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A NOTE ON THE ALGEBRAIC DE MORGAN’S LAW

by S. B. NIEFIELD and K. I. ROSENTHAL*

CAHIERS DE TOPOLOGIE

ET GÉOMÉTRIE DIFFERENTIELLE
CAT#GORIQUES

Vol. XXVI-2 (1985)

RESUME. P. T. Johnstone a montré que le locale O(X) des ouverts
d’un espace topoloqique X satisfait la deuxieme loi de de Morgan
(DML), l (U/B V) = 1 U V lV ssi X est extrêmement disconnexe. L’a-
nalogue aig6brique de la DML est 1’equation des id6aux

dans un anneau commutatif R. Dans cet article, nous montrons que
R satisfait la DML alg6brique ssi R est un anneau de Baer. Si R

n’a pas de nilpotents, ceci équivaut à la disconnexit6 extr6male de

Spec(R). Enfin, nous montrons que si X est completement regulier,
C(X) satisfait la DML alg6brique ssi X satisfait la DML topologique.

In [3 ], P.T. Johnstone showed that the locale O(X) of open subsets
of a topological space X satisfies the second de Morgan’s law

iff X is extremally disconnected. Furthermore, O(X) satisfies the logical
principle

(strong de Morgan’s law) iff every closed subset of X is extremally dis-
connected. Motivated by this result and using the fact that a locale and
the lattice of ideals of a commutative ring are both examples of closed
posets, in [5] we characterized those commutative rings R such that
the Zariski spectrum Spec(R) satisfies strong de Morgan’s law. This was
closely related to the ideal theoretic equation

the algebraic analogue of this law. Using the techniques of [5], it is
not difficult to show that if R has no nilpotents, Spec(R) is extremally
disconnected iff

for all ideals A and B of R (the algebraic analogue of second de

Morgan’s law). In this paper, we present several equivalent characteriza-
tions of this class of rings in terms of ideal theoretic properties and
obtain the extremally disconnectedness of the spectrum as a corollary.
The rings under consideration turn out to be Baer rings, i.e., commutative
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Foundation RUI Grant N° DMS-8407495.
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rings R such that the annihilator Ann(A) of A is a principal ideal gen-
erated by an idempotent element of R, for all ideals A of R.

Let R be a commutative ring with identity. For any pair A, B of
ideals, one can consider the following algebraic analogues of de Mor-

gan’s laws

As in the topological case, it is a straightforward exercise to show
that (1) holds for all ideals A and B of R. On the other hand, although

the reverse containment does not hold in general. We shall refer to

(2) as the second de Morgan’s la w (DML).

A related but weaker condition than (2) has also been considered,
namely

where a, b E R. We shall call (3) : weak de Morgan’s la w (WDML). This
condition was studied by Artico and Marconi in [1] where they showed
that if R has no nilpotent elements, then (3) holds iff every prime ideal
contains a unique minimal prime (possibly 0).

Recall that R is a Baer ring if for every ideal A, there exists an

idempotent e e R such that Ann(A) = R e. Since Re = Ann(1- e ) and
1- e is idempotent whenever e is idempotent, it follows that R is
Baer iff for every ideal A, there exists an idempotent e e R such that

Ann(A) = Ann( e). Now, if one requires that the above condition
holds for principal ideals A only, or equivalently for annihilators of
elements of A, such a ring is called a weak Baer ring.

There are several characterizations of weak Baer rings. In part-
icular, Artico and Marconi also show in [lJ that a ring with no nilpotents
is weak Baer iff it satisfies weak de Morgan’s law and its minimal spec-
trum is compact. Motivated by this result and our interest in second
de Morgan’s law, we began studyirig Baer rings.

We shall use the following three lemmas. The proofs are straight-
forward and therefore left to the reader.

Lemma 1. If R satisfies WDML, then R has no nilpotents.

Lemma 2. If e and e’ are idem potents, then

Lemma 3. If Ann(A) = Ann(A’) and Ann(B) = Ann(B’), then

Theorem 1. The following are equivalent for a commutative ring
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R with identity.

(a) Ann(AB) = Ann(A) + Ann(B), for all ideals A and B of R .

(b) R satisfies DML and R has no nilpotents.
(c) Ann(A) ® Ann(Ann(A)) = R, for every ideal A of R .
(d) R is a Baer ring.
(e) R satisfies WDML and A nn(A) is principal, for every ideal

A of R .

Proof. We shall show that (a) =&#x3E; (b) =&#x3E; (c) =&#x3E; (d) =&#x3E; (e) =&#x3E; (a).

(a) ± (b) If (a) holds, then R has no nilpotents by Lemma 1, and R sat-
isfies DML since

(b) =&#x3E; (c) Suppose R satisfies (b). Since R has no nilpotents,

Applying DML, we get

(c) =:7 (d) Suppose Ann(A) 9 B = R. Then 1 = x + y, where x 6 A and

y E B. A straightforward calculation shows that x2= x and Ann(A) = Rx .

(d) =:7 (e) If R is a Baer ring, then clearly Ann(A) is principal for every
A, and R satisfies WDML by Lemma 2.

(e) =&#x3E; (a) Suppose that (e) holds. Since R satisfies WDML, by Lemma 3,
it suffices to show that for every ideal A, Ann(A) = Ann( a), for some
a E R. Since the annihilator of every ideal is principal, we can write

Ann(A) = Rx and Ann(x) = Ra. Then

Using the above theorem, we shall obtain an elementary ring
theoretic proof that Spec(R) is extremally disconnected iff R/N satisfies
DML, where N denotes the nil radical of R. Note that this result can
also be obtained via a lattice theoretic proof, using the techniques of
[5], and Johnstone’s characterization [3] of extremally disconnected

spaces as those spaces X such that the topos Sh(X) of set-valued sheaves
on X satisfies second de Morgan’s law.

Recall that every open subset of Spec(R) is of the form

where A is an ideal of R. The complement of D(A) is denoted by V(A).

Lemma 4. If R has no nilpotents, then the closure of D(A) in Spec(R)
is given by D(A)= V(Ann(A)).
Proof. If P is prime, and A C P, then Ann(A) C P since A.Ann(A) = 0.
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Hence, D(A) C V(Ann(A)), and so D(A) C V(Ann(A)). For the reverse

containment, we shall show that if P E V(Ann(A)) (i.e., Ann(A) C P),
then every open neighborhood of P meets D(A). Let D(B) be such an

open set, i.e., ’B ’l P. Then B I Ann(A), since Ann(A) C P. Hence,
AB #0. Since R has no nilpotents, 0 C VA-B, wheref denoted the prime
radical of an ideal. Therefore, 

as desired.

Recall that a space X is extremally disconnected if the closure of

every open set is open. These are the projective spaces in the category
of compact topological spaces [6].

Theorem 2. Suppose R has no nilpotents. Then Spec(R) is extremally
disconnected iff R satisfies DML.

Proof. It is well known that if R has no nilpotents, then A is a direct
summand of R iff V(A) is an open subset of Spec(R). Using this and The-
orem 1 (b) =&#x3E; (c), R satisfies DML iff V(Ann A) is open, for all A. By
Lemma 4, V(Ann A) is open, for all A, iff D(A) is open, for all A, iff

Spec(R) is extremally disconnected.

Now, Spec(R) £fSpec(R/N), where N denotes the nilradical of R.

Thus, we obtain the following corollary.

Corollary 1. The following are equivalent for a commutative ring R
with identity.

(a) Spec(R) is extremally disconnected.
(b) R/N satisfies DML.
(c) R/N is a Baer ring.

We conclude by examining the relationship between a space X and
the ring C(X) of continuous real-valued functions on X. In the study of
rings of continuous functions, it is shown that C(X) has nice completeness
properties as a lattice if X is extremally disconnected (cf.[2] or

[4]). In the following theorem, we show that a completely regular space
X satisfies second de Morgan’s law (i.e., is extremally disconnected) iff
the ring C(X) satisfies second de Morgan’s law (i.e., is a Baer ring).

Theorem 3. L et X be a topological space.

(1) If X is extremally disconnected, then C(X) is a Baer ring.
(2) If C(X) is a Baer ring and X is completely regular, then X

is extremally disconnected.

Proof. (1) Let A be an ideal of C(X). We shall produce an idempotent
h E C(X) that generates Ann(A).

If f E A, let U f denote the cozero set of f , i.e.,
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Consider U = fE U A Uf . Then U is an open subset of X. Also, if x E U,

then f(x) 1 0 for some f c A, and hence g(x) = 0 for all g E Ann(A).
Thus, it follows that

Let h: X - R be defined by h -= 0 on U and h -= 1 on XBU. Since X is

extremally disconnected, U is open, and therefore h is continuous. Then
h is clearly idempotent, and it is not difficult to show that h generates
Ann(A). Therefore, C(X) is a Baer ring.

(2) Let U be an open subset of X. To show that U is open,
we shall show that XBU= h (1), for some h E C(X). Consider

Then A is an ideal of C(X). We claim that U = fUA U f , where U f
denotes the cozero set of f. Clearly, UfEA UfC U. Conversely, if x E U,

then since X is completely regular, there is a continuous function

Since f E A, it follows that x E U f , as desired. Next, since C(X) is Baer,
there exists h E C(X) such that Ann(A) = (h). Since

we must have h(U) = 0, and hence, h (U) = 0. To see that h-1(1) - XBU,
it remains to show that h(XBU)= 1. If x U, then by complete regularity,
we can find

Since g E Ann(A), it follows that gh = g, and so h(x) = 1. Thus,
h -1(1) = XV, and so 0 is open. Therefore, X is extremally disconnected.
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