CAHIERS DE TOPOLOGIE ET GÉOMÉTRIE DIFFÉRENTIELLE CATÉGORIQUES

R. Betti A. Carboni

Notion of topology for bicategories

Cahiers de topologie et géométrie différentielle catégoriques, tome 24, nº 1 (1983), p. 19-22

<http://www.numdam.org/item?id=CTGDC_1983_24_1_19_0>

© Andrée C. Ehresmann et les auteurs, 1983, tous droits réservés.

L'accès aux archives de la revue « Cahiers de topologie et géométrie différentielle catégoriques » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

NOTION OF TOPOLOGY FOR BICATEGORIES

by R. BETTI and A. CARBONI *)

INTRODUCTION.

We deal with the approach to categories based on a bicategory introduced by Walters [3,4] and Betti & Carboni [1]. In view of further developments, where B-category theory becomes relevant to cohomology (Street [2]) and other geometrical applications (as Walters' «glueing data») it seems useful to have an abstract notion of topology for general bicategory.

Here such a notion is given in term of a «closure operator» for a locally partially ordered bicategory, even if it can be easily generalized to any locally left exact bicategory. The theorem is that in the wellknown case when B = Rel(C) (the base bicategory for presheaves) closure operators on B are exactly Grothendieck topologies on C.

Moreover, on the basis of the given definition and of a previous paper [1] an intrinsic notion of sheaf for a closure operator is given. These notions arose in helpful conversations with R.H. Street, while he was visiting Milan.

1. We recall that Rel(C) is the bicategory defined as follows (Walters [4], for C any locally small category):

objects of Rel(C) are those of C, 1-cells $u \mapsto v$ are cribles of spans $u \leftrightarrow w \rightarrow v$, 2-cells are inclusions.

Rel(C) is a symmetric bicategory, and R^{o} denotes the opposite 1-cell of R.

DEFINITION. Let B be a bicategory, locally an inf-semilattice. A *closure* operator on B is a locally left exact lax idempotent monad in B which is the identity on objects.

Any Grothendieck topology J on C determines a closure operator *) Work partially supported by the Italian C.N.R. on Rel(C) by defining

$$\overline{R} = \{ \begin{array}{c} & & \\ &$$

as in Walters [4] where all stated properties are proved, but the locally left exactness $\overline{R \Lambda S} = \overline{R} \Lambda \overline{S}$: just observe that if U and V are coverings of u, then also $U \Lambda V$ is a covering.

Let us observe that the axioms of a closure operator cannot be strengthened by requiring strict functoriality. Indeed, let C be a regular category and J the regular epi-topology; if f is a regular epi, then the crible generated by $\langle f, f \rangle$ contains its closure iff f has a section.

Our aim is to show that in fact any closure operator on Rel(C) can be obtained in the previous way from a unique Grothendieck topology Jon C.

THEOREM. Closure operators on Rel(C) correspond bijectively to Grothendieck topologies on C.

PROOF. If $Rel(C) \supset Rel(C)$ is a closure operator, define the covering cribles as those cribles

$$U = \{ b_i : u_i \rightarrow u \}$$

such that the 1-cell $R_U = \langle b_i, b_i \rangle$ satisfies $I_u \subset \bar{R}_U$. With this definition, we get a topology on C:

i) trivially the maximal crible covers.

ii) Let U be a covering crible of u and $f: v \rightarrow u$ a morphism of C; observe that

$$R_{f^*U} = 1 \Lambda f. R_U.f^o$$

(for terminology and properties of Rel(C) see Walters [1]), then

$$1 \subset ff^{o} \subset f. \overline{R}_{U}. f^{o} \subset \overline{f. \overline{R}_{U}. f^{o}} = \overline{f. R_{U}. f^{o}}$$

(the last equality easily follows from the identity $\overline{\overline{R} \cdot \overline{S}} = \overline{R \cdot S}$, which is a direct consequence of the axioms). Hence

$$1 \subset 1 \Lambda \overline{f.R_{U}.f^{o}} \subset \overline{1} \Lambda \overline{f.R_{U}.f^{o}} = \overline{1 \Lambda f.R_{U}.f^{o}}$$

(by left exactness). So $1 \subset \overline{R}_{f^*U}$ and f^*U covers.

iii) Let U be a covering crible of u and V a crible such that, for each $f \in U$, f^*V covers, we have

$$\overline{f^{o} \cdot f} \subset \overline{f^{o} \cdot f \cdot R_{V} \cdot f^{o} \cdot f} \quad (\text{because } f^{*V} \text{ covers})$$
$$= \overline{f^{o} \cdot f \cdot R_{V} \cdot f^{o} \cdot f} \subset \overline{R}_{V} \quad (\text{because } f^{o} \cdot f \subset 1).$$

So

$$R_U = \bigvee_{f \in U} f^o f \subset \bar{R}_V,$$

hence $\overline{R}_U \subset \overline{R}_V$ and thus $1 \subset \overline{R}_V$.

It is straightforward to verify that if J is a topology on C and $\overline{}$ is the associated closure operator then J is a J-cover iff $1 \in \overline{R}_U$. Conversely, given a closure operator on Rel(C), we need to show

$$\overline{T} = \{ \begin{array}{c} b \\ u \\ v \\ v \\ v \\ v \\ l \\ c \\ \overline{R}_U \text{ and } b^o \cdot R_U \cdot k \\ c \\ T \\ \}$$

for each 1-cell T of Rel(C). In one direction we have

$$\langle b, k \rangle = b^{o} \cdot k \subset \overline{b^{o} \cdot k} \subset \overline{b^{o} \cdot \overline{R}_{U} \cdot k} = \overline{b^{o} \cdot R_{U} \cdot k} \subset \overline{T}.$$

In the other one, define R_{II} as $1 \Lambda b. T. k^{o}$. Then $1 \subset \overline{R}_{II}$ for

$$1 \subset b.b^{\circ}.k.k^{\circ} \subset b.\overline{T}.k^{\circ} \subset \overline{b.\overline{T}.k}^{\circ} = \overline{b.T.k^{\circ}}.$$

Moreover

$$b^{\mathbf{0}}$$
.(1 Λ b. T. $k^{\mathbf{0}}$). $k \in b^{\mathbf{0}}$. b. T. $k^{\mathbf{0}}$. $k \in$ T.

In the same way we can translate notions relative to Grothendieck topologies in this more «algebraic» context. For instance it is easy to prove the following

PROPOSITION. The following conditions are equivalent:

i) Representables are J-sheaves.

ii) If R is a $\operatorname{partial} \operatorname{map} (i. e. R^{\circ} R \subset 1)$, then $\overline{R} \cdot \overline{S} = \overline{R \cdot S}$ and $\overline{I} = 1$. PROOF. A compatible family $u_{\alpha} \rightarrow v$ on the covering $u_{\alpha} \rightarrow u$ gives rise to a partial map $R: u \rightarrow v$. The hypothesis implies that R is a map.

Given any closure operator $(\overline{\ }): B \rightarrow B$, a new bicategory \overline{B} is defined by taking the same objects as B and, as 1-cells, the closed ones, i.e. locally the algebras for the idempotent monad induced by the closure operator. In \overline{B} the composition is defined by $\overline{R.S}$; identities for such composition are closures of the old ones.

A pair of morphisms of bicategories is obtained: $B \xrightarrow{i} \overline{B}$, such that (⁻) is locally left exact left adjoint to *i*. Observe that *i* is really a lax morphism (see the above counterexample), while (⁻) is a strict one (homomorphism). The induced change of base $B-Cat \rightarrow \overline{B}-Cat$ is also denoted by (⁻).

The result of [1] motivates the following definitions:

DEFINITION 1. Let $B \to \tilde{B}$ be a closure operator and X a B-category. A bimodule $R: Y \to X$ covers X if $Y \subset \overline{R \cdot R}^{\circ}$ and $R^{\circ} \cdot R \subset \overline{X}$.

The above definition amounts to require that $\overline{R}: \overline{Y} \longrightarrow \overline{X}$ has a right adjoint in \overline{B} -*Cat*.

DEFINITION 2. Let X be a B-category. X is a *sheaf* if each covering $R: Y \rightarrow X$ is representable by a functor.

REFERENCES.

- 1. R. BETTI & A. CARBONI, Cauchy-completion and the associated sheaf, Cahiers Top. et Géom. Diff. XXIII - 3 (1982), 243 -256.
- 2. R.H. STREET, Enriched categories and cohomology, Quaest. Matem.
- 3. R.F.C. WALTERS, Sheaves and Cauchy-complete categories, Cahiers Top. et Géom. Diff. XXII -2 (1981), 283-286.
- 4. R.F.C. WALTERS, Sheaves and Cauchy-completeness, J. Pure & App. Algebra 24 (1982), 95-102.

Istituto Matematico «Federigo Enriques» Università di Milano Via C. Saldini 50 MILANO. ITALIE