f OL .OL. }. Let RL = { u e L I Ou = OL} and note that
LOL= {OL} by (4.1). The standard decomposition llncouUn of a universe
U becomes L = RL 11 10L) when U = L.

Any element of M(L) must be a subset of a set {a,OL}, a e RL, for
no element of RL can match with any other element of RL. Thus L sat-

isfies axiom (3.1.1) of a cohesive universe since a  OL. Axiom

(3.1.2) simplifies in this instance to the following:

We use (6.3.1) to show L E C. We have evidently that (6.3.1) holds for

Ao. If a E (RL)n, then
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It is evident that (L,Ao) uo= SL. Suppose Q’ E SL but Q’ # Q, say
and choose F, F’ e GA with F(a) 

(dom F) n (dom F’) = 0 . Then

a contradiction. This proves (6.3).

PROPOSITION (6.4). If L is a local universe, RL is a local ring.

Evidently {u E L I PL U = 0 )is a proper ideal J of RL. Suppose
u E RLBJ . Then PL (C)# 0, 0o so

Since 11

u is invertible in RL. Thus the ideal J consists of exactly the non-
invertible elements of RL, so RL is local.

It may come as a surprise that one does not need any special
hypothesis on I in the following result.(*) By ideal of L we mean any
ideal of RL.

THIJDREll (6.5). Let L E U be local, I # RL an ideal of L. Define L/I =

(RL/I) 11 {O*}, where 0* is a formal symbol. Then L/I has a unique
structure of unj verse such that q = qr: L-&#x3E; L/I, given by

is a morphism of un i verses . Furthermore, L / I is local and q c C.

(3) Note however [9], §1, reference to Hadamard’s Lemma,



53

To prove the f irst statement of (6.5), let u, v E Ln, F E An, and
assume that quj = qvj for every j. We need to show that q (F (u)) =

q (F(v)). Let P = PL and assume F ( u) = 0u. Since I C RL, I # RL, P (I) =

fO) and Put = PV1 for every i since either both sides equal 0. or

u, - v, E I. Then also 0o = P (F ( v)), so

in this case. Thus we can assume all uj, v,, E Ru and P (F (u))=

P (F (v)) E K. We shall need the following

LE*%3 (6.5.1). Let G (z1, ..., zp, w, , ..., wq) E Ap-,, have domain
UxV where U C Kp is a convex open neighborhood of 0 and V C Kq is

open. Assume G(O;w) is identically zero on V . Then G may be written

where each Gt (Z;W) E Ap+q and has domain UxV.

Ve have

and the integrand is dt times

Let

Then G = Ei=1P Gi (z;w)z1 proving (6.5.1).

Then

and
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and suppose G &#x3E; H. Then

Thus

so

Choose such a G with domain UxV as in (6.5.1). We get

and ut-vt E I for every index i. Also G:L (u-v; u+v) 6 RL (since

F ( u) F (v) E RL), so F (u) -F (v) E I , q (F (u» = q(F(v)).
Evidently #0 (L/I) = 2. Also Q(c + I) = P(c), c E RL, Q(O.) = Oo

defines an element Q of (L/I, Ao)uo, so L/I is local. Obviously Q E C.

Let U be a universe, E a set of equations on U and let f E

(U ,V) ’.1 where V E U. We shall then let f E denote the set of equations

is an equation in E }.

PROPOSITION (6.6). Let L be a local universe, E a set of equations on
L such that the set of equations PLE bolds. Let Ie be the jdeal of R,_

generated by all u-v E RL such that the equation u = v is in E. Then

L/IE = L/E. In particular, L/E is local.

Let q; L -4 L be the canonical morphism where L’ = L/ IE . Then if

C E C,

Let f E (L,C)c. The following will complete the proof of (6.6).

LEMKA C6.6.1). cu, v c L, qu = qv a fu = fv) =&#x3E; f E holds.

Assume u , v E L, qu = qv -&#x3E; fu = fv and let u =vbean

equation in E. If U = 0L or v = OL, as PLU = PL v, we have u = OL = v,

so fu = fv. Assume u, v # OL. Then u-v E Ic:, so qu = qv, fu = fv. Thus
f E holds. Assume conversely that f E holds, u, v E L and qu = qv. If

u = 0L or v = OL, then u = 0, = v by definition of q. Suppose
u, v # OL. Then qu = q v -&#x3E; u-v e IL. Write
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where for each i, u f, vi , wx E RL and ui= v, is an equation in E, 

Then

and f or all i,

Then This proves (6 ,6 , 1 ) &#x3E; and (6.6).

Let L be any local universe and consider a map of sets h :

Y -&#x3E; RL where PLhy = 0 for every y E Y. We can choose h so that the

induced morphism p : Ao (Y) -&#x3E; L in C, considering that Ao E C, is sur-

,jective. The composition Pup is the element Ov of SAo(Y) that sends

every element of Y to 0 , Let AoY&#x3E; = Loy. From the lemma that

follows, we shall have that p has a unique factorization h0y where

h: Ao (Y) -&#x3E; L. Let I = h -1 0,. Then I is a proper ideal of RAoV&#x3E; and h

induces an isomorphism h: A.Y&#x3E;/I -&#x3E; L. We call (Y,I,h) a presentation
of L. We see thus that every local inverse has a presentation, i.e., is

of the form AoY&#x3E;/I.

It will help to understand P l-&#x3E; Lp. as a functor. Let L, the

category of local universes, be the full subcategory of C whose

objects are the local universes. We note that L H (L,PL) gives us a

natural inclusion L--4 C- Ao .

LENNA (6.7). Let U E C, P E SU . Then

is a bijection .

This lemma basically says the following. Any solid arrow

diagram in C
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whose upper part is commutative, can be completed with a unique
dotted arrow g that makes the lower triangle commute. The uniqueness
is clear since P is surjective. If P u - 0p, then Pu = 0o so fu = OL.

If Pu E Rp and Pu = Fv, u, ve U, then u+n = v + n for some n e 0U
with P n = n Then

hence the existence of g.

It follows from (6.7) that if h E (U,P), (V,Q)),C-Ao, there exists
a unique L,,: Lp e LQ such that Qh = LhP. Since P is determined by h
and Q, i.e., P = Qh, it is often convenient to denote L,-, as ho: LF=-&#x3E;

Lq.

PROPOSITION (6.8). Ao &#x3E; H m_ where m_ : L -&#x3E; sets is given by

the maximal ideal of RL.

7. "TOPOLOGICAL UNIVERSES.

There exist cohesive universes C that are of interest but with

SC = 0, as for instance Example (8.3) below. Nevertheless our efforts

for the rest of this paper will focus on those C E C with the some-

what opposite property that given distinct n, n’ E OC, there exists P
E SC such that Pn # Pn’ . Most of the universes we have looked at so

far have this property.

If C E C, let Lc = TT,,.sc L, and let yc: C e Lc (in C) be defined

by ycc = (Pc)psc. If f : C e C’ in C, we define

Then y_: lc e L_ is a natural transformation.

THEOREM C?.1). For C E C, the following conditions are eguivalent:
1) Ac : C -&#x3E; Lc is injective;
2) If n, n ’ E OC, n # n ’, there is a P E SC with P n # Pn’.
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If 1 holds, there exists P E SC with Pn # Pn’. Then Pn # Pn’.

Assume 2 holds. Let u, v c C, u # v. If 0u # Ov, take P E SC with

P (0u) # P (Ov). Then 0Pu # OP v, so Pu t P v. Thus we can let n = Ou =

Ov. Assume xcu = ycv. For each P E SC such that Pn = 0, Pu = P v so

there exists n p E OC such that

By using n p + n instead, we can assume n P &#x3E; n. Let

If P E SC, then

since n £ w, so w = n. Then

If C 6 C and yG: C -&#x3E; Lc is injective, we shall say that C is a

topological universe. The full subcategory of C supported by the

topological universes will be denoted K. In what follows, K will be

our category of preference. However, as many interesting cohesive

universes do not lie in K, we shall be considering C occasionally.

if n, n’ E OC, M C OC. We see that f U" I n E OC ) is the family of

open sets for a topology on SC (Uo = SC, Uoo = 0). We shall hence-

forth consider that SC is a topological space (which is in fact a

"sober space", cf. [5]). To say that C e K is to say that 11 HUn is

an order-reversing isomorphism of OC with the family of open sets of
SC. It is a fact (that will not be shown here) that if C E C and

there exists an order-reversing isomorphism of OC with the family of
all open sets of a topological space X (which need not be assumed to

be SC), then C E K.

It will be helpful to describe directly im Àc C Lc when C E K,
since that provides a useful alternative description of C. Call f e Lc
continuous (C E C) if whenever P E SC and fp # Op, there exists c E C
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and an open neighborhood U of P in SC such that Q E U -&#x3E; fQ = Qc,
i.e., there exists n c OC with Pn = 0 such that

The set of all continuous elements of Lc is seen to be a cohesive

subuniverse of Lc that is topological. We denote it by TC, and note
that we in fact have a functor T: C -&#x3E; K. The proof of the following
is similar to the proof of its analogue in sheaf theory.

LEMMA (7.2). Let C E K. Then A,,- gives an isomorphism of C with TC.

Thus if C E K and C I C is its image in C, we have an isomor-

phism : C e T(ClC).

define K(Un) = Cn. This gives us a sheaf of rings 11 on X such that
Rx is a local ring with residue class field K for each x E X. However

(X,11) is not merely a local ringed space, for it has a great deal

more structure than that. We can apply theorems from sheaf theory to
objects of K, but trying to reduce the study of K to a topic with

sheaf theory is a little bit unnatural. For one thing, plugging
elements of C’ into elements of Ar, changes domains. Also, if x E X,
l!x is the local ring of a local universe Lx - Rx ll {Ox}. Thus to talk

about the additional structure on (X, R) we would at least need the

theory of local universes.

From the observations of the preceding paragraph and sheaf

theory, we can immediately conclude the following.

PRDPOSITIOIf (7.3). Let F: U -i V in K. Assume that Sf : SV e SU is a

homeomorphfsm and that fy Uyf -&#x3E; Vy is an isomorphism for each

y E SV. Then f is an isomorphism.

The following corollaries of (7.1) ) are ixnmediate:

PROPOSITION (7.4). Suppose C C c U E K. Then C E K.
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PROPOSITION (7.5).. Let CiE K, i E I . Then IIxEi C i. E K.

These two results imply K is complete.

Let G: K 4 C be the canonical inclusion KlC. Since TG = 1 t:: by
(7.2), the following will imply that K is cocomplete.

PROPOSITION (7.6). T l-l G.

Let C E C. Then ac : C 4 Lc; induces ac : C -&#x3E; GTC (by restricting
the range), and a : C l-&#x3E; ac is a natural transformation 1c -&#x3E; GT. If

U E K, then aGU: GU -&#x3E; GTGU is a bijection by (7.2). Also

bijectively. Thus we can define

Then B: U 1-4 Bu is a natural transformation TG e 1k. Clearly, G(Bu)aGU
= leu. Thus (7.6) will follow once we show that 

or, since GBTC = (aGTC)-1, that GTac = aGTC. Now GTac, aGTC are in

(GTC, GTGTC) and we have clc (im ac = GTC, so CGTac )ac - aGTCaC,
which holds since a is a natural transformation, will do. This proves
(7.6).

COROLLARY (7.6.1). L is cocomplete.

Let t: L e K be Li K and let D: I d L be a diagram in L. Then

#S (colim rD) = 1, so colim rD is local. Then

PROPOSITION (7.7). Let I be a directed set, i L, I i c I} a family of
local universes directed by I . Assume Li -&#x3E; Lj is an injection whenever

I,j E I, i  j. Let
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and let pi; Li e L be the canonical morphism. Th en ea ch Pi is an

injection and L = U i E I im pi.

Let S = colim { lLil I i E I ). Then ILil C S = UiE l L x l. It

follows that S has a unique structure of universe such ±ha± every
inclusion Lx O S is a morphism in U. Let L be S with this structure

of universe. It is trivial that L = colim U {Lil). As each L x

is local and the morphisms Li -&#x3E; Lj are all injective, #OL = 2, #OL =

1, and L has an identity. As (L,Ao) # 0, L EL. It follows easily that
L = colim L {L1 I i E I ).

COROLLARY (7.7.1). Let S be any set. Then

This follows using (6.8).

Let T: I -&#x3E; K be any K-valued diagram, and let C = colim T. To

determine what C is in a more concrete way, we may start with

and determine the local universes Cx,x e X, where Cx denotes the

localization L- of C at x. (In the sequel we shall prefer this

notation to the previously used Lx.) We have C C TT xEx Cx. Thus, to

determine C, it will suffice to determine U and the compositions

Any x E X can be identified with {x i} i.1. where Xi = Xai. Des--

cribing yi amounts to determining, for every E X, the maps
(ai)x: (Ti)xi -&#x3E; Cx defined by (ai)xXi = Xai. Lemma (7.8) below will

allow this to be done in a routine manner. Given E X, define Txi =
(Ti)x. Then T- is a functor Tx: I e L.

LEMM (7.8). With the above notation, (colim T)x = colim (Tx) for- any
x c X. For any i e I, (ai)x is the canonical morphism Txi e colim (Tx), 

Then
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If b E (Cx,L) then under these identifications we have

PROPOSITION (7.9.). If X, Y are manifolds, then Ax 11 Ay = Axxy.

Let U C. X, V Q Y be open with Au (resp. Aw) isomorphic to A,_"

(resp. Av.) for some U’ (resp. V’ ) open in Kr (resp. K -1), r, s E N. We

have a commutative diagram

where, for instance, XXY e X and XxY -&#x3E; Y induce f. Here the bottom

arrow is an isomorphism and the isomorphisms

are compatible with the isomorphism SAXxY-&#x3E; S (Ax 11 Av). By (7.3) it

will suffice to show that if x e X, y e Y, then

is an isomorphism. Pick U and V so that x c U, y e V, and localize

the diagram at (x, y) and the corresponding point of K r+s. Then all

arrows in the diagram become isomorphisms and (7.9) follows.

B. SOBER SPACES AND THE SPACES SC.

We have seen that to "understand" C E K, we need to know Lp for
each P c SC. In §6 a wealth of detail was obtained on the Lp, so we
look now at the spaces SC to complete the picture. The reader can

refer to page 151 of [5) for the definitions that will be needed here.
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TUEOREM (8.1). Let C c C. Then every closed irreducible subset of SC

has a unique generic point.

LEMMA (8.1.1). Let C E C, P, Q c SC. Then the following are
equivalent:

1) If c E C , then Pc = Oo-&#x3E; Q c = 00 ;
2) If c E C, then Qc# 00 O Pc = Qc;
3) Q E cl {P} .

Obviously 2 -&#x3E; 1, so assume 1. If F e A, and c E C, then

Now assume 2 is false, so we have Pc # Qc # 00. By taking F = Z11, we
see that

Therefore we can now let F = OKB(P(c)). Then Qc c dom F, but

contradicting what we proved above. The contrapositive of 1 means

that any neighborhood of Q contains Q, so clearly 1=&#x3E;3.

If the equivalent properties of (8.1.1) hold, let us write P&#x3E; Q
(since 1 suggests "domain" P is larger than "domain" Q). This gives
an order on lSCl for which, because of 2 in (8.1.1), we have

From 3 of (8.1.1) we see therefore that SC is a To-space, i.e., a

closed irreducible subset of SC can have at most one generic point.

We shall always assume that Y # 0 is part of the definition of
"Y is irreducible". The following will establish (8.1).

LENWA (8.1.2). Y C SC closed and Irreducible 4 Y has a

generic point.

Let c E C, Yc = { P c I P E Y}. We first show Yc c M(Ao), i.e.,
#(KOYc)  1. Let P, Q e Y and assume a = Pc # Qc = b, a, b e K.

Choose f, g E OA, such that
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Then

(cf. definitions of §7). so there exists Then

a contradiction. This proves (8.1.2).

We can now define PYc = glb Yc to define Pv E (lCl,lAol). We

shall see that Py E SC and is a generic point of Y. Let c E C h,
F e Ah. Then Pv (F (c)) = glb (YF (c)), and we claim

Write this claim as u = v. Since YF (c) C F (Y c1, .... Y Ch,), we must at
least have u 2. v. Having u &#x3E; v can only come from having YF (c) = {Oo}, 
yet having P, , ..., Ph E Y with F (P1 C1, ..., P Ch ) # øo. In this case

there will exist P E Uoc, n ... n Uoch n Y since U oc i O Y # Oo, for every
1. Then

since P, P i E Y -&#x3E; PCi = Pxci (as these are both in K) and we see that

in fact YF (c) # 100) in this case. Thus

Then

Therefore PY e SC.

We finish (8.1) by showing that cl {PY} = Y. First Y  PY, i.e.,
P E Y 4 P ( PY. Indeed, if c E C and Pc # 00, then

Now we only need Pv e Y. If not, as Y is closed, there exists n E OC
such that PvD = 0, Yn = -(0cJ. But then PYn # glb Yn, a contradiction
to the definition of Py.

In the terminology of [5], Theorem (8.1) says precisely that

every SC is a sober space. We shall let sob denote the full

subcategory of top that is supported by the sober spaces.
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Let the topology of X be defined by C C C Kx. If P E SC, define
Yp = { x E X I xc  P ) (where x c f = f(x), f E C). Let X be the set

of all closed irreducible subsets of X with its topology as defined
on page 151 of [5] (but called X there).

THEOREM (8.2). Wi th th e above definitions, P l-&#x3E; YF define-- a h om eo-

morphism Y_; SC - X .

wh ere

The second and third sets agree since dom f = dom D.f, and
the last equality comes from

Finally, if x E X,

LFMNA (8.2.2). If P E SC, YP is closed, irreducible and non-

empty.

a contradiction. Also

Since dom f, dom g are arbitrary open subsets of X, Yp is irred-

ucible.

Thus in fact
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and define v(Y) = P where P is chosen so that cl{P} = cl (Y^) (cf.

(8.1)). We shall show that u is a homeomorphism and v = u-’ . For

uv = 1x, let Y E X, cl{P} = cl (CY^). We need to show Y,. = Y. If x- E Y,
then y" E cl{P}, so Y C YF. For Yp C Y, let x e XBY. Choose n E OC so

that n (x) = 0, Y n dom n = O. We shall have x t Yp if we show Pn =

0o (as then x" ; P). If Pn # 0o, i.e. Pn - 0, then P E Un, so Un n Y"
0 (as cl {P} = cl(Y’)). Then there exists x’ E Y with x’’’’ E U", i.e.

x’-(n) = 0 = n (x’), contradicting Y n dom n = 0 . To show vu = lsc,
we let P E SC and show vCYP ) = P, i.e., cl {P} = cl (Yp A). Now

so we only need to show P E cl(Yp’). If P e cl (YP^). there exists

n e OC such that Pn = 0, U n n YP" - 0, i.e., Yp n dom n = 0. But then

P n = Oo by (8 .2.1) .

To show u is a homeomorphism, take a typical open subset U, of
SC, n E OC. Then

because Pn = 0 o YF n dom n # 0 by (8.2.1). But since dom n is a

typical open set of X, { Y E X I Y n dom n # 0 ) is a typical open
set of X.

From (8.2) we see that if M is an admissible manifold. x H XAM
is a homeomorphism of M with SAM . We can now give our non-trivial

example of a cohesive universe C with SC = 0.

EXMPLE (8.3). Let I be the set of all open dense subsets of the

manifold M and let i  j mean 1 C ,f. Then I is an upper semilattice,
and I W Ai is a functor A_: I -4 C. Let C = colim A_. Then SC =

lim SA = 0 since if U C M is open dense and x E U, then also UB{x}
is open dense. 

If X E sob, let

Kx = {f E K ix I dom f is open} Cc Kix i.

Let kx Co: Kx consist of all those elements of Kx that are locally
constant.
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LEKKA (8.4). X l-&#x3E; kx defines a functor (sob)op -&#x3E; K.

We note that kx defines the topology of X. Since that topology
is sober, when n, p E 0kx, n # p, there is an x E X such that p (’,Y) t
n (c), i.e., .Y’(p) # x^ (n), sc kx E K. It is easy to see that X H kA can

be made into a subfunctor k_ of X l-&#x3E; K ix i.

THEOREll (8.5). k- H S wh ere S : K -&#x3E; (sob)OP.

We note that (8.5) allows us to say that in sob we have

if T is any K-valued diagram. Moreover X l-&#x3E; X is a left adjoint of

the inclusion i : sob -&#x3E; top and so preserves colimits, so we shall

have colim ST = (colim 1 ST)- . Thus computing S(lim T) is, at least

in principle, no problem whatever. Of course S(colim T) = lim ST

quite trivially.

Let X E sob, C E K. To prove (8.5), we need to show that (kx,C) =
(SC,X)..b. First we define ux: Skx -&#x3E; X to be the composition

wfiere the first arrow is the isomorphism given by (8.2) and the

second inverts Y 4 X, x 1-4 cl {x} which is a homeomorphism because X
is sober. We also need to define vc : ksc e C. We do this by using the
fact that C C II Psc Lp = Lc as the set of continuous elements of Lc

(cf. remarks preceding (7.2)). Let c E Asc. Define vc = vcc by defin-

ing (vc)p E Lp for each P E SC as f o l lows . If c(P) = Oo. let (vc)p =

0p. If c(P) = a E K, let (vc)p = a1 (Op). i.e., (vc)p is the canonical

image of a under Ao -&#x3E; Lp . If U C SC is the open set of those Q e SC

such that c(Q) = a ; - remember c is locally constant - (vc)Q =

Q (a7 (n» for every Q E U where n c OC is defined by the equation
Rn = 0, R E SC. This shows vc is continuous, i.e., vc E C. We note for

pending use the easily proven fact that if c E C, P E SC, then

P(vc) = c(P). The necessary proofs (intricate but routine) that u and

v are natural transformations will be omitted. We need to show that

and if



67

. 
Let P E SC. We need to show Usc (PVc) = P. Now observe that if

X E sob,, ux = ox-I where Øx (x) = Xk1t"’. Thus we only need Pvc = P^,
which is clear since

Now let c e kx, .f = CVx, kux) (c) = vkx (Cux). We need to show f = c, i.e.,
pf= Pc if P E Skx. Since dx is a homeomorphism, P = X^ for some

x E X. Observe that

If (CUx) (P) = Oo, then Pc = Oo, so P (Vkx (CUx))= 0p = Pc. If (CUx) (P) =

a E K, P (Vkx)((CUx)) = a; (OF). Since c is locally constant and Pc = C (X)

= a, a7 (OP) = Pc. Thus f=c.

9 . DERIVATIONS AND TANGENT

SPACES.

Let V E U-U, U E U. If u E U and vq e V, define uv - (u IV)v=
vu. An element D of (lUl,lVl) is called an admissible derivation of V

if the following axioms are satisfied:
1) u E U n OD (u)= 0(ulV);
2) If h &#x3E; 0, F e An, u e Uh, then

Ve can paraphrase this definition by saying that D "preserves
domains" and "satisfies the chain rule". If f : U -&#x3E; V in U, we let

Ader f= {D E (lUl,lVl) ID is an admissible derivation for f }

( = Ader (U, V) when we understand what f is).

LEMM (9.1). Let V E U-U and D E Ader(U,V). Then if f, g E U, we ha ve

First
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Let U E U. We shall construct I, U e U and a canonical element D,,

of Ader(I1 UJU) so that I, U is like a "first order infinitesimal

neighborhood" of U. Let

Ve shall always write (u, v) E I.jU as u + vt = u + tv (picking a

"symbol" t) and also any h-tuple (U1 +V1 t, ..., uh+vht) of (I1 U) h as

If F E An, define

Since

F (u + vt) E Il U. To show I I U E U we need to show it satisfies all

seminal identities.

The identity (1.1.1) is trivial, so we look at those of type
(1.1.2). Using the notation of (1.1.2), we must show that

where ( , Write this equation as A = B. Let

Calculation shows

and

Now

so the second summand of A is t times
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A little effort shows this agrees with the coefficient of t in B.

It is evident that p (u + tv) = u defines a canonical element p =
pj of (I1 U,U)u and D(u + tv) = v a canonical element D = Du of

Ader (I1 U, U). If f E (U,U’)u, def ine I, f : I, U e I, U’ by

We note the following, which shows that the functor Il supplies us

with all possible examples of admissible derivations.

PROPOSITION (9.2). Let U, V e U. Then

If g: U e I, V, let Hg = (pv, dvg). Evidently H is a one-one map
of (U, I1 V) into

If f : U -&#x3E; V, D E Ader f, g (u)= f (u) + tD(u) is seen to define a

preimage under H of (f, D), so H is surjective.

LEMMA (9.3). Let U E U, a, b e I, U. If a  b and pa = pb, then a = b.

PROPOSITION (9.4). Let U E C crespo K). Then I, C E C crespo K). Also

pu E C.

If u, v E U, then (in Il U) we have 0(u + tv) = Ou + tOv. Also

gives the addition in I1 U, so Cur + tv, ), (U2+ tv2) match iff (u1, u2),

(v1,v2) are matching pairs of elements of U. Also
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Thus if U E C, I, U has glbs and put preserves glbs. To finish showing
I, U E C, let F c M(Ah), M1, ..,, Mn e M(I1 U). Set F = glb F, mi=

glb Mx. Then

and

so we get equality using (9.3). Thus I, U e C and clearly pu e C.

Finally if U e K, let n, n’ e 01 U be distinct. Then pn * pn’, so (Pp)n
# (Pp)n’ for some P E SU. Therefore, as Pp E SI1UJ I, U E K.

Let U, V e C. Then

(One could say that (U,pv) "discovers" elements of

so (9.5) follows from (9.3).

COROLLARY (9.5.1). (9.2) holds with U replaced by C.

so

Now write Then
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THEOREM (9.6). I1; U -&#x3E; U or C -&#x3E; C has a left adjoint.

We need to show that the functor C -) sets given by the latter ex-

pression has the form (C, ) for some C E C (cf. [1], 16.4.5). We shall

take U = (C.lCl)/E where E is a set of equations that we now

describe. 

Since C*)C! l E C-C, we have a morphism a E (C, C.lCl). We also

have a canonical map j3: IC -&#x3E; lC.lC ll. Let E consist of all equations
0ac = Oj3c, c e C together with all equations

Then if C’ E C, (U, C’)= (C, I1, C’). Basically the same construction
works f or U in place of C.

Denote U c C (resp . U) that was just constructed by rC c C

(resp. lD. The functor r : C -&#x3E; C is entirely analogous to the functor

which sends an A-algebra B to Sa (nB/A) where nB/A is the B-module of

Kdhler differentials of B over A and Se denotes symmetric algebra. We
note in particular the following.

PROPOSITION (9.7). Let S E sets, C E C. Then

where d S is the set of all .formal symbols{ ds I s E S ) .

Let U e C. Then

From (9.7) we get a principle for extending admissible deri-

vations that is similar to one in algebra. Indeed assume we have
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in C, where I is canonical, and also D E Ader fi. Then any E E Ader f

such that Ei - D can be defined uniquely by assigning, any way one
pleases, the elements E (ds) E Uo, for s E S.

Let f: U e W, g: V -&#x3E; W in C and consider the isomorphism

By considering morphisms U 1L V -&#x3E; I, W of the form

we get the following.

LEMM (9.8). With the above notation, let D E Ader f, E E Ader g.
Then there exists a unique H E Ader (f,g) such that Htu = D, HIu= E.

We shall denote H of (9.8) by (D,E). The following is proved as
usual using (9.8) with W = U’ 11 V’ .

LEMMA (9.10). Let . f : U -4 U’, g: V -1 V’ in C, D E Ader f, E E Ader g.
Then there exists a unique D J1 E c Ader f 11 g that makes the

following diagram commute.

The proof of the following result is analogous to that of (9 .7).

LEMMA (9.11). Let C E C and let E be a set of equations in C. The

canonical map

where ic c (C,rC) and de e Ader ic are canonical, is an isomorphism.



73

10. INFINITESIMALS AND TAYLOR

JPOLYNOMIALS.

If { 2, , ..., Zh} is a set of symbols and we consider that

Ao E C, then Ah = Ao (Z1, ..., zh). We shall let Lh= Lo,, - where On is

the origin of K’’. Then Lh= Aozi, ..., zm&#x3E; (cf. (6.6.1)-(6.7)). We have

D j = 6/6z, i. e Ader An and for any C E C, 0 E Ader C defined by
c H Oc. If f E Ah II C, we write Di f for (Di 1L 0) f (cf. (9.10)). When

f E Ah, we have

whereas if c E C,

since we consider that C E A h ll C. We use analogous conventions for
Lh, and L,, u C.

Looking at Ln instead of Am, and working exclusively in K, we

note S(Lh 1i C) = SC (and similarly for any L c L) by using
C 4 L h LL C or

Thus OC = 0 (Lm I C). We shall use these identifications repeatedly.

If f E Lh 11 C, (Oh, 11 C) f E C = Ao 1L C will be denoted f (0).

Sometimes we shall write f e Lh ii C or f E A,, LL C as f (Z, ), pretend-
ing there is some sort of "variable" for C, and then we shall write
f(0) and f C0, ) . That will make our notation more agreeable and also
somewhat redolent of classical notation.

Let f e L,, I C where C e K. Following these conventions, we have
Of = O.f(0, ) = Of (z, ). We shall say that f and f(0) "have the same

domain", and we shall follow the notational conventions

If r E N h is any "multi- index", we define Dr f = D1r1...Dh rh f as
usual by appropriate repetition of the operators Dt. We note that

clearly equals 0LL0, i,e., is the zero derivation. Therefore

so D w.f does not depend upon the order of the operators.
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Define r ! = r, ! ... rh ! if r E Nh, and let Iri= ri + ... + rh .

Then f has its Taylor series

where Zr = z, ’"’... Zn rh. In P (f), the coeff icients of Zr all lie in

C C Lr lt C and have exactly the same domain as f,
For n E N, let

and let Rn (f)=f- PM (f). Then f, Pnf and Rn (f) all have the same
domain. We shall develop a theory of integration that will allow us

to write Rn (f) as a familiar integral. In particular we shall see that
Rn (f) is a linear combination over Lh 11 C of the z", I rl - n + 1.

The following lemma, of vital importance for what follows,
points out the naturalness of these definitions. Let n e N, and let

(Z1, ..., Zh)= (z)n be the set of all linear combinations over Lh LL C

ofithe r- for r e Nh, I rl - n. Set (z) 1 = (z). An element of (z) n will be

called an infinitesimal of order &#x3E; n.

LeMMA (10.1). Let f E L h LL C, C e K. Suppose

where R E (z)n and 0cr = Of for every r. Then Cr = (Dr f)()/r ! when-

ever lrl n.

We have D’’f - c,.r ! ! + T,, where Tr 6 (z), as we see by dif-

ferentiating lri times. Thus (Drf)(0) = ctr ! + p, where p E OC. Then

p  Of, so by adding Of to both sides, we get (D r f) (0) = Cr r !.

Let C E K. Questions concerning Ln 11 C can often be resolved by
considering the Lh 11 L , x e X = SC. Since we identify (Oh ,x) in

S (Lh IIC) with x E SC, we have

From (6.8),

in L. Therefore

(h summands).
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This allows us to use induction on h to deduce properties of the

functor Lh Jl - from properties of L1 ll - .

PROPOSITION (10.2). Let C E K, f E L, LL. C . The following are equi-
valent :

Obviously 1 4 2. We prove 2 -&#x3E; 1 by showing

Ve treat first the case where C is local.

LENNA (10. 2. 1 ). Let S E sets and let I be an ideal of

AoS&#x3E;, 1 f. I. Let J be the ideal of L1 LL AoS&#x3E; generated by I. Assume

Then

By (7.7.1) we can assume that n = #S  oo. Choose U C K a

neighborhood of 0 E K and V C K" a convex neighborhood of 0 such

that g = giLl LL Ln for some g E A n+1 with dom g = UxV. By shrinking V, 
we can assume that g(0) = 0. Working with g instead of g, we can

carry out the calculation of (6.5.1) to get

D denoting here differentiation with respect to the first variable. We
can write

where

Then

proving (10.2.1).

To show 1 of (10.2) holds (assuming 2 and C local) let

AoS&#x3E; --H C with kernel
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be a presentation I -&#x3E; AoS&#x3E;-&#x3E; C of C. By an easy deduction from
(6.6), we have the presentation

of L1 LL C, where J is the ideal of L1 LL Ao S&#x3E; generated by I. Take a

preimage p of f in Li 1L AQS&#x3E; and let g = p - F (0, ). Then

As

we have dg/dz E J. By (10.2.1), g E Z J C J, so f = f (0, ), proving
2 -&#x3E; 1 when C is local.

For C e K arbitrary, let X = SC, x E X. Let fx = f lLu = x(f),

Then dfx/dz = Of,,. Thus fx = fx (0) = ( f (0))x by the local result. As

this is so for all x. e X, f = f(0) proving (10.2).

COROLLARY (10.2.2). Let C t K, h E R, f E Ln ji C. Suppose
Dsf = O.f’ for i = 1, ..., h. Then f e C.

1 1 . INTEGRAT ION OF ONE PARAMETER

FAMILIES AND TAYLOR8S THEOREM .

For the rest of this paper "universe" will mean "object of K ".

If C E K and f c Lh LL C, we know how to write f as Pn(f) + RI’I (f)

where Pn denotes the "n- th degree Taylor polynomial" and Rn denotes

"remainder" (cf. §10). The purpose of this section is to develop a

theory of integration that will allow us to express R,, in one of the

standard forms (cf. (11.3)).

PROPOSITION (11.1). Let c E C, C E L, f E Li 11 C. Then there exists a

unique g E L1 Jl C such that dgldz = f, g (0) = c.

Uniqueness is clear since from (10.2), if g (0) = 0 and dg/dz =
0, then g = 0. Pick a surjection AoS&#x3E; -&#x3E; C, S a set. Then
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is surjective by an easy deduction from (6.6). Choose f E L, LL AoS&#x3E;
a preimage of f, c E Aa S&#x3E; a preimage of c. As in the proof of

(10.2.1), we can define I = f Zo f(S) ds. Then g = (6 + I) lL1uC satis-
fies the conclusion of (11.1).

A connected subset I of R will be called an interval if its in--

terior Io # 0. Even if K = C, we shall consider that I C K and let

We have therefore At -&#x3E; Xi canonically, and we let t - z 1M)’ = tr 

(writing A, = AO (z) as usual). Our immediate goal is to develop a

theory of integration with respect to the variable t for any universe
MI 11. C, C E K.

Because

(from r H I, ) one sees easily that there is a unique d/dt in

Ader XI such that

for every

If f E Xx 1L C, we shall denote [(d/dt) 11 0 ] (f) by df/dt. We have

open in ; 

as topological spaces. The homeomorphism I = SM, sends a 6 I to

a ’ E SMI, where aÃ(’f lMI) = f(a) for every f E A, . We shall treat

a l-&#x3E; a ^ as an identification. From (7.8) it follows routinely that if

a E I, (MI)a = Li .

r 
The next theorem will allow us to formulate a definition of

fr a f (s) ds, and to prove that it exists, when f is a global element
of MI LL C, C E K. 

TAWREN (11.2). Let I be an interval, C c K. Let a c I, and let C be a

global element of C, f a global elerdent of Mx li C . Then there exists

a unique g in M, IL C such that dgldt = f, g (a) = c.

LEXXA (11.2.1). Let C 6 L, f E XI 11 C and assume dom f = U

Where U its an interval relatively open in I , a E U . Then there exists

a unique g in MI LL C such that dgldt = f, g(a) = c.
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To show uniqueness, let

We have

and

Thus by (11.1), since

and

we have g=- h on a neighborhood of a. Let V the union of all

intervals W C U relatively open in I with a E W, glw = hiw. Then V

0 is a relatively open interval of I and glv = hw. We need to show

that V = U.

Suppose V # U. Then, by writing V = (c,d) n I and looking at

sketches of the possible cases, one sees that an endpoint b of V lies

in UBV. Now gb and hb + g(b) - h (b) both solve

Thus there exists W, an interval relatively open in U, such that

Pick an element b’ of w n V. Then

so

Then

a contradiction since clearly V is the largest interval relatively
open in U with a E V, glv= hlv. Thus V = U. We shall re-use (several

times) the argument that was just made.
We need to show that g exists. By (11.1) we can solve

Therefore we have an interval U’ open in I and gu - in M x LL C such

that
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Let U be the family of all intervals U’ open in U for which such a

8lJ’ exists, and let H={gu-lU’E) By the already demonstrated
uniqueness property, H E N(M1 LL C). Let g = glb H and let U’ = dom g,
so that U’ = U { V l V E II}. Then U’ is the largest element of U.

We only need to show U’ = U. If U’ # U, pick an endpoint
b c UBU’ of U’. Let h E XI 11 C with hb (b) = 0 , dhb/d t = fb. By taking
the domain V of h small enough, we can assume V C U, dbldt = f lv.

Let b’ E V n U’ , and consider u = h - h (b’) + g (b ’). We have

so

by the already proven uniqueness statement. Then
Let g’ = g A u. By (9.5.2),

contradicting the maximality of U’.

To show uniqueness in (11.2) (so now C E K is not assumed to be

local), let g, h be two solutions. Denote, for instance, f l(MI 1L Cx)

by fx if x E X = SC. Then gx, hx solve duldt = f,,, u (a) = Cx, so gx =
hx by (11.2.1). Then, using (7.8), if b E I,

Since b c I, x E X are arbitrary and S(MI IL C) = I x X, this shows

g = h. If f is not global, but dom f = J x X, J C I an interval, this
same argument will also show uniqueness.

To show g exists in (11.2), let x E X and apply (11.2.1) to Cx

to solve

Ve can complete the proof of (11.2) by showing g E Mr 1t C.

Let x E X. We can establish g E Mi 11 C by showing that if b E I,
there is an interval J open in I and an n e OC with the following
properties:

1) a, b e J and n Cy) = 0;



80

2) The equations dhld t - fl Jxdomn, h (a) = c + n have a

solution h.

Indeed, assume this occurs. Then if b E J and n (x’) = 0 (x’ E X), 
hx, = (gx)lJ by (11.2.1). Then h b’,x’) = g’b’,x’), and so the condition

of "continuity" about an arbitrary (b,x) in I . X needed tn show

g E Mx 1L C will hold.

Let U C I be the set of all b in I for which J and n exist as

stated above. Then U is open in I and a E U. If U # I, let b be an

endpoint of U with b E IBU. There exists n’ c OC, V C I an interval

relatively open in I such that b E V, n t (x) = 0, and such that we

have h’ with dh ’/d t - fl V x dom n’ . Take b’ E UnV . Then, because b’ E U, 
there exists a relatively open J" containing a, b’, and there exists
h" e Mr LL C, n" E OC, such that

By replacing n’, n" by n = n’ + n", h" by h" + n, we can assume n’ - n
= n". Then h" + h’ (b’) -- h"(’b) and h’ match by uniqueness, since

they have the same value at b’. Replacing h" by h" - h’(b’) + b"(’b’),
we can assume that h’,h" match. Let J = J" U V. Then h = h ’A h" solves

But b E J contradicts the definition of U since b i U. Therefore U =

I, and so every b E I has the desired property. This proves (11.2).

Let I be an interval, a E I, f’ a global element of Mr 11 C. We

shall let f- 
t 

f (s) ds denote the unique g in MI iL C such that

g(a) = 0, dgldt = .f. However, we shall sometimes use a "dummy
variable" other than s in fta f(S) ds. The element g of (11.2) would

now be written c+ ft a f(s) ds. The formula for integration by parts.

can now be verified immediately.
With only a slight additional complexity of notation in the

proof of (11.2), we can establish its conclusion if dom f = J x U, 
dom c = U, where a E J, J an interval open in I. Such a set J x U

will be called rectangular about a. Thus if E M1 11 C with domain

J x U rectangular about a, we can define
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We note that (11.2.2) remains valid (even if dom f # dom g) as

long as dom .f and dom g are rectangular about a . (Of course fg
could then be a phantom.)

To write the remainder term for our Taylor’s Theorem, we shall
need to make sense of expressions f(tz) for f E Lh 11 C, C e K. Let U

be any open neighborhood of 0 in K h, and choose an open neighborhood
J of [0.1] in K and an open neighborhood V of 0 in K h such that JV C

U. We then have a commutative diagram

where the vertical arrows are the usual ones, and the top one comes
from the multiplication map J x V 4 U. The bottom arrow (t-) is in-

dependent of U, J, V since the composite -4 is independent of (J, V)

and since

Let f = f(z) e L,,. We shall denote (t-)f as f(tz)= f(tz1, ..., tz,,). If

f E Ln 11 C, we let f(tz) = f(tz,) denote ((t-) IL C) (f).

On L2h written as

we can define

We let z.Vt act on Ao t;z&#x3E;LL C as (z.Vt) 1L Oc. If 1 E [1,h]n, define

Ve shall always let (z.Vt)o denote the appropriate identity operator
(e.g., on Ao t;z) or on Ao t;2&#x3E; 11 C). If f its- in Ao t;z&#x3E; li C, the

reader can verify that

If , define
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It is easy to see that

apd that the n-th Taylor polynomial Pn(f) off at 0 can be written

Let .f E Lh Jl C. We det ine f0 
t 

f(tz) d t in Lh li C to be

[fto f(sz) ds] (1).

Then

and

For n = 0, we have

Assume n &#x3E; 0 and use induction. Then

Thus

proving (11.3).

The reader can verify, by examining our formulas for (z.Vt)nf,
that Rn (f) is an infinitesimal of order &#x3E; n.
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