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A NOTE ON THE LOCALLY HAUSDORFF PROPERTY

by S. B. NIEFIELD

CAHIERS DE TOPOLOGIE

ET GÉOMÉTRIE DIFFTRENTIELLE

Vol. XXIV-1 (1983)

INTRODUCTION.

If X and Y are objects of a category A , then A(X, Y ) denotes

the set of morphisms from X to Y in A .

Let A be a category with finite limits. An object Y of A is cart-

esian if the functor - X Y : A -&#x3E; A has a right adjoint, i. e. there is a func-

tor ( )Y : A + A together with bijections 8 X, Y : A( X x Y, Z ) -&#x3E; A ( X , ZY)
natural in X and Y. A is said to be cartesian closed if every object of

A is cartesian.

Cartesian objects in many non-cartesian closed categories have

been studied, for example, topological spaces by Day and Kelly [2], un-
iform spaces by Niefield [12], locales by Hyland [6], and toposes by

Johnstone and Joyal [9].
If T is a fixed object of a category A , then A/T is the category

whose objects are morphisms Y + T of A , and morphisms are commutative

triangles in A over T. If A has finite limits, then so does A/ T ; thus,
one can also study cartesian objects over T . This has been done for top-

ological spaces by Booth and Brown [1] and by Niefield [12], and for un-
iform spaces, affine schemes, and certain locales and toposes by Niefield

[12, 13, 14].
In this paper we consider a property of a base object T that in-

sures that any morphism Y -&#x3E; T is cartesian in A/ T , provided Y is cart-

esian in A . We begin with a general result (Theorem 2.1) which is later

interpreted in the categories of topological spaces (Section 3), locales

(Section 4) and toposes (Section 5). In view of the fact that we tend to sup-

press the projection Y -&#x3E; T, and speak only of objects over T , this seems

to be a desirable property to require of a reasonable base object.
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2. CARTESIAN DIAGONALS.

Let A be a category with finite limits, and let T be a fixed object
of A . If Y is an object over T’, we can factor its projection p as

where (Y, P) denotes the graph of p, and rr2 is the second projection.
Now, suppose Y is cartesian in A . Then Y X T is cartesian over T (since

pulling back along any morphism preserves cartesian objects [l2], 1.4),

and cartesianness is a transitive relation [12], 1.3; hence, Y is cartesian

over T (via p) provided that Y is cartesian over Y X T (via the graph of

p ). But, again by [12], 1.4, this is always the case if T is cartesian

over T X T (via the diagonal) since the diagram

is a pullb ack. Thus, we obtain the following theorem.

THEOREM 2.1. 1 f Y is cartesian in A, and T has a cartesian diagonal,
then Y is cartesian over T via any morphism Y 4 T o f A.

3. TOPOLOGICAL SPACES.

Let Top denote the category of topological spaces and continuous

maps, and let T be a fixed topological space.

DEFINITION 3.1. A subset A of T is locally closed if A = U n F, where

U is open and F is closed in T.

It is an easy exercise to show that A is a locally closed subset of

T iff A = U n A, for some open subset U of T , where A denotes the clo-

sure of A in T.

L E MM A 3. 2. The following are equivalent :
( a ) T h as a cartesian di agon al.

(b) AT = {(t, t) I t E T} is a locally closed subset of T X T , i. e.,
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T has a locally closed diagonal.
( c ) T is a locally Hausdorf f space, i. e., every point of T admits a

Hausdorff neighborhood.
( d ) T is a union of Hausdorff open subspaces.

PROOF. The equivalence of (a) and (b) is precisely Corollary 2.7 of

[12], and ( c ) =&#x3E; (d) is an easy exercise. We shall show that (b) and

( c ) are equivalent.

Suppose that AT is a locally closed subset of T x T . Then DT =
A Tn U , for some open subset U of T X T . Now, if t E T, there is an open

subset V of T such that (t, t) E V x V C LL We claim that V is Haus-

dorff. If t1, t2 c V and t1 # t2, then (t1, t2) E AT (since V X VnAT C AT)
and hence, t I and t2 can be separated by disjoint open subsets as desired.

Conversely, suppose every element of T admits a Hausdorff neigh-
borhood. Then there is a family {Ua} of Hausdorff open subsets, such

that T = Ua Ua . Let U = Ua Ua x Ua. We claim that AT = Tn U. 
Clearly, AT c AT Tn U . We shall show that if ( s , t) E A T then we have

(s, t) E A T n U. Suppose that (s, t) E AT, and (s, t) E U. Then
for some a and

hence, since U a is Hausdorff, there are disjoint open subsets V and W

of U a such that (s, t) E V X W . Now, if ( s , t) E AT, then V X W meets

AT contradicting the disjointness of V and W . Therefore, if (s, t) AT,
the n (s, t) E AT n U ; and the proof is complete.

Clearly, any Hausdorff space is locally Hausdorff. An example of

a non-Hausdorff such space is obtained by identifying two copies of the

u nit interval [0. 1 ] along [0. 1 ) , i. e., th e pushout of the inclusion

[ 0 , 1 ) -&#x3E; [0, 1] along itself.

Next, we interpret Theorem 2.1 in Top. If Y is a cartesian space,
it is not difficult to show that Z Y can be identified with T’op ( Y, Z ) ,
and the bijection

is given by
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is the map where

Thus, the study of cartesian spaces reduces to the well-known problem
of defining a suitable topology for Top( Y, Z) [3]. But, - X Y has a right

adjoint iff it preserves quotient maps (by Freyd’s Special Adjoint Functor

Theorem [4]). Such spaces Y were characterized by Day and Kelly [2] as

those for which the lattice 0 ( Y) of open subsets of Y is a continuous

lattice (in the sense of Scott [15]). In particular, if Y is locally compact
(i. e., every point has arbitrarily small compact neighborhoods), then Y is

cartesian in Top. Moreover, if Y is Hausdorff, or more generally sober,
then the converse also holds [5].

THEOREM 3.3. I f Y is locally compact (in the above sense) and T is loc-

ally Hausdorf f, then Y is cartesian over T via any projection.

PROOF. This easily follows from Theorem 2.1 by Lemma 3.2 and the above

remarks.

In the remainder of this section we investigate some properties of

locally Hausdorff spaces.

PROPOSITION 3.4. Every locally Hausdorff space is T1.
PROOF. Suppose that T is locally Hausdorff, and U is an open subset

of T X T such that AT = 3.T n U . Suppose that s , t f T and s # t . We

shall show that s admits an open neighborhood that misses t . If ( s , t ) is

not in AT then s and t can be separated; and we are done. Thus, we

can assume that ( s , t ) f AT. Now, since A T C U , there is an open neigh-
borhood V of s such that V X V C U ; and t E V , for if t f V , then

Therefore, r is T1.

Recall that a closed subset of a space T is irreducible if it cannot

be expressed as a union of two closed proper subsets. Note that the clo-

sure of a point of T is irreducible. We say that T’ is a sober space if every

nonempty irreducible closed subset is the closure of a unique point of T’ .

Note that sober « lies between) To and Hausdorff, but is incomparable
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with T1. A well-known example of a non-sober T, space is the natural

numbers N with the « complements of finite subsets » topology.

PROPOSITION 3.5. Every locally Hausdorff space is sober.

PROOF. Suppose that T is locally Hausdorff. We shall show that every

irreducible closed subset F contains at most one point. Let U be an open
subset of F X F such that AF = AF n U. If F contains more than one

point, then UBAF is nonempty, for if U c AF, then F is discrete, and

hence not irreducible. Let (s, t) E UBAF. Then there are disjoint open

neighborhoods V and W of s and t , respectively, in F. But, FBV and

FBW are proper subsets of F and closed subsets of T’, and

contradicting the irreducibility of F. Therefore, T is a sober space.

PROPOSITION 3.6. L et T be a locally compact locally Hausdorff space.

Then a subspace Y of T is locally compact iff it is locally closed.

PROOF. Suppose Y is a locally compact subspace of a locally Hausdorff

space T . Then the inclusion Y -&#x3E; T is cartesian by Theorem 3.3; hence,
Y is a locally closed subspace of T by [12] , 2.7.

Conversely, suppose Y is a locally closed subspace of T . Then Y

is cartesian over T (via the inclusion) by [12], 2.7, and T is cartesian

in Top by transitivity. But, Y is a sober space by Proposition 3.5, and

every cartesian sober space is locally compact [5]. This completes the

proof.

Note that we did not use the local compactness of T in the first

part of the above proof, i. e., we showed that any locally compact subspace
of a locally Hausdorff space is locally closed.

4. LOCALES.

Let L oc denote the category of locales and morphisms in the «geo-
metric) direction.

One can consider locally closed (i. e. pullbacks of open and closed)
sublocales of a locale, and so it makes sense to talk about a locale whose
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diagonal is locally closed. But, if T is a space, then the product

O ( T ) X O ( T ) of the locale of opens of T with itself in Loc is not ne-

cessarily isomorphic to O(TXT) ; hence, T may be locally Hausdorff,

while O ( T ) does not have a locally closed diagonal in Loc . Note that

if T is a locally compact sober space, then D (T) x O ( T ) = O ( T x T)

[7], and it follows that T is locally Hausdorff iff O ( T ) has a locally
closed diagonal. For a further discussion of this matter, we refer the read-

er to [8].

DEFINITION 4. 1. A locale L is locally strongly Hausdorf f if L has a

locally closed diagonal.

LEMMA 4.2. A locale L is locally strongly Hausdorf f i f f L has a cart-

esian diagonal.

P ROO F. This follows directly from Definition 4.1 since the inclusion of a

sublocale is cartesian iff it is locally closed [13].

Now, Hyland [6] showed that a locale A is cartesian in L oc iff

it is locally compact, i. e. a continuous lattice. Putting this together with

Theorem 2.1 and the above lemma we get:

THEOREM 4.3. if A is locally compact, and L is locally strongly Haus-

dorff in Loc, then A is cartesian over L via any morphism A -&#x3E; L in Loc .

5. TOPOSES.

Let B Top/ Sets denote the 2-category of Grothendieck toposes

i. e. bounded toposes over Sets , geometric morphisms, and natural trans-

formations. Now, ISets has finite limits [10 ; hence, one can con-
sider cartesian toposes in the appropriate 2-categorical sense.

If S is any topos, then the notion of an open or a closed subtopos,
hence a locally closed subtopos makes sense [10].

DEFINITION 5.1. A Grothendieck topos S is locally strongly Hausdorff
if the diagonal S -&#x3E; S x Ssets S is a locally closed inclusion.

If A is a locally strongly Hausdorff locale, then the topos Sh A
of set-valued sheaves on A is a locally strongly Hausdorff topos, since
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Sh A -&#x3E; Sh(A x A) is a locally closed inclusion, and

In particular, if T is a locally compact sober space, then Sh T is locally

strongly Hausdorff iff T is a locally Hausdorff space. Of course, if T is

not locally compact, then T may be locally Hausdorff without Sh T being

locally strongly Hausdorff.

LEMMA 5.2. Let S be a Grothendieck topos. Then S is locally strongly
Hausdorff iff the diagonal S -&#x3E; S x Sets S is a cartesian inclusion in

B Top/S x Sets S. 
PROOF. The inclusion of a subtopos is cartesian iff it is locally closed

[13] ; hence, the desired result follows.

In [9], Johnstone and Joyal showed that a Grothendieck topos E

is cartesian in B Top/Sets iff it is a continuous category. Noting that the

remarks leading up to Theorem 2.1 are valid for B TOP/ Sets we obtain the

following theorem.

THEOREM 5.4. Let E and S be Grothendieck toposes. 1 f E is a contin-

uous category and S is a locally strongly Hausdorff topos, then any geo-

metric morphism E -&#x3E; S is cartesian in B Top/S.

We conclude with another interesting property of locally compact

locally Hausdorff spaces. Although every locally Hausdorff space Y is cart-

esian as a space, it is not necessarily the case that Sh Y is cartesian

as a Grothendieck topos. The spaces Y such that Sh Y is cartesian are

precisely the metastably locally compact spaces [9]. In particular, Sh Y

is cartesian if Y is stably locally compact, i. e.,

Ut « V1 andu 2 « V2 in Y implies th n U2 « V1 n V2 in Y,

where « denotes the usual «way below » relation.

LEMMA 5.3. I f Y is a locally compact Hausdorff space, then Y is stably

locally compact.

PROOF. Recall that in a locally compact space U « V iff there is a com-

pact subset C such that U C C C V [5]. Now, suppose
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and in

Then there are compact subsets C, and C2 such that

and

But, C1 n C2 is compact since Y is Hausdorff, and

Therefore, Vi n V2 « V1 n V2 ; and it follows that Y is stably locally

compact.

THEOREM 5.4. 1 f Y is a locally compact locally Hausdorff space, then

Sh Y is cartesian in B Top / Sets,

PROOFo If Y is a locally compact locally Hausdorff space, then Y has

an open cover consisting of locally compact Hausdorff spaces. Now, meta-

stable local compactness is a local property ( Y satisfies it iff Y has an

open cover consisting of such spaces [9]); hence, the result follows

from the above lemma.
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