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COFIBRATIONS AND THE REALIZATION OF

NON-DETERMINISTIC AUTOMATA

by S. KASANGIAN*, G. M. KELLY** and F. ROSSI*

CAHIERS DE TOPOLOGIE

ET GÉOMÉTRIE DIFFÉRENTIELLE
Vol. XXIV -1 (1983)

ABSTRACT.

We first consider modules ( = profunctors) between C-categories for
a monoidal biclosed U, and show that any module 8; a-&#x3E; e with small (f
has a canonical decomposition as 0 = G* Y* , where Y: Cl P li is the

Y oneda embedding and G; C =&#x3E; PS is the C-functor corresponding to 8 ;

observing further that G* is in fact the «right-extensions [Y , 8] of 0
*

along Y* in the bicategory of modules. We then apply this to show that

the forgetful 2-functor from the cofibrations a -&#x3E; e to the modules a -&#x3E; C

has a «weak» right adjoint. We observe finally that this includes, as a spe-
cial case, a theorem of Betti and Kasangian on the existence of a weak

right adjoint - which we may call « canonical realization » - to the « behav-

iour» 2-functor defined on non-deterministic automata.

1. INTRODUCTION.

It is a banality .that the mathematical structures of any given spe-

cies, along with the appropriate morphisms, form a category. A much more

striking observation is due to Lawvere [8] : namely, that many of the basic

structures of mathematics are themselves categories ; while others are func-

tors between categories.
It is clear that monoids, groups, groupoids, ordered sets, and equi-

valence relations, are simply ordinary categories of special kinds. A top-

ological space is essentially a special case of a topos, which is a categ-

ory. An algebraic theory was exhibited by Lawvere [7 ] as a category, and

* Partially supposed by the Italian CNR .

* * The second author gratefully acknowledge s the a ssistance of the Australian
Research Grants Committee; and of the CNR, which gave him Visiting Professor-
ship s in Trie ste in 1980 and 1981.
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its models as functors, A ring R is a one-object a dditive category -

that is, one enriched over the category Ab of abelian groups; and an R-

module is an additive functor R -&#x3E; A b. In [8], Lawvere exhibits metric

spaces as (symmetric) categories enriched over the category of extended

positive real numbers. Joyal treats species of combinatorial structures in

[4] as endofunctors of the category of finite sets and permutations. Walters
h as emphasized the notion, in [ 11J and [ 12], of categories enriched over a

bicategory B , and has identified the sheaves on a site as the Cauchy-com-

plete symmetric B-categories for a suitable B ; with the promise of a sim-

ilar description of manifolds and of other structures formed by «patching
models together». The list could be continued: suffice it to recall that a

scheme can be identified with a functor from commutative rings to sets.

It is of course of no value to identify some structure with a category
or a functor or some more general categorical situation, unless the natural

morphisms between such structures, and the important operations on them,
themselves turn out to be those appropriate to the categorical context -

which is indeed the case in the examples above.

Our present purpose is to point out one more example, of a some-

what novel kind. Betti and Kasangian [3], in the context of non-determinis-

tic automata, have described a canonical realization functor that is a very

weak kind of right adjoint to the behaviour functor. Our observation is that

this relation between automata and behaviours is but a special case of a

similar relation between cofibrations and codiscrete cofibrations (in the

sense of Street [9]) in the 2-category of 0-categories.
To encompass the case of automata, we must allow the V here to

be a not-necessarily-symmetric biclosed monoidal category. Because there

is no sufficient account of profunctors - which we prefer to call modules-

in the non-symmetric case, we give one briefly in Section 2; a still more

general account, with S now a biclosed bicategory, is given in a forth-

coming paper [ 10] of Street, but this does not contain all that we need. In

Section 3 we establish the weak adjunction between cofibrations and co-

discrete cofibrations, and then in Section 3 we give the application to auto-

mata and re-find the Betti-Kasangian result.



25

2. 0-MODULES FOR A MONOIDAL BICLOSED 0.

2.1. We consider a locally-sm all monoidal category C = (Vo , @ , I) which
is biclosed, in the sense that we have natural isomorphisms

As in Sections 1.2 and 1.3 of [5], we have the 2-category IOOCAT of Cr-

categories, 0-functors, and S-natural transformations, and the 2-functor

( ) o : I- CAT - CAT represented by the unit V)-category 9 ; this much re-

quires no symmetry. We here denote a 0-functor by a double arrow, as in

T’: a =&#x3E; B, keeping single arrows for S-modules, which occur below more
than 0-functors. In the absence of symmetry we have neither the opposite

(!-category Q °P nor the tensor-product V-category a @ B of [5] Section

1.4, so that we have neither contravariant C-functors in general, nor C-

functors of two variables.

We do, of course, have as in [5] Section 1.5 various isomorphisms

concerning S itself, obtained by specializing (1). Thus, writing V for

Vo(I, - : Vo -&#x3E; Se t , we have

We also have [I, Z] = {I, Z I == Z ; and besides the isomorphism

and its dual IXGY, Zi = {Y, {X , Z}} , we also have

2.2. Symmetry was in fact not needed for the observation in [5] Section

1.6 that there is a 0-category called 0, with the same objects as lo and
with V(X, Y) = [X, Y], whose underlying ordinary category is (canonic-

ally isomorphic to) Vo ; and that each object A of a V-category Q det-

ermines a representable 0-functors Û( A, -): a =&#x3E; V sending B to a(A, B). 

Now, however, there is also a 0-category called V, with the same

objects as Vo and with V(X, Y) = Y, X}, whose underlying ordinary
category is (canonically isomorphic to) Voop. Although we do not have
contravariant C-functors in general, we may think of a V-functor a =&#x3E; V as
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a contravariant functor from li to 0 ; and each B c 8 determines a repre-
sentable a(-, B) : a -&#x3E; V sending A to a(A, B).

The ordinary functors

and

are easily verified to be the partial functors of a bifunctor

sending ( A, B ) to li(A, B ), whose value on morphisms we write as

a(f, g). We still find the expressions (1.31 ) and (1.32) of [5] for a (A , g)
and a(f, B), and hence the alternative expression [5] (1.39) of 0-natural-
ity. Then, after the easy verification that V(f, g) = [f, g], we get essen-
tially as in [5] Section 1.9 the Yoneda lemma, giving for F : a =&#x3E; V a nat-

ural bijection between C-natural transformations (Ï( A I -) -+ F and maps

I -&#x3E; FA. There is also a dual Yoneda lemma for transformations G -&#x3E; a(A, B)
where G : a=&#x3E;V.

Although it no longer makes sense to speak, as in [5] Section 1.6,
of a V-functor Ten : V®V -&#x3E; V, it is still the case that -® Z : Vo -&#x3E; Vo
has an evident enrichment to a G-functor -® Z : V =&#x3E; V ; while Z 0 - has

a similar enrichment to a V-functor Z 0 -: is =&#x3E; V.

2.3. Given V-categories a and 93, by a module (or U-module) 0: (t -+ 93
we mean what has been variously called a profunctor, a distributor, or a

bimodule. It is a function assigning to each A c (f and each B E B an ob-

ject 0 (A, B ) of d , together with actions

B(B, B’)@0(A, B)-&#x3E; 0(A, B’), 0(A, B)® a(A’, A) -&#x3E; 0(A’, B),

subject to five axioms: the evident associativity and unit axioms for the

left action of j3 on 0, which equivalently assert that each A c S gives a

V-functor 0(A , - ) : B =&#x3E; V ; the corresponding associa tivity and unit

axioms for the right action of (i on 0 , which equivalently assert that each

B c S gives a V-functor O( -, B ) : a=&#x3E; V ; and the axiom asserting the
equality of the two maps
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For a symmetric S , it is immediate from [5] Section 1.4 that such a module
is the same thing as a V-functor aop® B =&#x3E; V. See in particular [1].

A morphism a : O -&#x3E; y : Q -&#x3E; B of modules is simply a family

of maps which commute with the two actions. It comes to the same thing
to say that each aA - : O(A , - ) -&#x3E; y (A , -) and each a.B : 0 ( -, B) -&#x3E; y ( -,B)
is a C)-natural transformation. Thus we have a category MOD(Q,S) of

modules from 8 to B.

If 9 is the unit 0-category with one object 0, a module I -* 93
i s essentially a V-functor O:B =&#x3E; V, and we may write rp B for O(0, B) ;
and moreover MOD (J, B) is the category V-CAT’ (B, V). Similarly a mod-

ule 0: (1 is essentially a V-functor O:Q o d ; while a module O:J-&#x3E;J
is just an object 0 of V, and MOD is Go.

2.4. Consider O-functors 0, 8 : a =&#x3E; V and Y, X : li - d (or the corres-

ponding modules). We need below a notion of V-naturality for families

Under the isomorphisms (1), there is a bijection between such families

aA , families a Á : tfr A -+ [O A, Z], and families aA": 0 A -+ I qf A, ZI. Since

fi and [O -, Z] are both O-functors Q =&#x3E; V, we know what it means for

a ’ to be C-natural; and since 0 and {Y -, Z } are both V-functors Q =&#x3E; V,
we know what it means for a " to be V-natural. An easy calculation shows

that the C-naturality of a’ is equivalent to that of a " , and equivalent to

the commutativity for all A, B c 8 of the diagram
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which now becomes our definition of V-naturality for a . Similarly the (3-nat-
urality of j6 is defined as that of the corresponding family X @ Y A -&#x3E; x A ,
or equivalently as that of the corresponding family Y A -&#x3E; {X, X A} , which
turns out to mean the commutativity for all A , B of the diagram

Finally, 0-naturality of y is defined as that of O A @ Y -&#x3E; 8 A or equally
that of 95 A -. [ Y, 8 A] , which gives a diagram analogous to (4).

To say that a is the universal U-natural family with domain

Y A @ O A is to say that ( 3), taken for all A , B c Cl, is a colimit diagram.
We then call Z the coend fA Y A @ O A of Y A @ 0 A. If the coend exists

but Z is arbitrary, to give a 0-natural aA as in ( 2 ) is exactly to give a

map a : fA Y A @ 0 A -&#x3E; Z . We henceforth suppose Vo to be cocomplete;
so that the coend certainly exists if 8 is small.

Similarly 8 is universal exactly when (4) is a limit diagram, where-

upon we call X the end fA [Y A, X A]. If the end exists but X is arbitrary,

to give a 0-natural 8 A as in ( 2 ) is to give a map B : X -&#x3E; fA [YA, X A].
We henceforth suppose 0. to be complete ; so that the end certainly exists

if 8 is small.

Again, in the case of y , we define the end fA{O A, 8 A} as the

limit of a diagram analogous to (4), which certainly exists if 8 is small.

Whether 8 is small or not, we have the results
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Each of these follows directly from the Yoneda lemma ; for instance, in the

case of (5), a U-natural Q(A , B) 0 O A - Z corresponds to a V-natural

Q(A, B) -&#x3E; [O A, Z] and hence to a map O B -&#x3E; Z. So we may call (5) - (8)
Yoneda isomorphisms.

2.5. Given modules 0 : Q -&#x3E; B and Vi : B -&#x3E; C, we define their composite

tA 0: (1 -* C- by

if the coend exists ; otherwise the composite is undefined. The module-

structure of t/J 9 is inherited from those of 0 and x using the universal

property of the colimit and the preservation of colimits by X 0 - and - ø Y 

In so far as we suppose 0 o to have chosen colimits, the composite is well

defined; but equally it does no harm, where convenient, to replace the right
side of (9) by an isomorph.

The preservation of colimits by X ø - and - @ Y , and the commuta-

tivity of colimits with colimits, easily give associativity isomorphisms

(X Y) O = X (qf 0) whenever the inner composites and one of the outer ones

exist. For any Q we have the module

given by . 

and if O : Q -&#x3E; B is any module we have by ( 5 ) and ( 6 ) unit isomorphisms

The universal property of Y O tells us how to define

and

and easy verifications confirm that modules and their morphisms (which

we may now call 2-cells ) « constitute a bicategory MOD in so far as comp-

osition is defined». We of course get a true bicategory Mod if we consider

only modules between small C)-categories.

2.6. Consider modules O : Q -&#x3E; B, Y : B -&#x3E; C, and 8 : Q -&#x3E; C. We define a

module [O,8] : fl - e by
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whenever this end exists - its module structure being inherited from those

of 0 and 0 . Similarly we define I Vi, f) I : Q -&#x3E; 93 by

If tAo and [O, 8] both exist, a 2-cell a : y O -&#x3E; 8 corresponds
to a family

that is C-natural in all variables, and hence by 2.4 to a family

that is V-natural in all variables, and so finally to a 2-cell a ’: w - [O 0].
Similarly a corresponds to a 2-cell a" : O -&#x3E; {Y, 8} if the latter exists.

It follows that Mod is a biclosed bicategory, while MOD is « par-

tially) one. We have an evaluation [O, 8]O -&#x3E; 0 only when the domain here

exists ; and similarly for the evaluation Y{Y, 8} -&#x3E; 8. Isomorphisms of the
kinds

and

which are automatic in a true biclosed bicategory such as Mod , need to be

explicitly proved in MOD , under the hypotheses that the inner limits or

colimits and one of the outer ones exist ; we shall not explicitly use them.

There is, however, no problem with the isomorphisms

which follow from (7) and (8).

2.7. When the C-category S is small, we can represent modules 0 : (î -+ e

as C-functors G; C =&#x3E; P Q, there being an isomorphism of categories

for a suitable 0-category P Q. The case e = g shows that an object 6 of

P S must be a module : Q -&#x3E; G or equally a V-functor Z : Q =&#x3E; V. We set
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which as a module J -&#x3E; J is an object of C. The composition in p Q is the

obvious one deriving from the biclosed structure of Mod via the evaluation

[Z, Z]Z -&#x3E; Z. A morphism Z -&#x3E; Z in the underlying ordinary category ( P Q) o
of P Cl, being a map I -&#x3E; (PQ) (Z, S) = [Z, S], is equivalently a map

Z = I Z -&#x3E; S, so that (PQ) o = Mod (Q, P) , which is the special case

C = J of (14 ).

For the general case of (14), we leave the reader to verify that

if we set

then the data and axioms making G into a V-functor C =&#x3E; P (i correspond

exactly to those making 0 into a module Q-&#x3E; e ; and that p C : GC -&#x3E; G’C
are the components of a 0-natural p : G -&#x3E; G ’ if and only if their compon-

ents pCA : (GC)A -&#x3E; (G’C)A constitute a 2-cell p : 0 - 0’.

In particular the identity module 1Q : (i -+ d corresponds to a C-

functor Y : Q -&#x3E; PS (the Yoneda embedding ) sending A to Y A = (f ( -, A ) .

From ( 15 ) and (7) we have a natural isomorphism

from which it follows in particular that

( 18) the L-functor Y : Q =&#x3E; P (i is fully faithful.

In the case of a symmetric 0, it is immediate that

and then (14) is just the remark of 2.3 that a module fi - e is a 0-functors

Qop @ C =&#x3E; V or C =&#x3E; [Qop, V].

Dually to the above, we have for small a V-category P’ C whose

objects are modules 6 : 9 -&#x3E; 0 or equivalently V-functors

with

In place of ( 14 ) we have

and, in the case of a symmetric 0 we have P I c :. [C, V]op.
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2.8. Any V-functor T : Q =&#x3E; B gives rise to evident 0-modules T : Q -&#x3E; 93
*

and T * : B -&#x3E; Q, where

and a V-natural a : T - S gives rise to evident 2-cells

and

Since a |-&#x3E; a * and a |-&#x3E; a* are both fully faithful by the Yoneda lemma,
any one of a , a*, a 

* determines the others.

For T: Q =&#x3E; B and Y : 93 -+ e we get from (6) and (7) natural iso-

morphisms

and dually, for O: Q -&#x3E; 93 and S : C =&#x3E; B,

In particular, for T : Q =&#x3E; B and Q : 93 =&#x3E; e., we have natural isomorphisms

and

Thus we have locally-fully-faithful embeddings

and

of «partial bicategories ».

The isomorphisms

resp.

resulting from (20) and (21) admit of further analysis when 8 (resp. e)
is small. We consider the first of these, and observe that, when 8 is small,

0T* exists for any 0 : (î -+ e. In particular T * T * exists, and we have a

canonical 6: T* T * -&#x3E; 1B induced by the composition

On the other hand, T*T always exists by ( 20 ), with

and we have a canonical 11: 1Q -&#x3E; T * * with components
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An easy Yoneda-lemma calculation shows that 11, E are the unit and counit

of an adjunction T* J T* in MOD . It is further easy to check that the

evaluation [T*, Y]T*-&#x3E; Y corresponds under (22) to Y E : T*T * -&#x3E; Y. Now
the conclusion from (22), that there is a natural bijection between 2-cells

() -+ tfr T * and 2-cells 8 T * -&#x3E; Y, is just a classical consequence (see [6]) of

this adjunction. The other classical consequence - the bijection between

2-cells T*X -&#x3E; Y and 2-cells x - T *Y - corresponds to the second isomor-

phism in (22).

Note that the unit n : 1Q -&#x3E; T * T* of the adjunction above is an iso-
morphism exactly when T is fully fa ith f ul. In this case we have a some-

what less evident result:

PROPOSITION 1. Let Q be small, let T : Q =&#x3E; B be fully fa ith ful, and

let 8 : Q -&#x3E; C. Then [T*,8] exists, and the evaluation [T*,8] T* -&#x3E; 0 is
* * *

an isomorphism.

P ROO F. Since 8 is small, [T*, 8] exists by (11) and is given by

By (20) we have

Because T is fully faithful, the right side here is isomorphic to

which is itself isomorphic by (7) to 8(A’, C). It is an easy verification

that this isomorphism is in fact the evaluation. 0

REMARK 2. If we were prepared to use the isomorphism

of 2.6, which we have preferred not to discuss, we could have expressed
the evaluation here directly as the composite isomorphism
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R EM ARK 3. When e too is small, and 8 : Q -&#x3E; e corresponds as in 2.7 to
H : Q =&#x3E; p , e, Proposition 1 reduces to the classical result (see [5] Prop-
osition 4.23) that ( LanT H ) T = H for a fully faithful T ; at least for sym-
metric C , but in fact for any 0 if the (pointwise) left Kan extension is

appropriately defined. Similarly for the dual result S*{S*,8} = 0 when S
is fully faithful, interpreting 0 now as a V-functor C =&#x3E; PS .

R EM ARK 4. In so far as composition of modules is defined only to within

isomorphism, it does no harm to express Proposition 1 as [T*, ,0] T* = 0
with the identity as the evaluation.

PROPOSITION 5. Let Q be small, let the module 8 : Q=&#x3E; C correspond as
i n 2. 7 to the V-functor G : C =&#x3E; P (1, and let Y : Q =&#x3E; p Q be the Yoneda

embedding. Then we have a natural isomorphism

and taking this, as we may, to be an eq uality, we have the decomposition

P ROO F . Since Y is fully faithful by (18), we have by Proposition 1 and

Remark 4 only to verify ( 23 ). By ( 19 ) and ( 17 ) we have

so that (11 ) gives

By (16) this is fA [Z A, (GC)A], which by (15) is (PQ) (Z, GC) ; that

is, G*(S, C ) , as desired. 0

REMARK 6. We regard (24) as the canonical decomposition of any 0 : (t -+ C-

with S small. There is a dual decomposition when e is small, and 8 cor-

responds to H : Q =&#x3E; P’,C ; namely 0 = Y’*H*, where Y’ : C =&#x3E; p,e is

the dual Yoneda embedding ; and in place of (23) we now have

REMARK 7. We can generalize Proposition 5 as follows. Let Q Q be a full
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subcategory of P8 containing the representables, and let Z: 8 =&#x3E; Qfi be
the Yoneda embedding seen as landing in QQ. Let 0 : (i , e be such that
the corresponding G : Q =&#x3E; P C- lands in Q e, giving K: (i =&#x3E; Q C. Then
a trivial modification of the proof of Proposition 5 gives [Z* ,8] = K * , so
that 0 = K *Z .*

3. COFIBRATIONS.

3.1. For any objects Q, C of any bicategory K with finite bilimits, Street
[9] defines the bicategory Fib(Q,C) of fibrations Q -&#x3E; e in K as that

of the algebras for a certain bimonad on the bicategory of spans from Q to

e. One can define « discrete objects in any bicategory ; and the full sub-

bicategory of Fib(Q, C) given by its discrete objects forms the category
D Fib(Q,C) of discrete fibrations Q -&#x3E; C.

When K = Cat there is a biequivalence between Fib(Q,C) and

the bicategory of bifunctors * QopxC=&#x3E; Cat , and an equivalence between

D Fib (Q, C) and the category of functors Qop x C =&#x3E; Set (or modules

Q-&#x3E; C) ; so that in this case fibrations are, in effect, two-sided versions

of those first introduced by Grothendieck. However the equivalence between

D Fib (Q,C) and Mod(Q, C) fails totally for K = V-Cat , even for good V.

Nevertheless, as Street observes, we can still recover V-Mod di-

rectly from the 2-category C).Cat, by looking instead at fibrations in

(V-Cat)op, which he calls cofibrations in V-Cat. He analyzes the nature
of these in elementary terms, and shows that the codiscrete co fibrations
Q -&#x3E; C are (to within equivalence) the modules Q -&#x3E; e.

3.2. Since we do not want to restrict ourselves to small C-categories, we
first give the results of Street’s analysis in a form which makes sense with-

out smallness. We a lso, by abuse of language, use the name « cofibrations »

for the concrete objects to which the actual cofibrations are only biequi-
valent.

* We use «bifunctor» for what some call a «pseudofunctor» or a «homomorphism of
bicategories*.
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Then a cofibration Q -&#x3E; 6 in I-Cat may be identified with a cospan

(i =&#x3E; S C- of the following special kind: the V-functors Q =&#x3E; D and
e =D are fully faithful, and may as well be taken to be the inclusions

of full subcategories ; these subcategories Q and e are disjoint; and if
B is the full subcategory of 5) given by the objects neither in 12 nor in

e , we have

(the initial object of V) whenever A E S, B E B, and C f e. A morphism
of cofibrations from Q =&#x3E; D = C to A =&#x3E; D’ = C is a 0 -functors T :

D =&#x3E; D’ which is the identity on Q and on C and which maps 93 into the

corresponding 93’. A 2-cell Q: T -&#x3E; T is a V-natural transformation whose

components o-D are identities when D c 3 or D c C. The bicategory

Co fib(Q, C) so described is in fact a 2-category.The codiscrete cofibra-

tions are those for which 93 is the empty 0-category 0.

3.3. Street carries the analysis further in terms of modules. To give the

cofibration N =&#x3E; D = C is to give the V-category B, the objects 9 (A , B ),
D(B, C ), and D (A, C ) of V, and the law of composition in T. If we write

O(A, B), Y(B, C), and 0 ( A , C) for D(A, B), T(B, C), and D(A, C),
the composition 

is just a left action B(B, B’) @ O (A, B) -&#x3E; O (A, B’), and so on; in short,
we are to give modules 0: " (f -+ B, Y : B -&#x3E; C, and 8 : Q -&#x3E; (2. The composi-
tion is now determined except for its components

and the giving of the cofibration is complete when we give this as a family

that is V-natural in all variables. When the composite qf 0 exists this is

just to give a 2-cell k : y O -&#x3E; 0 of modules.

Since we need below the case where 93 is as large as P 8 for a

small fi , we do not automatically have Y O as a 0-module; n and yet it would
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be intolerably tedious to work with ÀA B C instead of k . Accordingly we

suppose 0 embedded, as in [5] Section 3.12 (which does not use the sym-
metry of 0), into a 0’ corresponding to a higher universe Set’ that sees

Set and 0 as small, in such a way that the inclusion of (3 in 0’ preserves
limits and Set’-small colimits. Then we have Vf 0 as a V’-module, which
coincides with the module Vio when the latter exists ; and similarly for

such other module-composites as we need below.

Tith this understanding, then, a cofibration 8 =&#x3E; D = C is iden-

tified with a pentad (J9 ;q5 , x ,8; k) where 93 is a V-category, O, fjI ,0 are
modules, and X is a 2-cell, as in

The corresponding analysis of a morphism T : D =&#x3E; D’ in

Cofib (Q, C) identifies it with a tetrad (S ; a, B, y) where S : B =&#x3E; B’ is

a 0-functor and where a , f3 , y are 2-cells of modules satisfying the equa-
tion 

Here S is the restriction of T to CJ3, the component

aAB : O (A, B) -&#x3E; O’(A, SB) of a : O -&#x3E; S*O’

is T A B: D(A, B) -&#x3E; D(TA, TB), and the component yAC of y:8 -&#x3E; 8’ is

T A C: T (A, C) -&#x3E; D(TA, TC). On the other hand T B C is the component,

not of B : Y S * -&#x3E; Y’, but of the 8: Y -&#x3E; Y’S* which corresponds it under

the adjunction S* -| S* of 2.8. The equation (26) is what is needed to
ensure that the T so defined is a V-functor.
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When

are given by (S; a, B, y) and (S ; a, B ,y) , it is easy to see that there are
no 2-cells T’ -&#x3E; T in Co fib (fi, e) unless

When this does hold, a 2-cell a: T - T is at once seen to be a V-natural

Q: S -&#x3E; S satisfying the equations

The full sub-2-category of codiscrete cofibrations is obtained by

setting 93 = 0 throughout. An object is just a module 0 : (i -+ C , and a mor-

phism just a 2-cell y: 8 -&#x3E; 8’ ; there are no non-identity 2-cells here, so

that we are dealing with a mere category. We need no new name for it; it

is just MOD(8,e).

3.4. "1ie define the behaviour 2-functor

to be that sending (B ; O, Y, 8 ; k) to 8 : Q -&#x3E; C, sending (S;a ,(3, y) to

y : 0 - 0’ , and sending a 2-cell Q to the identity.
For small Q , we define a functor

R : MOD (Q, C) -&#x3E; Co fib(Q, C)
that we may call (canonical) realization. It sends 0 : (f -+ e to the cofibra-

tion R0 given by
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using the canonical decomposition (24) of 0 . As for its effect on a 2-cell

y : 8 -&#x3E; 8’, we can by 2.7 identify y with a C-natural y : G -&#x3E; G’ , and hence

by 2.8 with a 2-cell y*: G* -&#x3E; G’* ; and we set Ry=(lp(Ï; id, y*, y) .
This is indeed a morphism. in Co fib (Q, C), for the condition ( 26 ) reduces
here to y * Y* = y , which follows from the naturality of the evaluation in

Proposition 1 and of the isomorphism ( 23 ). Clearly B R = 1 ; in this sense

R 8 is a «realization) of 0 , since its «behaviour» is 0.

If X is an arbitrary cofibration (B ; O, Y, 8 ; k) and 8’ : Q -&#x3E; C an

arbitrary module, the category Co fib (Q, C) ( X, R 0 ’ ) is neither isomorphic
nor equivalent to the discrete category given by the set MOD (Q,C)(BX, 8’) ;
so that R is neither a right adjoint nor even a right biadjoint to the 2-func-

tor B . We have only the following still weaker result:

PROPOSITION 8. The functor

has a left adjoint.

Since the codomain of (30) is only a set, this has a very simple

meaning in elementary terms. The functor (30) sends a typical morphism

(S; a, B, y) : X -&#x3E; R 0 ’ of cofibrations to y : 8 -&#x3E; 8’, and a 2-cell between

such morphisms to the identity. To say that it has the left adjoint L is

to assert a natural bijection between 2-cells o- ; Ld -&#x3E; (S ; a, B, y) and maps

8 - y in the dis crete category MOD (A, C) (8 , 8’) . Thus there is to be

exactly one 2-cell o- : L d -&#x3E; (S ; a, B, y) if 0 = y, and none otherwise. Since

the equality ( 27 ) is a necessary condition for the existence of a 2-cell,

Proposition 8 in fact asserts the following :

T HEO REM 9. Let Q be small, let X = (B ; O, Y, 8; k) be a co fibration
lii - e and let 0 ’: Q -&#x3E; C be a module. Then for each y : 8 -&#x3E; 0’, the full

subcategory of Cofib(Q, C)(X, R8’), given by those (S ; a, B, y) : X - R 0"
with this particular y , has an initial object.

PROOF. To give a morphism (S; a, (3 , y) from X = (B ; O, Y, 8 ; k) to
R8’ = (PQ; Y*, G’*, 8’; id), where G’: C =&#x3E; P Q corresponds as in 2.7
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to 0 ": Q -&#x3E; e , is by 3.3 to give

and

satisfying the appropriate instance of (26). To give S : B =&#x3E; P Q is equally
to give the module X : S -&#x3E;S which corresponds to it as in 2.7. Then

S* Y* = X by (24), so that a is justa 2-cell O -&#x3E; X. Since G’* =[Y*,8’]
by (23), and since the evaluation [ Y*, 0 "] Y* -&#x3E; 0’ is the identity by Rem-

ark 4, there is a bijection between 2-cells 8 : Vi S * -+ G I * and 2-cells

E : Y S* Y* -&#x3E; 8’, where e = BY*. Using S* * = X once more, we conclude

that to give a morphism ( S ; a,,8, y) : X -&#x3E; R 0 ’ is to give

and

satisfying the instance of (26) which now becomes

Consider now a 2-cell o- : (S ; a , B, y) -&#x3E; ( S ; a, B, y), where y re-

mains fixed. To give the 0-natural o- : S -&#x3E; S is equally by 2.7 to give a

2-cell o- : X -&#x3E; X of modules. The condition (28), since Q*Y* = o- by the

naturality in Proposition 1 and that of ( 23 ), becomes

and the condition (29) becomes



41

We get the initial object by setting X = O, a = id , and c equal to
the composite yÀ on the left side of (31 ). For then, by (32), a 2-cell . 0
i s forced to by a itself ; and this satisfies (33) by the (X ; a, e, y)-case
of ( 31 ), whose left side is still y À = c. 0

REMARK 10. There is a dual result, when is small, corresponding to
the dual decomposition of 0 in Remark 6.

R EMARK 11. Clearly the results of Proposition 8 and Theorem 9’remain un-

changed if we restrict ourselves to those cofibrations (B ; O, Y, 8 ; k) in

which A is the identity.

4. NON-DETERMINISTIC AUTOMATA .

4J.. We recall the description of non-deterministic automata in terms of

enriched categories, given by Betti [2].

The dynamics of a deterministic automaton with Q for its set of

states and L for its alphabet of inputs is given by a function L X Q -&#x3E; Q ,
which at once extends to an action M X Q -+ Q where M is the free monoid

on the set L . Because there are also practical applications where the mon-

oid M is not free, it is usual to generalize at once to the case of any mon-

oid M. Thus a deterministic dynamics is a monoid M together with an M-

set Q .

To obtain the notion of a non-deterministic dynamics, we merely

replace the function M X Q -&#x3E; Q by a relation - between M X Q and Q, sat-

isfying the following generalizations of the associativity and unit laws for

an action:

if (m, q) -r and (n, r) =s then (nm,q) ~ s ; 

and ( e , q) ~ q for all q , where e is the identity of M.

A relation between M x Q and Q is equally a relation between QX Q
and M, which is in turn the same thing as a function 2 ; Q X Q - $’ M into

the set T M of subsets of M.

The ordered set P M , seen as a category, is in fact a biclosed mon-
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oidal category U. The tensor product X 0 Y is just the set

and

while the unit object I is { e} . One intemal-hom [ Y, Z] is

for all y E Y},

and the other one is

for all

The transforms of the generalized associativity and unit laws are
the inequalities

and

which inform us precisely that we have a V-category 2 with Q for its set
of objects. Thus a non-deterministic dynamics with monoid M is nothing
but aD-category :2, where V = P M .

Accordingly, if we now fix once for all the monoid M , the possible

dynamics form the objects of a 2-category, namely the 2-category C-Cal of

small 0-categories. Thus a morphism S: 2 =&#x3E; 2’ of dynamics is just a

11-functor; and since TM is only an ordered set, this is just a function

S : Q - Q ’ such that 2( q, r)  2’( Sq, S r ) ; or equivalently, such that

implies

Again, there is at most one 2-cell o-: S -&#x3E; S , this existing when

for all q .

4.2. A non-deterministic automaton is a (non -deterministic) dynamics 2
together with a subset J C Q of initial states and some notion of output.

We restrict ourselves to the simplest case where the automaton is a mere

recognizer, with possible outputs 0 and 1 ; so that to give the output func-

tion Q -&#x3E; {0, 1} is just to give a subset T C Q of terminal states. Then

the behaviour b (2 ; J , T ) of the automaton is the subset of M given by
those m such that, for some /6 7 and some t c T , we have ( m, j) .. t. In

other words,
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where the coproduct S in 0 is in fact the union in P M .

Following Betti [2], we define a morphism (2 ; J , T) -&#x3E; (3B’/B T’)
of automata (still for the fixed M ) to be a morphism S : 2 =&#x3E; 2’ of dynam-
ics such that the function S ; Q - Q’ satisfies

and

and we define a 2-cell to be just any 2-cell or: S -&#x3E; S of dynamics. Thus

automata are the objects of a 2-category Aut . Since ( 35 ) clearly implies
that b (2 ; J , T’  b (2 ’ ; J’ , T’) , behaviour becomes a 2-functor b from

Aut to the underlying category Vo = P M of lj ; of course b sends any

2-cell to an identity.

The condition ( 35 ) is not, on the face of it, a « categorical) one.

Still following Betti [2] (although not in terminology), we define a 2-cat-

egory Gen of generalized automata (for the given monoid M ). A generalized
automaton is a dynamics 2 along with modules O : P -&#x3E; 2 (the input) and

Y : 2 -&#x3E; J (the output). A morphism (2 ; O, Y) -&#x3E; (2 ’; O’, Y’) is a morphism
S : 2 =&#x3E; 2’ of dynamics satisfying the inequalities (that is, 2-cells of

modules)

and a 2-cell is any o- : S -&#x3E; S. There is a behaviour 2-functor

s endin g (ill ; O, Y) to the composite Y O : J -&#x3E; J ; for clearly (36) implies

that Y O  tjJ’,p’.
We have a 2-functor F : Aut -&#x3E; Gen , sending (2 ; J, T) to (2 ; 0, Y)

where

and sending S, o- to themselves; for it is easy to see that ( 35 ) implies

( 36 ) when O, Y are defined by ( 37 ). It is further clear from ( 34 ) that F
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preserves behaviour : we have B F = b . Betti seems to us to be mistaken,

however, in asserting that F is fully faithful.

As he correctly observes, F has a right adjoint H , sending (2; O,Y)
to (2 ; J, T ) where

and sending S, I U to themselves. Indeed, an easy calculation shows that, if

and

the inequalities (36) become exactly S (J)  J’ and S(T)  T’ . However

the unit H F of the adjunction is not an isomorphism ; for

where

for some

for some

and the inequalities J  J+ and T  T t are in general strict.
What we do have at once from the triangular adjunction equations,

since both F and H are the identity at the level of the dynamics, is that

and

Let us call the idempotent 2-functor ( ) t = H F : Aut -&#x3E; Aut the normaliza-

tion functor, and call an automaton A = (2 ; J, T) normal if j I = J and

T + = T ; which is equivalently to say that A is in the image of H . Note

that ( 41 ) gives

whence, applying B and using B F = b , we have

so that normalization preserves behaviour. Observe that, although F is

not fully faithful, we do have :

PROPOSITION 1 2. The functor FA A’: Aut(A, A’) -&#x3E; Gen(FA, FA’) is
an isomorphism if the automaton A’ is normal. 0
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4.3. We may identify a generalized automaton (2 ; O, Y) with the cofibra-
tion (2 ; O, Y, 8, k) : J -&#x3E; J, where 8 = Y O and k = id . Then a morphism
S of generalized automata coincides with a morphism (S ; a, B, y) of co-

fibrations ; rx and (3 are the inequalities in (36), and y is the induced in-

equality Y O  Y’O’. A 2-cell Q: S - 9 in Gen is also a 2-cell

in Cofib (J, J) ; for the equations ( 27 ), (28), and (29) are automatic when
U. is merely an ordered set. Thus Gen is identified with the full subcat-

egory of Cofib (J, J) given by those cofibrations with k = id . Moreover

the behaviour 2-functor B : Gen -&#x3E; MOD (J, J) = Vo of 4.2 is just the res-

triction of the behaviour 2-functor B : Cofib(J, J) -&#x3E; MOD (g, g) of 3.4.

The 2-functor R : MOD (J, J) -&#x3E; Cofib (J, J) of 3.4 may be seen as a

2-functor R : Vo-&#x3E; Gen , sending 0 E P M to R 8 = ( P 4; Y*, G *) . Since

P J = V, since Y* : J -&#x3E; V is given by

and since G*. V -&#x3E; J is given by G*X == [X,0], we in fact have R0 =

F( C; {I}, {0}). The automaton (V;{I},{8}), however, is not normal;its
normalization is NO - ( 0; 7T , 8 where

and R 8 is equally FN0 by (42).

Theorem 9 now gives, when we use Proposition 1 2:

THEOREM 13. Let A =(2 ; J, T) be any automaton, let its behaviour be

0, and let 8’&#x3E;8 in P M. Then the category of morphisms

and 2-cells between them, has an initial object. Eq uival entl y, the functor

has a left adjoint. o

This is the essence of the theorem of Betti and Kasangian in [3].

It is true that they consider a richer notion of morphism for automata, which
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involves a re-coding given by a monoidal functor from 0 to itself ; but their

result in fact follows from Theorem 13 without any significant further cal-

culation.
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