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NOTE ON HOMOTOPY PULLBACKS IN ABELIAN CATEGORIES

by Thomas MULLER

CAHIERS DE TOPOLOGIE

ET GÉOMÉTRIE DIFFÉRENTIELLE

V ol. XXI V - 2 (1983 )

In this Note we inform about conditions in (abelian ) categories
with homotopy system under which a homotopy pullback is a homotopy push-
out and vice versa. In particular, the category of chain complexes over an

abelian category together with the usual homotopy system fulfi lls these

conditions. As an easy consequence of this result we have Mather’s cube

Theorems and their duals (cf. [81, Section 3).

Let C always be a category provided with a homotopy system

(I, i0, i1, q) (cf. [5], 0.5) which fulfills the Kan-conditions E (2), E (3)

(cf. [5], 0.6) and so induces in a canonical way the structure of a categ-

ory enriched over Gd , the category of groupoids (cf. [3], 2 .4). The 2-mor-

phisms in C are equivalence classes of homotopies ({H}) but besides

these we calculate with the homotopies ( H ) themselves as well.

DEFINITION 1. a) A homotopy commutative square in C

is called a homotopy pullback (HPB for short) if :

( i ) to every triple ( u , v , K ) wh ere u c C ( E , B), v E C (E, C), and

K : ku= l v , there exist a h E C(E, A) and homotopies

( ii ) given two triples where

such that

there exists a homotopy O : h= h’ such that
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b) A homotopy pushout (HPO for short) is defined dually.

DEFINITION 2. Two homotopy commutative squares in C

are called equivalent (we write ( 1 ) 0( 2 ) for short) if a homotopy commu-

tative cube in C

(coherence condition :

exists where hi , 1 i  4, are homotopy equivalences.

REMARK. (Cf. [7], (1.1.15).) This relation is an equivalence relation.

LEMMA 3 (cf. [7], (l. 2.4)). If a homotopy commutative square is equival-
ent to a homotopy pullback (pushout), then it is a HPB (HPO).

L EMMA 4 (cf- [7], (1.2-5)). a) If, in the homotopy commutative cube ( C)

above, the left and right faces are homotopy pullbacks and h2, h3, h 4 are

homotopy equivalences, then so is hl .
b) If, in the homotopy commutative cube ( C ) above, the left and right

faces are homotopy pushouts and hi, h 2 h3 are homotopy equivalences,
th en so is h .

From now on we assume

1. that I has a right adjoint,
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2. that C has pullbacks of diagrams where k is a

fibration,

3. that C has pushouts of diagrams where i is a co-

fibration.

L EMMA 5 (c f. [2], (4.2)). a) Every morphism f in C factors as f = hi

where i is a co fibration and h is a homotopy equivalence.
b) Every morphism f in C factors as f = p h where h is a homotopy

equivalence and p is a fibration.

L EMMA 6 (c f. [7], (1.4. 8)). Let

be a commutative square in C .

a) I f (* ) is a pullback and k is a fibration, then (*) is a HPB .

b) If (*) is a pushout and i is a co fibration, then (* ) &#x3E; is a HPO .

L E MMA 7 (c f. [7], 2.5.1 )). a) Every HPO in C is equivalent to a push-
out in C

where i is a cofibration and j is a fibration.
b) Every HPB in C is equivalent to a pullback in C of the form (*),

where k is a fibration and I is a co fibration.

PROOF. a) Let

be a HPO in C . We first replace 0 by a fibration : By Lemma 5, we have

B = jh1 where j is a fibration and h1 is a homotopy equivalence. If h’1
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is a homotopy inverse for hI, there is a homotopy commutative square

where K é I&#x26;iGl+fHlb’ 1 I and G : h1 h’1= 1 A ,. We now replace a h í by
a cofibration : By Lemma 5, we have a h’1 = h i where i is a cofibration
and h is a homotopy equivalence. Then we obtain a homotopy commutative

square

Finally, we form a pushout of the diagram Then we get

a commutative square

which is of the required form. Since there exists a homotopy

(cf. [7], ( 1.1.10 )), it is clear, by the Lemmas 3, 4, 6 above, that the last

square is equivalent to the HPO at the beginning of the proof.
b) This is the dual of a. D

DEFINITION 8. Let D, B be two classes of morphisms in C.

a) DxB is called pull back-stable (pb-stable for short) in C if, in

every pullback in C
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we have i c (f, j £ 93 whenever l E D, k f J9.

b) (î x 93 is called pushout-stable (po-stable for short) in C if, in every

pushout in C

we have 1 c (1, k f 93 whenever i Ct, j E 93.

LEMMA 9 (cf. [1], (8.1.1)). L et C have zero-morphisms.

a) If, in a pall back

I is conormal and i is an epimorphism, then this pullback is also a pushout.
b) If, in a pushout

i is normal and I is a monomorphism, then this pushout is also a pullback.

NOTATION. Let M (C) be the class of monomorphisms in C, E (C) the

class of epimorphisms, N (C) the class of normal morphisms , Con (C)
the class of conormal morphisms, F(C) the class of fibrations, C ( C )

the class of cofibrations in C.

THEOREM 10. Let C have zero-morphisms.
a) 1 f C (C) C N(C) and C(C) x F (C) is po-stabl e in C , th en every

HPO in C is a HPB in C .

b) If F(C) C Con(C) and C(C)XF(C) is pb-stable in ,C, then

every HPB in C is a HPO in C .

PROOF. a) By the Lemmas 7 and 3, it is sufficient to prove the theorem

in the case where the given HPO is a pushout
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wh ere By assumption, we have

By Lemma 9, this square is a pullback and hence, by Lemma 6, a HPB.

b) This is the dual of a. D

REMARK. If, in Theorem 10, C is an abelian category, we can replace

LEMMA 11 (cf. [7], ( 2.5.6 )). Let C be an abelian category and S( C) the

class of sections, R ( C ) the class of retractions in C . Th en S ( C ) x R ( C)
is po-stable and pb-stable as well.

PROOF. a) Let

be a pushout in C where a c S (C), B E R ( C ) . It follows d E S (C) C M ( C ) ,

and therefore, by Lemma 9, this pushout is also a pullback. We now obtain

an exact sequence

Since a, d E S (C), (3 f R ( Ç), there exist ra E C(B, A), rdE C(D, C)

and so c C ( C , A ) where

We define

It is easy to check that o, - sB&#x3E; [a, B] = 1 A , i.e, the sequence (S)

splits. Hence there exists a section s f C (D, BOC) for y, - d&#x3E;. We

define
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and one verifies that Y s Y = 1D, i. e. Y f R (C).
b) The dual statement has a dual proof. ~

Now, let A be an abelian category and a A be the category of chain

complexes over A provided with the homotopy system defined in [4], 2;
then it is well-known that a A is an abelian category, that its homotopy

system fulfills the Kan-conditions E ( 2 ), E ( 3 ) and that the cylinder func-

tor I has a right adjoint.

Further, by [4], Proposition 1 and its dual, a morphism f in a A

is a cofibration (fibration) in d A iff fq is a section (retraction) in A for

each q f Z.

Finally, one verifies that a commutative square

is a pushout (pullback) in a A iff

is a pushout (pullback) in A for each q c Z .

Thus, in view of Lemma 11 above, we obtain immediately:

COROLLARY 12 (cf. [7], (2.5.8 )). C(6 A) x F(6 A) is po-stable and

pb-stable as well.

Since

we conclude from Theorem 10 :

COROLL ARY 13 (cf. [71, (2.5.9)). Every HPO in a A is a HPB in 6 A,
and vice versa.
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be the composition of two homotopy commutative squares in C .

LEMMA 14 (cf. [7], ( 1.2.8), ( 1.2.10), (1.4.7)). a) Let (1) be a HPO. Then

(2) is a HPO iff ( R ) is a HPO.

b) Let ( 2 ) be a HPB. Then (1) is a HPB iff (R) is a HPB.

COROLLARY 15. e Let C have zero-morphisms,

and let C( C)x F( C) be po-stable and pb-stable in C. Then

a) If two of the diagrams ( 1), (2), (R) are HPOs, then so is the third .

b) If two o f the diagrams ( 1 ), ( 2 ), ( R ) are HPBS, then so is the th i rd .

P ROOF. a) By Lemma 14, we have only to prove the case where (2) and

(R) are HPOs. By Theorem 10 a and Lemma 14, the square ( 1) is a HPB,

and, by Theorem 10 b, we conclude that ( 1) is a HPO.

b) This is the dual of a . 0

COROL L AR Y 16 (Cube Theorems). Under the circumstances of Corollary I S

we consider the homotopy commutative cube ( C ) of Definition 2.

a) If the front and left faces are HPBs and if the top and bottom faces
are HPOS, then the right and rear faces are HPBS.

b) If the right and rear faces are HPOS, and if the top and bottom faces
are HPBs, then the front and left faces are HPOs.

c) If all vertical faces are HPBS, and if the bottom face is a HPO,

then the top face is a HPO.

d) If all vertical faces are HPOS, and if the top face is a HPB, then

the bottom face is a HPB.

PROOF. a to d are easily proved by a «diagram casings. We prove a for

example. By Theorem 10, we consider the left face of the cube to be a

HPO. Since, by Lemma 14, the composition of the left and bottom faces

is a HPO, it follows that the composition of the top and right faces is a

HPO (using Lemma 3 and the fact that the cube is homotopy commutative).

Again by Lemma 14, the right face is a HPO and therefore, by Theorem 10,
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is a HPB too. Similarly, we prove that the rear face is a HPB. 0

R EM ARK. In particular, by Corollary 13, Mather’s cube theorems and their
duals hold in the category of chain complexes (cf. [8], Section 3).

By Corollary 16, imitating and dualizing the proof of [6), Theorem

1, we get

COROLL AR Y 17 (Commuting homotopy limits and colimits). Given a homo-

topy commutative diagram in C ,

under the circumstances of Corollary 15 (for example, in the category of
chain complexes) homotopy pullbacks and pushouts commute (in the sense

of [6]) if either

a) the two le ft-hand or two right-hand squares are HPBs,
or b) the two top or bottom squares are HPOS.
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