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THE DERIVED FUNCTORS OF lim AND PROTORSION MODULES

by Timothy PORTER

CAHIERS DE TOPOLOGIE

ET G90MtTRIE DIFFÉRENTIELLE

Vol. XXI V - 2 (1983)

The amount that is known about the values taken by the derived

functors of lim is quite limited. One has information on lim ( 1) (compare
Warfield and Huber [15]) and also on conditions which guarantee that cer-

tain of the lim(i) are zero (see Jensen [9], Gruson and Jensen [3] and

Porter [12]).

In this paper we extend the methods of [12] to give limited informa-

tion on values taken by all lim (i) in systems of modules of finite (bound-

ed) Krull-Gabriel dimension. We prove that if M is an inverse system of

finitely generated modules of Krull-Gabriel dimension  n, then lim (i )M
can be constructed from limits of finitely generated modules of Krull-Gabri-

el dimension less than or equal to n - i by a well controlled process of ext-

ensions, countable direct unions and quotients. (The exact statement of

the results is more technical but this gives the idea of what they state.)

Corollaries of this result apply to certain inverse systems of linearly top-

ologised modules and continuous maps generalising a result of Jensen [8] .
The protorsion modules of the title were introduced by Lambek in

[10]. Although they have exceedingly nice properties, they do not seem

to be closed under countable direct unions and quotients and the class we

shall be considering seems, therefore, to be larger. However their proper-
ties allow one to gain some knowledge of this larger class as these pro-
torsion modules do form the basic building blocks for this class, hence

we have included a brief resume of their properties. It is clear that further

effort is needed in their study, at least in the special cases considered

here which relate to p. f. g. modules of finite Krull-Gabriel dimension.

1. KRULL-GABRIEL DiMENSION AND PSEUDO FINITELY GENERATED
MODULES.

Given an associative ring A , we will write A = Mod - A for the
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category of right modules over A . A is filtered by an ordinal indexed se-

quence of localising subcategories I A a called the Krull-Gabriel filtra-
tion of A , defined as follows :

A-1 ={ OJ - the zero subcategory,
If a = 8+1 and To:A4A,/All is the 8th quotient functor, A is

the smallest localising subcategory of A containing the class

{M| M 6 A , T 9 (M) has finite length in A/ A
If a is a limit ordinal, Aa is the smallest localising subcategory of

A containing CJ AB.Ba 
The torsion radical associated to Aa will be denoted ra. We shall

examine ra more closely in a moment.

We say that an object M has KG-dimension a if M c Aa but M AB
for all (3  a . We write KG-dim M = a .

We shall be only interested in finite u and will construct r n ( M )

step by step by recursion on n .

If n = 0 , set

If a=B+1 and ro(M) is defined then rg( M) is given by

If a is a limit ordinal,

Finally r0 (M)= Ur0a (M).
If M E A0, r0 (M) = M . In any case r0a (M)= r0 (M) for some ord-

inal a and the minimal such a will be called the f simple) a-length o f M .

We next assume that r n-1 (M) is constructed for some n&#x3E; 1 . We

need an analogue of « simple ». We say M is n-simple if r n-1 (M) = 0 and

for all N C M. M/ N f An-1 . Now define for any M with rn-1 (M) = 0
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(This sum is not direct in general but it is an essential extension of a

direct sum of n-simples as these latter are coirreducible (compare Popescu
[11 ] Chapter 5). ) Note

Defining r n by recursion as above for the case n = 0, we get the concept
of (simple) n-length. To handle the general case when r n-1 (M) may be

non-zero, we specify

and extend the notion of n-length similarly.

So much is fairly standard. We next need the notion of pseudo finite-

ly generated modules as defined first in [12] (page 44) from which we take

the following. (All pseudo-finitely generated (p. f. g.) modules will be of

finite Krull-Gabriel dimension.)

If n=-1, all obj ects of An are p. f. g. Assume therefore that the

term is defined up to dimension n-1. If M is a sum of n-simple objects,
then M is p. f. g. if it satisfies the conditions :

(i) Tn-1 (M) is a direct sum of finitely many simples in A/ An-1. 
( it ) If N C M is such that M/N is in An-l then M/N is p. f. g.

In general M in An is p. f. g. if

( iii ) rn-1 (M) is p. f. g., and

( iv ) for each a , writing M M/rn-1 (M), one has rn1 ( M/ta ( M ) ) is

p. f. g. in the earlier sense.

We proved in [11] the following proposition.

PROPOSITION. 1 f M is a Noetherian object o f finite Krull-Gabriel dimen-

sion, then M is p. f. g..

In fact Noetherian objects have even more structure and we shall

briefly turn to this next.

If M is Noetherian for each n , M has finite n-length, also, in the
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terms rn1 (M/rna (M)), one has « essentially» only finitely many direct

n-simple summands (i. e. it is an essential extension of such a finite direct

sum).

For each n , we generalise length in the classical sense as follows

If n = 0 , length is to be interpreted in the old sense. However this

equals the sum

where l0a (M) is the number of simple summands in

B+1. (As M is supposed Noetherian, limit ordinals do not need to be con-

sidered and the sum is finite.)

For general n , again with Noetherian M , write M = M/T n-1 (M) and
set, for a =B+7,

1na (M) = the number of simple direct summands in ’ 

As Tn-1 (M) is Noetherian (Popescu [11] page 372), lna (M) is finite and

non-zero for only finitely many a . Let

To distinguish (simple) n-length from this more specialised notion, we shall

call this latter notion composite n-length.

Clearly if M is Noetherian, then M has finite composite n-length
for each n . It is by no means clear that the converse holds.

2. PROTORSION MODULES AND LIMIT TORSION CLASSES.

Lambek [10] has introduced the term «generalised torsion theory
to signify a class of modules which is closed under isomorphic images,
finite direct sums and submodules. For instance, the Noetherian or the

p. f. g. objects of a given KG-dimension form a generalised torsion class

in this sense.

Given any generalised torsion theory C in A one can topologise

right A-modules by using the « dense» submodules (with respect to C) as
a fundamental system of neighborhoods of zero : D C M is dense (with res-
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pect to C) if MID c C.

We will denote by L ( M ) the module M considered as a topological

right L ( ¿4 )-module. We denote by C L (M) the Cauchy completion of M

in this topology.

An other construction on modules (relative to a fixed generalised
torsion theory C) is the protorsion completion. An inverse limit of a proj-
ective system of modules in C is called a protorsion module. Giving each

module in C the discrete topology, or, what is equivalent, the topology

coming from C as above, we give the inverse limit the subspace topology
of the product as usual.

The protorsion completion o f a module M is the protorsion module-

Any protorsion module is a topological L ( A )-module and as such

is complete. In particular F ( A) is a complete topological ring which will

be denoted by Each protorsion module is in fact a complete topological
A-module.

If one denotes by j the forgetful functor from protorsion modules to

complete L ( A ) (or A )-modules, then Lambek [10] proves that J F ( M )
and C L ( M ) are isomorphic.

Thus the protorsion modules are fairly easy to handle. However we

need to work with a larger class. The class of protorsion modules is almost

certainly not closed under quotient by closed submodules. More impor-
tantly, the results of these operations may or may not be complete. Thus

to obtain a useful class of topological A-modules, we close up the class
of complete modules under the operations of taking:

( i ) isomorphic images by continuous maps,
( ii ) closed submodules,

( iii ) finite unions,

( iv ) quotients by closed submodules,
( v ) extensions

where E , G are in the class and i ( E ) is closed in F.
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We call the result the limit torsion cl ass of C and will denote it L im ( C ) .

We shall also use a second larger class where (iv) is weakened

to include all quotients, ( iii ) to include countable unions and ( ii ) is weak-

ened to include all subobjects. We denote this class by wL im ( C ) .

3. SPECIAL DIRECT LIMITS.

We shall denote by pro (A) the category of projective systems in

A . The theory of procategories is too large to be sketched adequately here

so we shall assume that the reader has some knowledge of the basic re-

sults and refer to [12] for more detailed information on localisations in

procategories.

Although, of course, A has exact direct limits, Pro (A) in general
does not. However there is a useful class of «special direct systems» on

which « exactness» does hold.

Let J be a directed set and AJ the category of J-indexed directed

systems in A. (In fact we will only need ordered J but will give the wider

definition.) Suppose given a proobject M : I - AJ . M can be considered

as a 1-indexed directed system in pro ( A ) . If for each i in I the directed

system M (i) consists of monomorphisms then we shall say M is a special
direct system and colim j M a special direct limit.

EXAMPLE. Let I r } be the indexed family of subfunctors of the identity
whose union is r’ (as described in Section 1). Then for any promodule M ,

rna (M) is a special direct system whose direct limit is r n ( M ) .

The advantage of special direct limits is the exactness of colim on

them. It is this feature which plays the decisive role in the construction

of the associated spectral sequence whose existence was shown in [12],
page 47.

One constructs from a special direct system M : I - AJ a double

complex M II (M) and two spectral sequences. (We follow the spectral se-

quence convention of Hilton &#x26; Stammbach [7 . )
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and

which arise from the natural filtrations of B = Tot (M II (M)). As the co-

limits are all exact, one has considerable simplification of these to give

and

The second filtration of Tot (M II (M)) is both complete and cocomplete
(in the terminology of Hilton &#x26; Stammbach [7]) so

The first filtration is unfortunately not complete but one does have that

the zero-th term of that filtration 1 F0B is all of B . ilence

Now each 1 Epoo, q back as far as 1 E-q00, q is zero so we have

for p = - 1, - 2, ... , - q and so

and we have proved :

PROPOSITION 3.1. 1 f M is a special direct system in pro ( A) then there

are natural epimorphisms ( for each q &#x3E; 0 ) 

We shall later be considering linear topologies on these modules,

but, in the cases studied in this paper, we seem to have no control over

whether the kernel of the above epimorphism is closed. This fact is the

reason why we have considered weak limit torsion classes above. It seems
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just possible that a closer inspection of the spectral sequence will enable

this weakness to be remcved. We shall obtain our best results by avoid-

ing it.

4. LOCALISATIONS IN PROCATEGORIES.

We include here a brief resume of the results from [12] ] on local-

isations. We limit attention to the results and definitions necessary for

understanding of the subsequent development of this paper.

Suppose C is a full subcategory of A, then we say that an object
X in pro ( A) is essentially o f type C if the following equivalent condi-

tions hold -

( i ) X is isomorphic in pro (A) to an object in the subcategory pro (C).
( ii ) If X : I - A represents the proobject X then for any i in I there

is a morphism x : j -&#x3E; i in I such that the transition morphism X (a) :

X (j)-&#x3E; X ( i ) factors through an object of C.

If C is a localising subcategory of A then the subcategory E (C) 

of those proobjects essentially of type C is localising in pro (A) and

E (C) is the kernel of the canonical functor pro (A)-&#x3E; pro (A/C). Thus

there is a functor induced :

The quotient functors

have «sections» and the images of the sections are respectively the C-

closed objects of A and the E ( C )-closed objects of pro (A). We denote

the corresponding local subcategories by «C-closed» and « E (C )-closed».
Then one has

The localising subcategory C determines a torsion subradical r. If F :

A -&#x3E; B is any functor then there is a proextension of F,

defined by :
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Taking F = r : A-&#x3E; A, one has : pro (r) is naturally equivalent to the tor-

sion subradical associated to E (C).

Finally if L : A-&#x3E; A is the localisation functor associated with

C and U : 1-&#x3E; L the corresponding natural transformation, then for E ( C )

one has (up to natural equivalence):

pro(L) : pro (A) -&#x3E; pro (A) is the localisation functor and pro (U) 
the corresponding natural transformation pro (U) :1 -&#x3E; pro (L).

We will use the notation T = pro (r), T = pro (T), etc. Because

of the natural equivalences concerned, this slight abuse of notation with

T should not cause any confusion. (For the basic ideas of localisation

theory, we refer the reader to the original source: Gabriel [2] or for a more

recent treatment Popescu [11]. The author has also found Hacque [5, 6]
to be extremely useful. For localisations in procategories and in particular
for the proofs of the above results we refer the reader again to [12].)

5. THE VALUES OF lim (i) ON E (An,p.f.g.).
We shall denote by An,p.f.g. the full subcategory of An defined

by the p. f. g. modules.

THEOREM 5.1. Let M be a projective system in A which is essentially

of type An, p.f.g. then :

REMARK. Case ( ii ) is that previously handled in [12] and it drops out of
this proof in exactly the way it was proved there. Of course, the case

k = n + 1 is repeated but since A-1= 10 } there is no problem here. We

shall not provide a repetion of the proof of ( ii ).

PROOF OF THEOREM 5.1 (i). The case n = - 1 is trivial. In fact, the

case n = 0 is only slightly less trivial as the case of lim (1) is essen-

tially classical here, whilst the other interesting case k = 0 states mere-

ly that lim M E w Lim (A0, P.f.g.), which is immediate from the definitions.
We shall thus assume the result for all Al6E(A ,. ) for r  n and

work with a projective system M in E ( An, p.f.g.).
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We start with the simplest possible kind of M namely we assume

(a) rn-1 (M)=0, 
(b) Tn-1 (M) is isomorphic in pro (A/An-1) to a system in which

each Tn- I ( M ) ( i ) is a direct sum of at most I simple objects for some

fixed but arbitrary I .

Then Tn-1 (M) is isomorphic in pro (A/An-1) to a finite direct sum of

simple objects of A/An-1 (considered via the embedding

as constant projective systems). Thus T n-l ( M)= h (C) Si)’ Si simple
i = 1

in A/ An-1 By the definition of p. f. g., we can choose each Si to be the

image of some p. f. g. n-simple Ni . As the sum is finite and Tn-1 is exact,

we have

Using the description of isomorphisms in localised categories, one obtains

(cf. [111, pages 52- 53) that this composite isomorphism can be represent-
ed by a pair of monomorphisms

m

where we have written N for O Ni and where Coker s and Coker f are in
i=1 

E (An-1) and as M and h (N) are p. f. g., we have that Coker s and Coker f
are in E (An-1, p.f.g.) and thus are covered by the induction hypothesis.

To link lim (k) M and lim (k) h ( N ), we use the long exact sequences
corre spondin g to

and

From ( d ) we h ave

and

If we put on lim (k+1) M the linear topology corresponding to
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An - (k + 1), p.f.g., we have that the isomorphism in ( f ) is continuous

( lim ( k )Coker f already has a topology coming from the fact that it is in

w Lim ( An - 1-k, p.f.g.)). Thus we have that

For k = 0 one gives lim (1) M’ the An-1-topology, then as lim h (N) is

protorsion, lim(1) M’ is the quotient of a (complete) pro ( An-1)-torsion
module by a closed submodule, hence 

Of course

so this particular case is finished.

Next turning to ( c) we find

Each exact segment

has both ends in w Lim (Cn-k, P.f.g.). Ker(3 is a closed submodule of

lim (k) (M) and Im 0 is a closed submodule of lim (k) Cokers in the rel-

evant topologies: An-k, p.f.g. for lim (k) M and An-k-1, p.f.g. for

lim (k) Cokers. Thus since w Lim (An-k, p.f.g.) is closed under extensions

of this kind

Now we turn to a more general type of projective system M . Name-

ly we require that each Tn-1 (M(i)) is still a finite direct sum of n-sim-

ples, but now the number of direct summands need 
not be bounded. Such

an M is a special direct limit of its subsystems 
of the type just considered.

Thus there is an epimorphism

where M is the special direct system in question.

We can put the An-k, P.f.g. -topology on both sides, 
but unfortunately
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as mentioned previously, we do not know if the kernel of this morphism is
closed. In any case as colim (lim (k) M) E w Lim (An-k, P.f.g.), the same

is true for lim (k) M.

Passing to a yet more general M with

we find each factor used in the construction of rn (M) is of a form already
considered. For limit ordinals, one will of course have to use the epi-

morphism

but the end result will again be that

Finally if M is arbitrary in E(A r ) then

is exact. rn-1 (M) E (An-1, p.f.g.) and M/rn-1 (M) has just been handled
as it satisfies rn-1 (M/rn-1 (M))= 0 . The long exact sequence corres-

ponding to ( g) together with extensions completes the proof of the theorem.

The weakness of the class concerned, w Lim (An-k, P.f.g.) lies

in the lack of topological conditions on subobjects and quotients. If one

does not take direct limits in the argument for a particular M then for each

step in the calculation, one finds that the topological modules involved

are separated (i. e. {0} is closed) and hence, kernels of morphisms are

closed subobjects. Thus one is led to the following more restrictive, but

stronger, version of the theorem.

THEOREM 5.2. Let M be a projective system in A which is essentially
of type An, p.f.g. and such that the numbers

then for each 0 k n+1,

REMARK. As completeness is not in general inherited by quotients (even
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when the corresponding submodule is closed), this class is slightly less

good than it might at first appear.

6. APPLICATIONS.

(a) As mentioned in [12], it is fairly easy to use the vanishing of

lim (i) to obtain results on the vanishing of Ext iA (M, N) when M is flat

and N is p. f. g. of Krull dimension n (cf. 6.11 of [12]). The result below

applies the same arguments to obtain other information on the ExtAi (M, N)
in this situation.

P ROP OSIT ION 6. 1. L et A be a commutative ring, M a flat A-module and

Nap. f. g. a-module of Krull-Gabriel dimension n , then

Writing M = colim L a7 La free of finite type, we have from Jensen

[9] a spectral sequence

which, since the La are free, degenerates to a sequence of isomorphisms

r

If rank L a = ra. Hom (La, N) =Na so we are in a situation in which

5.1 can be used. This gives the result.

In Gruson and Raynaud [41 one finds the statement that the infini-

mum of those n for which ExtnA+1 (M, N ) is zero for all flat M is the

same as the pure injective dimension of N . One finds a proof of this in

Gruson and Jensen [3]. Using this we obtain :

COROLLARY 6.2. 1 f /1 is a commutative ring, any p.f. g..4-module N with

Krull-Gabriel dimension  n has pure injective dimension  n .

REMARK. If N is Noetherian then as mentioned before, the (composite)
k-length of N is finite for all k  n . If then M is a flat module such that

the L a ’s in the above proof can be chosen to have bounded rank then one
can replace w Lim by L, im in the statement of the proposition.
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(b) The modules in Ao, p.fg. are Artinians so the protorsion com-
pletion of a module with respect to A0,p.f.g. is a strictly linearly compact
module in the Ao, p.f.g. -topology (which is the inverse limit topology as

well).

Jensen proves in [8] that derived functors of lim vanish on sys-

tems of strictly linearly compact modules (with continuous «bonding»

maps).

Supposing that {M (i) i E I} is the given system, he uses the

strict continuity of the transition morphisms pji : M (j)-&#x3E; M ( i ) to find a

partially ordered set S and submodules U A, C M(i), A E S, i E I such

that :

(1) UA, i, h E S, form a fundamental system of neighborhoods of 0

in M ( i ) such that M (i)/ UA, i is Artinian ;

Each M ( i ) satisfies

and one has

Roos [13] gives the spectral sequence

which converges to

As each M (i)/UA, i is Artinian, these limit terms for n &#x3E; 0 and

EI-terms other than for p = q vanish and one reads off:

We shall use a version of this argument but with « Artinian» replaced by
«in An, p.f.g » to obtain information on derived limits of systems of certain

types of protorsion modules.

We shall say that a protorsion module M is countably protorsion if
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it has a countable cofinal family of open neighborhoods U of 0 such that

M/ U is «torsion ». Thus M is countably protorsion iff it is an inverse

limit of a sequence of torsion modules linked by epimorphisms. (It is well

known that on inverse sequences with epimorphic transition morphisms
the lim (i), i &#x3E; 0 , vanish cf. Jensen [9] Chapter 2.)

If M : 1 -+ A is a projective system of countably protorsion module.s

(relative to some generalized torsion class C) and strict morphisms (cf.
Bourbaki [ 1 III, 2.8) then we can repeat Jensen’s argument to find a sys-
tem {UA, i | X6/, A E S} satisfying his conditions except that, now,

M(i)/UA, i E C.
In the spectral sequence we have

and zero otherwise. The spectral sequence, as before, converges to

lim (n) M (i) /UA, i.
PROPOSITION 6.3. Let M : I - A be a projective system of countably pro-
torsion modules (for C = An P.f.g.) and strict morphisms then

The rest of the proof comes from feeding of 5.1 into the limit term

of the spectral sequence. The collapse of the spectral sequence gives

REMARK. Clearly by bounding the composite k-lengths of the M (i)/UA, i 
one can obtain

The same basic argument as used above works whenever one has a

system M which is expressible as a limit over one factor of a product,
i. e. M’ : I X S 4 A, M = lim M’ : I-&#x3E; A. An important instance of this occurs

S
when completing with respect to an n-saturated ideal.

For each n , there is a complete modular lattice
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of right ideals (see Stenstrom [14] and Popescu [11]). These ideals are
called n-saturated. ( Cn ( A ) is never empty since A is always there, but

it can happen that A is the only ideal in Cn ( A ) .)

For simplicity, throughout the rest of this paper we shall assume
A is right Noetherian. If j C A is n-saturated then for any finitely gene-
rated right A-module M and any k&#x3E;0, M/Jk M is in An,p.f.g. *

If we have a projective system M : 1 4 A , we can thus build a new

one M: I X N -&#x3E; A with M (i,k) = M (i)/Jk M (i). Taking the pointwise
limit over N we get the J-adic completion M : I - A of M . An obvious ad-

aptation of the proof of 6.3 then gives (with the above notation) :

PROPOSITION 6.4.

The interest of this result is of course that by passing to the com-

pletion we have «killed off » all of the higher order lim (k). To study this

process better one needs to have a lot of information on the kernel and co-

kernel of the completion morphism 0 : M -&#x3E; M. If j is contained in the n-

radical of a , i. e. the intersection of the maximal elements of Cn (A),
then Ker 0 C r n-1 ( lVI ) and thus is fairly easily handled. This result need

other methods than those developed here and will be proved in a subse-

quent note. With this last result (6.4) one begins to see the possibility of

extending the neat result of Jensen ([9], 8.1) in which the finite products
of complete local rings are characterised amongst the commutative Noether-

ian rings by means of criteria relating to the vanishing of lim (i) and

ExtA (i). As this result is the prototype of other interesting results of Gru-
son and Jensen [31, an extension to rings complete in other topologies
would be of some interest.
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