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ON THE CATEGORIES Sp (X) AND Ban(X)

by Anthony Karel SEDA

CAHIERS DE TOPOLOGIE

ET GÉOMÉTRIE DIFFÉRENTIELLE

Vol. XXI V -1 ( 1983 )

1. INTRODUCTION.

Let Ban (X) denote the category of Banach bundles and linear

contractions over a fixed locally compact Hausdorff space X and Spp (X)
denote the category of spaces over X whose projections are proper map-

pings. Our objective, here, is to describe the construction of a pair of con-

travariant functors

and

which are adjoint on the right, but which do not determine an equivalence of

categories. These ideas are a continuation of [6] and partially complem-
ent the work of several authors including Pelletier and Rosebrugh, Mulvey,
Burden and Hofmann, see [5] and its references, in that they extend me-

thods of classical functional analysis to the category Ban (X), For ex-

ample, the counit of our adjunction yields an isometric embedding CE :
E -&#x3E; A ( S ( E ) ) of any Banach bundle E in a Banach bundle whose fibres

are spaces of continuous functions. Thus, we generalise the classical re-

sult of Alaoglu which gives an isometric embedding of a Banach space E

in the space A ( S *) of continuous scalar valued functions, where S * de-

notes the closed unit ball of the dual E * endowed with the weak* topo-

logy. If we specialise to the case when X is a singleton set, then our em-

bedding coincides with Alaoglu’s but even in this special case the ad-

jointness seems to be new *) .

*) I am indebted to the referee for pointing out that the adjointness in this special
case is not in fact new and has been discussed by Z. Semadeni in his article:

« Cate gorical approach to exten sion problemsv, Proce edings of International Syrrr
posium on Extension theory of topological structures and its applications, VEB
Deutsches Verlag der Wissenschaften, Berlin, 19690
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Actually, our usage of the term Banach bundle, and hence, of

Ban ( X ) , is that of (1] and [2], which serve as references for definitions

and basic properties, and differs somewhat from the usage of [5],or more

precisely of that of Reference 11 in [5]. For one thing, we assume that

the norm function is continuous rather than simply upper semi-continuous.

Indeed, since the norm on A( Y) turns out to be continuous for any Y in

Spp (X) and in particular for Y = S( E ) , it follows from the continuity of

CE that the norm on E is necessarily continuous and hence that our re-

sults do not in the main extend beyond Ban ( X ) . Finally, we note that,
unless stated to the contrary, our scalar field is that of the complex num-

bers C .

2. THE FUNCTOR A: Sp(X) -&#x3E; Ban(X).

Let p : E - X and p’ : E’ 4 X be Banach bundles over X. A mor-

phism Y : ( E, p ) -&#x3E; ( E’, p’ ) in Ban ( X ) is a fibre preserving continuous

function Y : E 4 E’ which is a linear contraction on fibres, that is, Tx =

Y|Ex is a linear operator on Ex with || Yx ||  1 (operator norm) for each
x 

x E X, where Ex denotes the fibre of E over x.

An object in the category Sp(X) of spaces over X is a contin-

uous open surjection q: Y -&#x3E; X, where Y is a locally compact Hausdorff

space. If q’ : Y’ -&#x3E; X is also an object in Sp (X), then a morphism rj :

( Y , q) -&#x3E; ( Y’ , q’ ) is a continuous, proper and fibre preserving mapping

q: Y 4 Y’ . The category Sp( X ) (or its objects ar least) is of course

well studied. For example, James [3] has considered general topology in

Sp ( X ) somewhat in the spirit of this article. In fact, what we are showing
is that general topology in Sp ( X ) is related to functional analysis in

Ban ( X ) via A and S in the same way that (locally compact Hausdorff)

topological spaces are related to Banach spaces.

We begin by stating a basic result in the theory due to Douady
and dal Soglio - Hérault, see Appendix of 2 j for proof.

THEOREM 1. Let p : E -&#x3E; X be a Banach bundle over X and let sc E.

Then there exists a section a o f p such that a ( p ( s ) ) = s.
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A section 0 with the stated properties of Theorem 1 is said to

pass through s and it follows that sets of the type

form a neighborhood base at s as V ranges over neighborhoods of p ( s )
in X and c over positive real numbers. As an application of this fact one

can prove the following proposition.

PROPOSITION 1. Suppose Y: E -&#x3E; E’ is a fibre preserving mapping such

that Yx is a bounded linear operator for all x (X and I I Tx | I is locally
bounded on X . Suppose also that there is a vector space T o f sections

of E with the properties :

( i) i y ( x ) | y E T i is dense in Ex for each x,, X .

( ii ) Y o y: X -&#x3E; E’ its a section of E’ for each y E r.

Then T is continuous.

We omit details but refer the reader to [6], Section 3 for the type

of argument required.

With these preliminaries established we turn next to the description
of A . Let q : Y -&#x3E; X be an object in Sp ( X) , let Yx = q-1 ( x ) be the fibre

of q over x and let Ax = Co ( Yx ) be the space of all scalar valued cont-
inuous functions on Yx which vanish at infinity (a function f vanishes at

infinity if for each e &#x3E; 0 there exists a compact set in the domain of f on

the complement of which |( x ) I  e). When endowed with the uniform

norm || ||x=|| II, , Ax becomes a Banach space. Let A = U Ax and
x E X

let p : A - X be the obvious projection with fibre Ax over x . For each

function belonging to the space k( Y) of scalar valued continuous fun-
ctions on Y with compact support, define

Let r denote the vector space 95 f k (Y)] . In [6 ] we established

the following theorem (see [ 1] , Proposition 1.6).

TH EOREM 2. (i) For each x c X the set 1 O ( x ) | iE} is dense in Ax .
(ii) For each T the nurrterical function 0 ( x) || is continuous

on X ,
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(iii) A is a Banach bundle over X when A is endowed with the top-

ology determined by the sets

where O c r, V is open in X and c &#x3E; 0 . Moreover, each element 0 o f r
is continuous and is therefore a section of p; and this topology is unique
wi th these properties.

To define A on objects we set A ( Y) to be the Banach bundle

p : A - X described above. If 77 : ( Y, q ) -&#x3E; ( Y’ , q’ ) is a morphism in

Sp ( X ) , we define

by

where x = p’( f ) and nx denotes the restriction of 71 to Yx . Because

q is proper , n-1 ( C ) is compact in Y for each compact set C in Y’ and

from this it follows that f o nx vanishes at infinity. Moreover, A (n) ( f )
is clearly continuous for each /6 A ( Y’ )x , which means that A ( n) does

map A ( Y’ ) into A ( Y) . It is clear that A ( n ) is fibre preserving and rou-

tine to verify linearity on fibres. Since

for all f, we have I A (n )x ||  1 for each x c X. Next we observe that if

O e k ( Y’ ) , then

and

So by applying Proposition 1 and Theorem 2 we conclude that T(n) is

continuous. It is routine to establish functoriality of A and we may sum-

marise these conclusions as follows :

PROPOSITION 2. A is a contravariant functor from Sp(X) to Ban ( X ).

Let q : Y -&#x3E; X be an object in Sp ( X ) , and let A ( Y ) x X Y denote
the fibred product

regarded as a subspace of A ( Y ) X Y . There is a scalar valued function p

defined on A ( Y) XX Y by p ( f , y ) = f ( y ) and called evaluation. The fol-
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lowing result will not be needed until Section 4 but it is convenient to in-

clude it in this section.

PROPOSITION 3. The evaluation map p is continuous.

PROOF. Let fe A ( Y )x and y e x . Given e &#x3E; 0 , let 8 e k ( Y ) such that

we have

Let 0 be a neighborhood of y in Y such that

for all

and let V = q(0), then V is a neighborhood of x in X since q is open.

By definition of e we have now that

for all y’ c 0 . Put U = U (8, V , e/ 3 ) . Then, if f’ E U and y’ e 0 with

p ( f ’ ) = q ( y’ ) we obtain

by means of the inequality above and so p is continuous as required.

3. TH E FUNCTOR S: Ban ( X ) -&#x3E; Sp ( X ) .

Let p : E -&#x3E; X be a Banach bundle over X, let E* denote the dual
of x endowed with the operator norm || I || x = || || and let E * = U Exx X 

x e X 
x

equipped with the obvious projection p *: E * -&#x3E; X. Given a section o- of

p we define

by

where K denotes the scalar field. Let Q = I p*, F o I o- c I I , where I or

S ( E) denotes the set of all sections of p , and give E * the weak topo-

logy generated by 0.

P R OP OSITIO N 4. a ) p * : E* -&#x3E; X is continuous.

b ) E* is Hausdorff.
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c) For each x c X the induced topology on E* is the weak * topology.

P RO O F. a is obvious.

b) Since the range space of each function in Q is Hausdorff it suffices

to show that Q separates points of E* . If

then P * separates f1 and f2 . Otherwise, there is an element s c Ex,
where p*( f1 ) = x = p *( f2 ) , such that f1 ( s ) 1- f 2( s ) . By Theorem 1

there is a section a of p passing through s and then

and so n separates points of E*.

c) This follows from Theorem 1 and the fact that subspaces in weak

topologies have the weak topology generated by the restrictions of the

functions in the generating family.

We denote by S( E) the subspace of E* consisting of all those

f with ||f||1 and by q the restriction of p * to S( E ). Then S( E ) is

Hausdorff, q is continuous and S( E )x = 4-1 (x) is compact for each x c X’.

P ROP OSITION 5. The map q: S( E ) -&#x3E; X is open.

PROOF. Let f o e S( E ) , let o- e Z and let e&#x3E;0. We define the set

S(o- , f o , e) by

Sets of this type together with the sets q-1 ( U ) , U open in X, form a sub-

basis for S( E) and it suffices to show that q(S(o-, f o , E)) is a neigh-
borhood of x o = q(f o ) in X. Let A be a scalar such that

If f o (o-(x o)) # 0, then

and if, on the other hand, f o (o-; x o ) ) = 0 , then we choose A = 0 and so

in any event I A |  1 . Since the norm on E is continuous and o e Z , there
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is a neighborhood V of x o in X such that

for all x E V . If o- ( x ) = 0 , then the zero functional f F S( E )x has the

property that f (a ( x ) ) = A || o- ( x ) || . If o- ( x ) # 0 , the Hahn-Banach theo-

rem shows that there is an f E S ( E )x with || f || = I A I and such that

f(o(x)) = A || o-(x)|| - Hence, for each x f V there is an f c S(E)x such

that

and it follows that f e S(o-, fo, e) Therefore, V C q( S(a , f o , e ) ) and

so q is open.

PROPOSITION 6. The space S( E) is locally compact. *)

PROOF. Let K1 be a compact set in X and let K’ = q-1 ( K1 ) ; we show
that KI is compact in S( E) . If u E I and f c K’ , then

let

is a scalar and

Since Q separates points of E * the evaluation map ev e mbeds K’ in the

product KI X II C which is compact. Suppose G is an element of the

closure of eve Ki) in K1 x TT Z C o- o- e . Then G is a function on the index

set { 1 } U Z and there is a net f a in KI such that ev(fa) -&#x3E; G . This latter
statement is equivalent to

in K1 and Fo- ( f a ) -&#x3E; G (a) in Co-, for each u c S , and this in turn is equi-

*) Kitchen and Robbins [4) have given a construction of a space K* similar to
but different from S(E) and a map rr*: K*-3, X. They show K* is locally compact
and that their projection 7* is continuous, but they do not show 7*is open. How
ever their proof of local compactness is different from ours and so too are their ob-

jectives. Furthermore they do not show that 77 * is a proper map which is essential
for us and indeed is what we are really proving here about q , see Proposition 7.
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valen t to

( 1 ) xa -&#x3E; x in K1and f a ( U ( x a ) ) -+ G ( fJ) in Cu for each aryw.

Now define G on Ex as follows :

(2) if and th en

To see that G is well defined, suppose

and

Then

and so fa (o- (xa ) ) and f a ( w ( xa ) ) converge to the same limit. Hence,

G (u) = G ( w ) by ( 1 ) and it follows that G is a well defined scalar val-

ued function on Ex . Given s c E there is by the proof of [11, Proposition
1.5, a section y c S passing through s with the property

for all

Hence

and so I |G ||  1, One shows in like fashion that G is linear on Ex and
it now follows that G f S( E )x . Since it is clear that ev ( G ) = G, we now

conclude that ev ( K í) is closed in K 1 X fl C a and finally that K’1 is

compact as we require.

PROPOSITION 7. The projection q: S( E ) -&#x3E; X is a proper map.

P ROO F. The proof of Proposition 6 shows that q-1 ( K ) is compact in

S ( E ) for each compact set K in X and so q is a proper map since X

is Hausdorff.

The functor S : Ban ( X ) -&#x3E; Sp ( X ) is now defined as follows : the

image of ( E , p ) in Ban ( X ) under the object function of S is ( S ( E ), q )
as described above. If 11’: E 4 F is a morphism in Ban ( X ) , then S (W)
is the restriction Y* |S(F) of the «conjugate operator» Y *. Thus,

S(Y)(g) = *(g) = g o Y x for g E S(F)x.
There are several things to check. Firstly, the expression T *( g ) = g o Yx
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where g E F*x , actually defines Y* on all of F * and determines a map

T*. F * -&#x3E; E *. We show in fact that Y* is continuous on all of F *. If

p*E and p*E denote the respective projections on E* and F*, then we

have p*E o Y * = p*F and so p*EoY* is continuous. If Q E Z E ) , then

For 0 T * - FW a and so F o- o Y * is also continuous. From this it follows

that T * is continuous and hence that S(Y) is too. Next, if g f S( F)x ,
then

and so S(Y) maps S(F) into S( E ) . Obviously S(Y) is fibre preserv-

ing. Thirdly, if K r- S ( E ) is compact, than q-1F ( qE ( K ) ) is compact by

Proposition 7, where qE denotes the projection on S( E ) , etc. But

S(Y)-1 ( K ) is a closed subset of qF-1 ( qE ( K ) ) and is therefore compact.
Thus, S( Y ) is a proper map. Finally, one shows easily that S is func-

torial and the results of this section may be summarised as follows :

PROPOSITION 8. S is a contravariant functor from Ban ( X ) to Sp (X)

4. ADJOINTNESS OF S AND Ã.

Let Spp(X) denote the full subcategory of Sp ( X ) in which ob-

jects q : Y - X have the extra property th at q is a proper map. For such

an object the fibres Yx are compact spaces, and Proposition 7 shows that

the receiving category of S is actually Spp ( X ) .
Our main objective is to demonstrate that the functors

and

are adjoint on the right. However, we prefer to frame this in terms of ad-

jointness of covariant functors in the usual way. Thus, let

and

be defined by

and

respectively. Now let AoP: Spp ( X ) -&#x3E; Ban ( X ) op be the dual of A def-

ined by Aop (n) = ( A n ) op . One final piece of notation is required. For
an object q: Y -&#x3E; X in Sp ( X) and y E Yx let8 y denote the point func-
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tional in A ( Y)x defined by dy( f ) = f ( y ) . In this way we determine a map

defined by

THEOREM 3. The functor A’P is left adjoint to S via an adjunction whose

unit 8 has components 8 y, Y f Spp ( X) , and whose counit c has comp.,

onents Eop E, EE Ban(X), where e E: E -&#x3E; A(S(E)) is defined by

for and

P ROOF. We shall display a bijection

which is natural in Y and E. Thus, let q : Y - X and p: E + X be ob-

jects in Spp (X) and Ban ( X ) op respectively. To clarify matters we break

the proof into a sequence of separate steps.

1) Th e de finition o f X . Given n : Y -&#x3E; S ( E ) in Spp ( X ) , we define

where x c X, sEE and y c Y . Clearly, Y (S) is a scalar valued func-
x x x

tion on Yx and is the composite F 0 TJ, where Fs f E**x denotes the
functional induced by s which is continuous by definition of the weak*

topology. Therefore, ’Px ( s) is continuous and hence is an element of

A( Y) x since Yx is compact. Linearity of Yx is easily checked, and

since ||n(y)||1 we have

Therefore Yx is a contraction for each x E X . Obviously T is fibre preser-

ving and so it remains to show that ? is continuous and this we do by

applying Proposition 1. Thus, let a be a section of p which, without loss

of generality, can be supposed to have compact support D C X. Now,

(9u) ( x ) is the function ex where 0 is defined by

and is continuous. Moreover, the support of 0 is contained in the set

q- 1 ( D ) which is compact since q is proper. In other words, T o u = 8, 
and it follows that Y is continuous. This establishes the mapping À.
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2) The definition of k, ( = k-1). The next step is to define a map

Given TOP in the left hand hom set, let T *: A( Y)* -+ E * denote the con-

jugate operator of Y. We define

by
Since

we see that n (y) e S ( E ) , that is, q : Y -&#x3E; S( E) and clearly 77 is fibre

preserving. To check continuity of TJ, let q denote the projection on S(E),

Then q o q = q and so q o n is continuous. Next, let o- e Z ( E ), then:

Fo- 0 TJ is the map

and can be written as an obvious composite involving the evaluation map

p of Section 2. From Proposition 3 it follows then that F a o 77 is cont-

inuous and consequently that 77 is too by virtue of the topology on S( E )

as a weak topology. That 77 is proper is immediate since q is proper and

this establishes the mapping X’.

REMARK. Without the restriction that q be a proper map, it does not follow

that 77 is proper as can be seen by considering the image k’(Yop) in the

case that Y is the zero operator E -&#x3E; A ( Y) .

in and let

and

Then for Y e Yx we have 0r y) = Y *(dy l and for Sf Ex we have

Hence, 0( y) = 71 ( y) for all y f Y and so X ’h is an identity. A similar
calculation shows that X h’ is also an identity and therefore À is a bi-

j ection.
It remains to show that kY 1, E 1 is natural in Y1 and E1.

4) k Y 1, E 1 is natural in Y1 . Fix E, and consider variable arrows

n : Y’ - Y in Spp ( X ) . Naturality in Y, means equality of
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and

where the upper square, o, means «compose on the right». Let

in

Then and for we have

For the other composite we have

Hence, for we have

By a direct computation one verifies that

obtains the required equality to demonstrate naturality in

is natural in E1 . This time we fix Y1 and consider var-

iable arrows ’I1°P : E 4 E’ in Ban ( X )op . Naturality in E1 means equality

where the lower square, 0, means « compose on the left». For

in

and y c Ylx both composites give (G Y) *( dy ) and hence are equal show-

ing naturality in E1 . 
Finally, to compute the unit 5 of the adjunction put E = Aop ( Y ) .

Then the component 6y is given by d Y = k’( Iop Aop(y) ) ) and is defined by

for all

The counit is calculated similarly by computing the image of IS(E) under x ,

COROLLARY. The map CE is an isometric isomorphism of E onto a Ban-

ach subbundle o f A ( S ( E ) ) .

P ROO F. Certainly EE is a morphism E -&#x3E; A ( S ( E ) ) in Ban ( X ) and since
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where F s is defined by F s (f)=f(s) for s e Ex, f e S( E )x and x e X 
it follows that c9is isometric and hence injective. Moreover, it is clear

that

for each

and that F or |S (E ) is continuous, though it need not have compact support.
Let B denote A ( S( E ) ) and let p denote the projection of B

onto X. Given s c Ex , let w be a section of F passing through e E ( S ) , 
by Theorem 1, and let U ( w , V , e) be a basic neighborhood of (E ( s ) in

B . If g is a section of p passing through s , then F 0" I S( E ) is a sec-

tion of F passing through e E ( s ) and there is a neighborhood V’ C V of

x in X such that

for all

Therefore, for each y (V’ the set U = U ( w, V, l) contains elements of

B’ = eE ( E ) which project under p onto y . That is, V’ c p( B’ n U ) and
so the restriction of T to B’ is an open map. It now follows that B’ is a

Banach subbundle of B .

Next observe that in the subspace topology on B’ we have

(i) || F o-(x)|| is continuous on X for each Q E S ( E ) , 

( ii ) the set { Fo- ( x ) | o- e Z( E ) } is dense in (in fact equal to)

e E ( Ex ) for each x E X.

However, the sets

where o- E Z (E), V is open in X and E &#x3E; 0 , form a subbasis for a topology
on B’ in which EE is a homeomorphism and (i) and (ii) are both valid.

By the uniqueness assertion of [1], Proposition 1.6, these two topologies
coincide and so CE is a homeomorphism of E onto B’ as required.

This result is, as we observed in the Introduction, the analogue in

Ban(X) of Alaoglu’s theorem for Banach spaces. However, unlike the

classical case, the image e E ( E ) of E need not be a closed set in

A ( S ( E ) ) . This is shown by the following example in which the scalar

field is R rather than C.
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EXAMPLE. Let X be the closed unit interval [0, 1] in R and let E be

the product bundle X X R . We form a Banach subbundle E’ of E by setting

Ex = Ex for all x # 1/ 2 and taking E’1/2 to be the zero Banach space. 

Then E’ is dense in E . Applying the constructions above to E’ and using
the notation of the proof of the Corollary, we find that B = A ( S ( E’ ) ) is
the subbundle of X x C( E -1, 1]) formed by replacing the fibre over 1/2

by a copy of R. Here, C ([ -1, 1]) denotes the Banach space of all cont-

inuous real valued functions on the interval [ -1, 1]. Then EE , embeds
E’ in B and the closure of e E ’ ,( E’ ) in B contains a copy of E . Thus

e E ’( E’ ) is not closed in B.

This example shows also that S and A do not determine an equi-
valence of categories, for E’ is not A ( Y ) for any Y f Spp ( X ) . In fact,

by suitably modifying this example we see that for no X do S and A det-

mine an equivalence.

One might consider the question of adjointness of S and A on the

lef t, in other words determine whether or not A is left adjoint to S°pP. In

this respect, it is tempting to use the equation

where and

to define implicitly one of 9 and 7J when given the other, thereby hope-

fully obtaining a correspondence between

and

However, given q this determines a map Y of A ( Y ) into E ** = U E**x
XEX

rather than into E. If we assume reflexivity, then reflexivity of A ( Y )

forces the fibres of Y to be finite sets and this is too restrictive a cond-

ition to impose. It is my pleasure to record here my thanks to R. E. Harte

for some illuminating comments on these matters.

Interestingly enough, in circumstances where the equation above

does determine n given Y and T given q , the correspondence obtained

is bijective and natural in Y and E . Nevertheless, we prove next that S

and A are not in general adjoint on the left.

THEOREM 4. In general A is not left adjoint to SOP.
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PROOF. Consider the case when X is a singleton set, thus Ban ( X ) be-

comes the category Ban of Banach spaces and linear contractions and

Spp(X) becomes the category Comp of compact Hausdorff spaces. Sup-

pose A is left adjoint to S op so that there is a bijection

natural in Y and E. Then the unit of this adjunction gives a universal

arrow Zop : Y -&#x3E; Sop A ( Y) from Y to S°p for each Y e Comp. Thus, to

each pair ( E , n ) with E in Ban and q: S ( E ) -&#x3E; Y in Comp there exists

a unique 7: A( Y) + E such that the following diagram commutes :

Now, take E = R so that S( E ) can be identified with the interval

[-l, 11 take Y = [ -1, 11 ] alsoanddefine q by n ( y ) = y0 , where yn E Y

is selected arbitrarily. For any functional Y : A[ - 1, 11 - R we have S( Y )
defined by S( Y ) ( y) = T y o Y , where T y denotes the functional « mul-

tiply by y &#x3E;&#x3E;. Then the commutativity of the diagram above means

for all

Taking y = 1 we deduce that e is defined by e(T) = y o for all ’1’, which
is impossible since yo can be selected arbitrarily.
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