CAHIERS DE TOPOLOGIE ET GÉOMÉTRIE DIFFÉRENTIELLE CATÉGORIQUES

ANA PASZTOR

The epis of the category of ordered algebras and *Z*-continuous homomorphisms

Cahiers de topologie et géométrie différentielle catégoriques, tome 24, nº 2 (1983), p. 203-214

http://www.numdam.org/item?id=CTGDC_1983_24_2_203_0

© Andrée C. Ehresmann et les auteurs, 1983, tous droits réservés.

L'accès aux archives de la revue « Cahiers de topologie et géométrie différentielle catégoriques » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

THE EPIS OF THE CATEGORY OF ORDERED ALGEBRAS AND Z-CONTINUOUS HOMOMORPHISMS

by Ana PASZTOR

1. INTRODUCTION. THE MAIN RESULTS

A subset system Z is a class of posets containing the two-element chain and closed with respect to images of monotonic maps. If A is a poset, then Z(A) is the set of all subposets of A which are in Z.

Let A and B be posets. Then a map $\phi: A \to B$ is Z-continuous if whenever $X \in Z(A)$ and $\sup_{A} X$ exists, then $\sup_{B} \phi(X)$ exists and equals $\phi(\sup_{A} X)$.

Let Σ denote a *signature*, i. e. a set of function symbols. For any $f \in \Sigma$, r(f) denotes the *arity of f*, which is an *arbitrary ordinal number*. Ord denotes the class of all ordinal numbers.

A partial Σ -algebra <u>A</u> consists of a set A and of a family

 $< f_A : dom f_A \rightarrow A >_{f \in \Sigma}$

of partial operations on A, i.e. $\bigwedge_{f \in \Sigma} dom f_A \subset A^{r(f)}$. Given two partial Σ -algebras \underline{A} and \underline{B} , a homomorphism $\phi : \underline{A} \to \underline{B}$ is a map $\phi : A \to B$ which satisfies the following:

 $\begin{array}{l} & \bigwedge_{f \in \Sigma} & \bigwedge_{a \in A^r(f)} (a \in dom f_A \to \phi \circ a \in dom f_B \land f_B(\phi \circ a) = \phi(f_A(a))). \\ & \text{A partial } \Sigma \text{-algebra } \underline{A} \text{ is total if } & \bigwedge_{f \in \Sigma} dom f_A = A^r(f). \end{array}$

For details about subset system Z see Adámek-Nelson-Reiterman [1] or Nelson [6]. For more about the theory of partial Σ-algebras, see Andréka-Németi [2], Burmeister [3], Németi [7], Németi-Sain [8].

The frame category of the present paper will be ${}^{1}Z Palg \Sigma$ defined as follows:

 $\underline{A} \in Ob({}^{1}ZPalg_{\Sigma})$ and is called an ordered partial Σ -algebra if \underline{A} is a partial Σ -algebra, A is a poset with a least element 1 and all oper-

ations of <u>A</u> are monotonic with respect to \leq_A ;

 $\phi: \underline{A} \rightarrow \underline{B} \in Mor({}^{1}Z \operatorname{Palg}_{\Sigma})$ if ϕ is a Z-continuous ¹-preserving homorphism.

 $LZ Alg_{\Sigma}$ denotes the full subcategory of $LZ Palg_{\Sigma}$ defined by

 $Ob(\bot Z Alg_{\Sigma}) = \{\underline{A} \in Ob(\bot Z Palg_{\Sigma}) \mid \underline{A} \text{ is total}\}.$

This paper provides a characterization of the epis of ${}^{\perp}Z Alg_{\Sigma}$ for any subset system Z and for any signature Σ .

Before giving the Main Result let us recall the characterization of epis of ${}^{1}ZPal_{g\Sigma}$ from Pasztor [9]. Throughout the paper, let a signature Σ and a subset system Z be arbitrary but fixed.

DEFINITION 1. Let <u>A</u> be an ordered partial Σ -algebra and let $X \subset A$. We define on A a relation \neg^{α}, X for every $\alpha \in Ord$.

(A) $a \stackrel{\bigcirc}{\leftarrow} X b$ iff $a = b \epsilon X$.

Suppose a > 0. Then $a \neq X$ b iff one of (B), (C) or (D) holds:

(B)
$$\begin{array}{l} V & V & a \leq_A c \stackrel{\beta, X}{\longrightarrow} d \leq_A b. \\ (C) & V & \Lambda & \beta \leq_a \end{array} \\ (C) & V & \Lambda & V & V & (a = f_A(a_i \mid i < r(f))_A \\ & b = f_A(b_i \mid i < r(f))_A a_i \stackrel{\alpha_i, X}{\longrightarrow} b_i). \end{array} \\ (D) & V & V & (a = \sup_A Y \land \bigwedge_{y \in Y} \bigvee_{a_y \leq a} V & (a = f_A(a_i \mid i < r(f))_A a_i \stackrel{\alpha_i, X}{\longrightarrow} b_i). \end{array}$$

Then, let

$$\underbrace{X}_{\alpha \in Ord} := \bigcup_{\alpha \in Ord} \underbrace{\alpha, X}_{\alpha \in Ord}$$

REMARKS. 1. This definition is equivalent to Definition 1 of Section 3 in Pasztor [9], but simplifies the proofs given there.

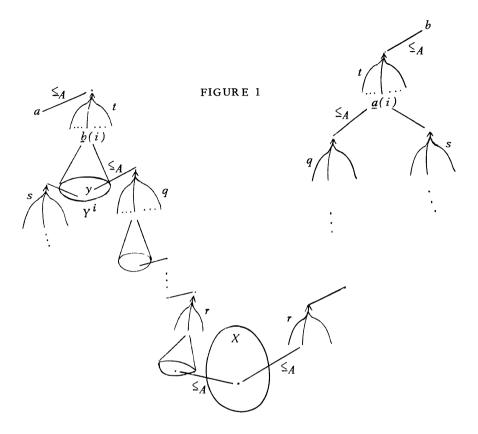
2. It is easy to see (by induction) that $\frac{X}{4} \subset \leq_A$.

3. If t, s, q and r denote some term-functions of signature Σ and if $Y^i \in Z(A)$, then we could imagine $a \stackrel{X}{\leftarrow} b$ as drawn on Figure 1.

DEFINITION 2. Let <u>A</u> be an ordered partial Σ -algebra and $X \subset A$. Then

$$CL_{\Sigma}(X) := \{a \in A \mid a \stackrel{X}{\longleftarrow} a\}.$$

For the next result see Section 3, Theorem 2 in Pasztor [9].



THEOREM 1. $\phi: \underline{A} \rightarrow \underline{B} \in Mor({}^{\bot}ZPalg_{\Sigma})$ is an epi iff $CL_{\Sigma}(\phi(A)) = B$.

Now we can state the Main Result of this paper. For the proof of Theorem 2, see Section 2.

THEOREM 2. Every ordered partial Σ -algebra has a Z-continuous and \bot preserving embedding into an ordered total Σ -algebra, i. e. for every object <u>A</u> of \bot Z Palg_{Σ} there exist

with u_A an embedding.

COROLLARY 1. $\phi: \underline{A} \to \underline{B} \in Mor({}^{1}Z Alg_{\Sigma})$ is an epi iff $CL_{\Sigma}(\phi(A)) = B$. PROOF. It is clear that those morphisms of ${}^{1}Z Alg_{\Sigma}$ which are epis in ${}^{1}ZPalg_{\Sigma}$ are also epis in ${}^{1}Z Alg_{\Sigma}$. Hence if for $\phi: \underline{A} \to \underline{B} \in Mor({}^{1}Z Alg_{\Sigma})$, $CL_{\Sigma}(\phi(A)) = B$, then ϕ is epi in ${}^{1}ZPalg_{\Sigma}$ by Theorem 1 and hence epi in ${}^{1}ZAlg_{\Sigma}$, too. Now let us prove the other way round, i.e., suppose that $\phi: \underline{A} \rightarrow \underline{B}$ is an epi in ${}^{1}ZAlg_{\Sigma}$. We'll prove that ϕ is an epi in ${}^{1}ZPalg_{\Sigma}$, too and hence $CL_{\Sigma}(\phi(A)) = B$. Let therefore $\tau, \sigma: \underline{B} \rightarrow \underline{C}$ be arbitrary morphisms of ${}^{1}ZPalg_{\Sigma}$ such that $\phi \cdot \sigma = \phi \cdot \tau$. Let u_{C} be a Z-continuous 1-preserving embedding of \underline{C} into the ordered total Σ -algebra \underline{D} . Then $\phi \cdot \tau \cdot u_{C} = \phi \cdot \sigma \cdot u_{C}$. Since ϕ is an epi in ${}^{1}ZAlg_{\Sigma}$, we have $\tau \cdot u_{C} = \sigma \cdot u_{C}$. But u_{C} is a mono, hence $\tau = \sigma$. \Box

COROLLARY 2. Let Φ denote the subset system containing only the two element chain. Then $\phi: \underline{A} \rightarrow \underline{B} \in Mor({}^{1}\Phi Alg_{\Sigma})$ is an epi iff $\phi(A) = B$, i. e. iff ϕ is surjective.

PROOF. In Pasztor [9], Corollary 9, we have proved that for $Z = \Phi$ - the class containing only the two-element chain - $CL_{\Sigma}(\phi(A)) = \phi(A)$.

COROLLARY 3. 1. Let Z be bounded. Then for any signature Σ , ${}^{1}Z Alg_{\Sigma}$ is co(well-powered).

2. Let Σ be a signature with at least one $f \in \Sigma$ such that r(f) > 0. Then there is a subset system $Z \subset \Delta$ (i. e. Y is directed for any poset A and $Y \in Z(A)$) such that ${}^{1}ZAlg_{\Sigma}$ is not co(well-powered).

PROOF. See Pasztor [9], Section 4, Corollary 29 and Proposition 30.

2. PROOF OF THEOREM 2.

We want to prove that for any ordered partial Σ -algebra <u>A</u> there is a Z-continuous <u>1</u>-preserving embedding into an ordered total Σ -algebra.

Before proving this let us recall from Pasztor [10] a construction of the free Σ -completion \hat{A} of a partial Σ -algebra A. The free Σ -completion of A is just another name for the Alg_{Σ} -reflection of A, where Alg_{Σ} is the category of total Σ -algebras and homomorphisms. Most of the denotations used here are adoptions of the denotations of Guessarian [5]. We denote by $\delta = \delta(\Sigma)$ the ordinal dimension of Σ , i.e. the least regular ordinal number δ such that $|\delta| > |r(f)|$ for each $f \in \Sigma$ (e.g. if for any $f \in \Sigma$, $r(f) \in \omega$, then $\delta(\Sigma) = \omega$). Then we denote by δ^* the set of all finite words over δ with λ as the empty word. A word m' is a left (resp. right) factor of a word m iff there is a word m" such that m = m'm" (resp. m = m'' m').

A tree domain D_t is a nonempty subset of δ^* satisfying the following two conditions:

(i) if $m = m_1 \dots m_q$ belongs to D_t , then every left factor $m_1 \dots m_p$, $p \le q$ of m belongs also to D_t ,

(ii) if $m = m_1 \dots m_{q-1} m_q$ belongs to D_t , then for every $m' < m_q$, $m_1 \dots m_{q-1} m'$ belongs also to D_t .

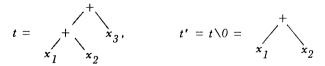
The elements of D_t are called the *nodes* of the tree domain and also of the trees we will associate with it. Let D_t be a tree domain, *i* an ordinal and *m*, $mi \in D_t$. Then *m* is the *father of mi*, which is in its turn the son of *m*. We call *m'* an ancestor of *m* iff *m'* is a left factor of *m*. Similarly, *m'* is a descendant of *m* iff *m* is a left factor of *m'*. The node λ is the root of D_t . A node having no descendant other than itself is called a leaf.

Let X be an arbitrary set. A tree on $X \cup \Sigma$ is a total mapping t from a tree domain D_t into $\Sigma \cup X$ with the property that for any $m \in D_t$, if $t(m) = s \in \Sigma \cup X$, then m has exactly r(s) sons in D_t . The elements of X are by definition of arity 0. For any node m, t(m) is its label.

We denote by $T(\Sigma, X)$ the set of all trees on $\Sigma \cup X$. For any tree t, L(t) denotes the set of leaves in D_t . If t is a tree on $\Sigma \cup X$ and if $m \in D_t$, then $t' = t \setminus m$ is defined by

 $D_t = \{ m' \mid mm' \in D_t \}$ and t'(m') = t(mm') for any $m' \in D_{t'}$.

E. g.



A tree t on $\Sigma \cup X$ is path-finite if any countable sequence $m = n_0 n_1 n_2 \dots$ of nodes of D_t with n_i son of n_{i-1} , $i = 1, 2, \dots$, called a path is of finite length, i.e. there is a $q \in \omega$ such that $m = n_0 n_1 n_2 \dots n_{q-1}$. We denote the set of all path-finite trees on $\Sigma \cup X$ by $F(\Sigma, X)$.

Let <u>A</u> be a partial Σ -algebra and let $t \in F(\Sigma, A)$; we define t_A inductively as follows:

(i) if $D_t = \{\lambda\}$ and $t(\lambda) \notin \Sigma$, then $t_A := t(\lambda)$;

(ii) If $t(\lambda) = f \in \Sigma$ then

$$t_A := f_A \left(\left(t \setminus m \right)_A \mid m < r(f) \right)$$

if this is defined and is undefined otherwise.

Note that if t_A is defined then for any $m \in D_t$, $(t \setminus m)_A$ is also defined.

We define recursively the *deptb* d(t) of a path-finite tree t on $\Sigma \cup X$:

(i) If $D_t = \{\lambda\}$ then d(t) = 1;

(ii) if $t(\lambda) = f \in \Sigma$ is not a constant, then d(t) is the smallest ordinal greater then $d(t \ge m)$ for each m < r(f).

If <u>A</u> is a partial Σ -algebra, then we denote by \hat{A} the set of all trees $t \in F(\Sigma, A)$ with the property that for any $m \in D_t$, if $(t \setminus m)_A$ is defined, then $m \in L(t)$ and t(m) is not a constant symbol.

For any set X we make $T(\Sigma, X)$ into a total Σ -algebra as follows: let $f \in \Sigma$ and $t_i \in T(\Sigma, X)$ for i < r(f). The tree

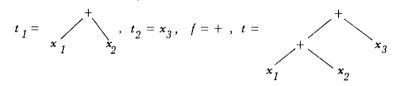
$$t := f_{T(\Sigma,X)}(t_i \mid i < r(f))$$

is defined by

$$D_t := \{\lambda\} \cup \{im \mid i < r(f), m \in D_{t_i}\},$$

$$t(\lambda) = f \text{ and } t(im) = t_i(m)$$

for all i < r(f) and $m \in D_{t_i}$. E.g.:



Of course $F(\Sigma, X)$ is closed under all these operations, so it is also a total Σ -algebra. Let <u>A</u> be a partial Σ -algebra. Note that if $f \in \Sigma$ and $t_i \in F(\Sigma, A)$, i < r(f), such that for each i < r(f), $(t_i)_A$ is not defined, then $(f_T(\Sigma, A)(t_i \mid i < r(f)))_A$ is not defined either.

For any partial Σ -algebra \underline{A} , \hat{A} can be made into the total Σ -algebra $\underline{\hat{A}}$ as follows: Let $f \in \Sigma$ and $t_i \in \hat{A}$, i < r(f). Then $f_{\hat{A}}(t_i \mid i < r(f))$ is: (i) t_a defined below if $a := f_{\hat{A}}((t_i)_A \mid i < r(f))$ is defined, and (ii) $f_F(\Sigma, A)(t_i \mid i < r(f))$ otherwise.

Let $u_A : A \Rightarrow \hat{A}$ be defined as follows:

$$\bigwedge_{a \in A} u_A(a) = t_a \text{, where } D_{t_a} := \{\lambda\} \text{ and } t_a(\lambda) = a.$$

Identifying A with $u_A(A)$ we get:

PROPOSITION 1. For any partial Σ -algebra \underline{A} , $\underline{\hat{A}}$ is the free Σ -completion of \underline{A} . (Or: $(u_A, \underline{\hat{A}})$ is the Alg Σ -reflection of \underline{A} .)

PROOF. It is easy to show that $\underline{\hat{A}}$ satisfies the Axiom of Free Completion given in Theorem 6 of Burmeister-Schmidt [4]. \Box

In the following we will proceed like this: On \hat{A} we will define a *quasi-order* < with the following properties:

1. < restricted to $A \times A$ is \leq_A .

2. The operations of \hat{A} are monotonic with respect to <.

3. < preserves suprema of sets in Z(A).

Let

$$R_{\zeta} := \{ \langle a, b \rangle_{\varepsilon} A \times A \mid a \langle b \text{ and } b \langle a \rangle \}.$$

Then R_{\leq} is a congruence relation on \hat{A} and

$$R_{\leq} \cap (A \times A) = Id_A$$
.

Let $b_{\leq}: \hat{A} \to \hat{A}/R_{\leq}$ be the canonical homomorphism. Then

$$(b_{<} \circ <) = : \le$$

is a partial order on $\hat{A}/R_{<}$ and

1. $\underline{\hat{A}}/R_{\leq} \in Ob({}^{1}Z Alg_{\Sigma})$.

2. <u>A</u> can be identically embedded into $\underline{\hat{A}}/R_{\leq}$ and this embedding is a Z-continuous, 1-preserving homomorphism.

NOTATION. *id* denotes the identity function symbol, i.e. for any set A, id_A is the identity map on A. Of course r(id) := 1.

DEFINITION 1. For every ordinal a we define $\leq_{a} \subset \hat{A} \times \hat{A}$ as follows: (A) $a \leq_{4} b \iff a \leq_{0} b$.

Let
$$a > 0$$
. Then $a <_{\alpha} b$ iff either (B) or (C) holds:
(B) $\bigvee_{f \in \Sigma \cup \{id\}} \bigwedge_{i < r(f)} a_i, b_i \in A a_i <_{\alpha}$ $(a = f_A^*(a_i \mid i < r(f)) \land b = f_A^*(b_i \mid i < r(f)) \land \bigwedge_{i < r(f)} a_i <_{\alpha_i} b_i).$

$$(C) \quad \bigvee_{X \in \mathbb{Z}(A)} \bigvee_{\beta \leq a} (a < \beta \underset{\leq A}{sup X} \land \underset{x \in X}{\Lambda} \underset{\alpha_x < a}{\Lambda} \bigvee_{x \in X} (a < \alpha_x < \beta).$$

Let

$$< := \bigcup_{\alpha \in Ord} <_{\alpha} \cup \{(1, \alpha) \mid \alpha \in \hat{A}\}.$$

REMARKS. 1. Applying (B) for f = id, we get

$$\Lambda_{a \in Ord} ((\bigvee_{\beta < a} a < \beta b) \Longrightarrow a < \alpha b).$$

2. If Z is the trivial subset system Φ containing only the two-element chain, then (C) is equivalent to

 $(C') \quad \bigvee_{c \in A} \bigvee_{\beta, \gamma \leq \alpha} v_{\alpha} a < \beta c < \gamma b.$

Since we assume that every subset system contains Φ , (C') implies $a <_{\alpha} b$ by applying (C) to $X = \{c\}$.

3. Notice that for $Z = \Phi$ this definition of < is equivalent to Definition of < in Pasztor [10], but here we do not use the special tree-construction of \hat{A} and the proofs are much simpler, especially more transparent.

PROPOSITION 2.
$$\bigwedge_{a, b \in A} (a < b \implies a \leq_A b)$$

PROOF. Suppose a, $b \in A$ and a < b. Then a < a b for some $a \in Ord$.

a) If a = 0, then by (A), $a \leq A b$.

b) Suppose $\alpha > 0$ and that

$$\Lambda_{\beta \leq \alpha \ a, \ b \in A} \Lambda_{\beta \leq \beta \ b} \implies a \leq_A b).$$

Then one of (ba) and (bb) below holds:

ba) $a = f_{\hat{A}}(a_i \mid i < r(f)), \quad b = f_{\hat{A}}(b_i \mid i < r(f))$ for some $f \in \Sigma \cup \{id\}$ and some $a_i, b_i \in \hat{A}, i < r(f)$ and

$$\bigwedge_{i < r(f)} \bigvee_{a_i < a} a_i < a_i b_i$$

Since $a, b \in A$,

$$f_{\hat{A}}(a_i \mid i < r(f)) = f_{\hat{A}}(a_i \mid i < r(f)), \quad \bigwedge_{i < r(f)} a_i \in A,$$

$$f_{\hat{A}}(b_i \mid i < r(f)) = f_{\hat{A}}(b_i \mid i < r(f)) \text{ and } \bigwedge_{i < r(f)} b_i \in A.$$

By the induction hypothesis, $\bigwedge_{i < r(f)} a_i \leq_A b_i$ and then, by the monotoni-

city of f_A , $a \leq_A c$. (bb) $a <_{\beta} \sup_{\leq A} X$ for some $X \in Z(A)$ and some $\beta < \alpha$, and $\bigwedge_{x \in X} \sum_{\alpha_x < \alpha} V_{\alpha_x} <_{\alpha_x} b$.

Then by the induction hypothesis $a \leq_A \sup X$, $\bigwedge_{x \in X} x \leq_A b$, hence $a \leq_A b$.

PROPOSITION 3. < is a quasi-order.

PROOF. 1. Reflexivity: Let $a \in \hat{A}$ be arbitrary. If $a \in A$, then $a \leq_A a$, hence by (A) $a <_0 a$. Suppose $a \notin A$. Then a = t for a unique tree t. We prove a < a by induction on the depth d(t) of the tree t.

a) If d(t) = 1, then $D_t = \{\lambda\}$ and $t(\lambda) = c \in \Sigma$ a constant symbol. Since $a = t = c_A^2$, $\bigwedge_{a \in Ord} t \leq_a t$ by (B) (r(c) = 0!). Hence $a \leq a$. b) Let $d(t) = \sigma$ and $\sigma > 1$. Then $t(\lambda) = f \in \Sigma$ is not a constant sym-

b) Let $d(t) = \sigma$ and $\sigma > 1$. Then $t(\lambda) = f \in \Sigma$ is not a constant symbol and $\bigwedge_{i < r(f)} d(t \setminus i) < \sigma$. By the induction hypothesis

$$\bigwedge_{i < r(f)} (t \setminus i) < (t \setminus i), \text{ i.e. } \bigwedge_{i < r(f)} \bigvee_{a_i \in Ord} (t \setminus i) <_{a_i} (t \setminus i).$$

Since

$$a = t = f_{\mathcal{A}}((t \setminus i) \mid i < r(f)),$$

by (B) we get $a <_{a} a$ for an a greater than every a_i (i < r(f)). Hence a < a.

2. Transitivity: Suppose a < b < c, i.e. $a <_a b <_\beta c$ for some a, β in Ord. If a = 1, then a < c per definitionem. Suppose $a \neq 1$. We prove that a < c by induction on a.

a) Let a = 0. Then by (A) $b \in A$ and then by (C') $a <_{\beta+1} c$, hence a < c.

b) Let $\alpha > 0$ and suppose

$$\bigwedge_{\gamma \leq a} \bigwedge_{a, b, c} \bigwedge_{\epsilon} \bigwedge_{A} (a <_{\gamma} b <_{\beta} c \implies a < c).$$

For a < b one of (ba) or (bb) below holds:

(ba)
$$\frac{V}{X \in Z(A)} \bigvee_{\beta \leq a} (a \leq_{\beta} \sup_{\leq A} X \land \bigwedge_{x \in X} \frac{V}{a_x \leq a} x \leq_{a_x} b).$$

Then by the induction hypothesis $\bigwedge_{x \in X} \bigvee_{\beta_x \in Ord} x <_{\beta_x} c$ hence by (C) $a <_{\tau} c$ for some $\tau > \beta$, β_x ($x \in X$), i.e. a < c.

(bb)
$$\frac{V}{f\epsilon \Sigma \cup \{id\}} \frac{\Lambda}{i < r(f) a_i} \frac{V}{b_i \epsilon A} (a = f_A(a_i \mid i < r(f)) \Lambda)$$
$$b = f_A(b_i \mid i < r(f)) \Lambda \frac{\Lambda}{i < r(f) a_i < a} \frac{V}{a_i a_i b_i}.$$

If f = id then the induction hypothesis applies immediately and a < c. If $f \neq id$, then we prove a < c by induction on β . bba) If $\beta = 0$, then $a <_a b <_0 c$ implies by (A) and by (C') (analogously to a) a < c (without using the special form bb of $a <_a b$). bbb) Suppose

$$\beta > 0$$
 and $\bigwedge_{y \leq \beta} \bigwedge_{c \in A} (a <_{\alpha} b <_{\gamma} c \implies a < c).$

Then one of (bbba) or (bbbb) below holds:

bbba)
$$\bigvee_{X \in Z} \bigvee_{(A) \gamma \leq \beta} (b <_{\gamma} \sup X \land \bigwedge_{x \in X} \bigvee_{\beta_x < \beta} x <_{\beta_x} c).$$

Using the induction hypothesis for $a <_{\alpha} b$ and $b <_{\gamma} \sup_{\leq A} X$, we get

$$a < \sup_{\leq A} X$$
, i.e. $a <_{\tau} \sup_{\leq A} X$ for some $\tau \in Ord$.

By (C)
$$a <_{\sigma} c$$
 for some $\sigma > r$, $\beta_{x} (x \in X)$, hence $a < c$.
bbbb) $\bigvee_{g \in \Sigma \cup \{id\}} \bigwedge_{i < r(g)} \bigvee_{b'_{i}, c_{i} \in A} (b = g_{A}^{2}(b'_{i} \mid i < r(g)))$

$$c = g_{\hat{A}}(c_i \mid i < r(g)) \wedge \frac{\Lambda}{i < r(g)\beta_i < \beta} b_i' < \beta_i c_i).$$

If g = id, the induction hypothesis on β immediately applies and a < c(without using the special form bb of $a <_a b$). If $g \neq id$ but $b \in A$, then $a <_a b <_\beta c$ and by (C') a < c. (We do not use bb). Suppose $g \neq id$ and $b \notin A$. Then by the definition of \hat{A} , f = g and

$$\Lambda_{i < r(f)}(b_i = b'_i \wedge a_i <_{a_i} b_i <_{\beta_i} c_i).$$

By (B) $\bigwedge_{i < r(f)} b_i < \beta c_i$ (see Remark 1 to Definition 1). By the induction hypothesis on a (see b) we get then $\bigwedge_{i < r(f)} a_i < c_i$. Then by (B) a < c. \Box

PROPOSITION 4. The operations of <u>A</u> are monotonic with respect to <. **PROOF. By (B).**

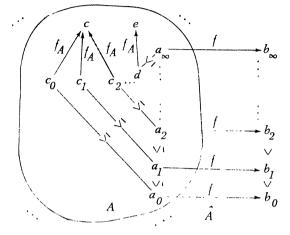
PROPOSITION 5. < preserves suprema of elements of Z(A).

PROOF. By (C).

REMARK. $A/R_{<}$ is not Z-continuous. The following example demonstrates this. Let $\Sigma := \{f\}$ with r(f) = 1. Then $a_{\infty} = sup(a_{n})_{n \in \omega}$ but

$$b_{\infty} := f_{A}(a_{\infty}) \neq \sup_{\delta} (f_{A}(a_{n}))_{n \in \omega}$$

since $\bigwedge_{n \in \omega} b_n := f_A(a_n) < c$, but $b_{\infty} \not < c$.



We cannot even force by definition $b_{\infty} < c$, because if we did it, by transitivity $e < b_{\infty} < c$ would imply e < c, but this would contradict $e \not\leq_A c$.

A. PASZTOR 12

REFERENCES.

- 1. ADÁMEK, J., NELSON, E. & REITERMAN, J., Tree construction of free continuous algebras, J. of Comp. and System Sci. 24-1(1982), 114-146.
- ANDRÉKA, H. & NÉMETI, L., Generalization of the conceptof variety and quasi variety to partial algebras through category theory, *Dissert. Math.* CCIV, Warszawa (1981), 101 pages.
- 3. BURMEISTER, P., Partial algebras Survey of a unifying approach towards a two-valued model theory for partial algebras, *Algebra Univers*. (to appear).
- BURMEISTER, P. & SCHMIDT, J., On the completion of partial algebras, Coll. Math. XVII (1967), 235-245.
- 5. GUESSARIAN, I., Algebraic semantics, Lecture Notes in Computer Sciences 99 (1981), Springer, 158 pages.
- 6. NELSON, E., Free Z-continuous algebras, Lecture Notes in Math. 871, 315-334.
- 7. NÉMETI, I., From hereditary classes to varieties in abstract model theory and partial algebras, Beitrage zur Algebra und Geom. 7 (1978), 69-78.
- 8. NÉMETI, I. & SAIN, I., Cone-implicational subcategories and some Birkhofftype theorems (Proc. Coll. Esztergom 1977), Coll. Math. Soc. Bolyai 29 (1981)
- 9. PASZTOR, A., Epis of some categories of Z-continuous partial algebras, IFI Report 5A/81, Stuttgart, to appear in Acta Cybernitica.
- 10. PASZTOR, A., Ordered algebras are monoreflective in the category of ordered partial algebras, *IFI Report* 6/81, Stuttgart, and in the Proc. 7th Coll. on Trees in Algebra and Programming, Lille, 1982.

Institut für Informatik Universität Stuttgart Azenbergstr. 12 D-7000 STUTTGART 1 R. F. A.