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Q UOTIENT SYSTEMS IN GROTHENDIECK TOPOI

by Kimmo I. ROSENTHAL

CAHIERS DE TOPOLOGIE

ET GÉOMÉTRIE DIFFÉRENTIELLE

Vol. XXIII -4 (1982)

In this paper, we define a method for constructing Grothendiecktopoi
from a given Grothendieck topos E. If C is a set of generators of 6, we
define the notion of a quotient system T on C and construct a topos ED
of D-generated objects of E . There is a geometric morphism E - ED which
is hyperconnected, and the results of Johnstone [4] are helpful in analyz-

ing the quotient system. On the other hand, quotient systems provide some

insight into how hyperconnected geometric morphisms can arise and we in-

vestigate the connection between the two concepts. This work is an out-

growth of a suggestion by Lawvere [7] about unifying certain constructions

involving G-sets, where G is a group or a monoid, and as examples of topoi
of the form EDj we obtain the topos of G-sets with finite orbits and the

topos of continuous G-sets, where G is a topological group. Finally, we

make the observation that any Grothendieck topos F is equivalent to one

of the form ED, where @ is an etendue (i. e. if 6 has enough points, 5;
is equivalent to a topos of G-sheaves, where G is an etale topological

groupoid [8])’
I would like to thank Bill Lawvere for some helpful comments, Julian

Cole for several illuminating conversations and Peter Johnstone for send-

ing me copies of his work.

1. Q UOTIENT SYSTEMS.

Let 6 be a Grothendieck topos and C be a set of generators of

5;. We begin with a series of definitions.

DEFINITION 1.1. A C-system of’ quotients T consists of the following:
for every C E C, we have a family of quotients DC such that
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in DC and morphisms r1: D - D1’ r2 : D - D2 such that

commute.

(2) If C, C’ E C, f : C - C’ is a morphism in C and q1: C’.-... D’
is in DC’ and if we take the image factorization

th en q : C -D i s in D C .
( 3) If {Ci- C J. 1,( I 

is a covering of C for the canonical topology in

E and if qi : Ci - Di is in DC for all i , if we form the pushout

then q : C -&#x3E; D is in DC .

DEFINITION 1.2. A quotient system in E is given by a set of generators
C and a C-system of quotients D. (Remark: For most of our examples, we
shall only need conditions ( 1 ) and ( 2 ) of Definition 1.1.)

DE FINITION 1.3. Let C E C and x: C - X be a morphism in 6. We say
x is a D-element of X if there is q: C- D in Dc and x: D- X such that

commutes.

DEFINITION 1.4. An object X of E is called D-generated if for every mor-
phism x: C - X with C c C, x is a D-element of X.

Let ED = { X f &#x26; I X is T-generated}. We make this into a categ-
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ory by taking our morphisms to be morphisms in E . We shall show that l$j
is a topos and we have a surjection of topoi E- ED (which is in fact a

hyperconnected geometric morphism).

By Giraud’s Theorem [ 2, Chapter 0] we have an inclusion of topoi
i : E - SCOP with @ equivalent to the topos sh( C; J) where J is the can-

onical Grothendieck topology on C . Using this representation, we shall

define a left exact cotriple G : lil - lil and conclude th at G , the
category of G-coalgebras, and hence is a topos.

Define a functor o :E - SCOP as follows. If X E , C c C , let

o (X) (C) ={ x: C - X x is aS-element of x I .

o (X) is a contravariant functor for if f: C’-+ C is a morphism in C and

x E o (X) (C), suppose q : C- D in T and x; D - X are such that

By (2) in Definition 1.1, im (q . f ) = C’-+-+ D’ is in DC , . So we have
- r 

Thus, x. f E o (X) (C’) and this is functorial.

LEMMA 1.5. E-SCop is le ft exact.
P ROO F. We must show that 0 preserves products and equalizers. Let X

and Y be in @. It is clear that o ( X x Y) -o (X) x a(Y) , since a D-
element C - X x Y gives rise to D-elements C - X, C - Y by composition
with the projections. We must show the opposite inclusion.

Suppose x: C - X, y: C - Y are D-elements of X and Y respect-

ively. Then, there exist q 1 : C- Di, q2: C- D2 in DC and x : D1 -+ X ,
y; D2 - Y such that 
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commute. By (1) in Definition 1.1, choose q : C-&#x3E; D in DC such that

there exist r1:D,DI, r2: D - D2 with

commuting. Define  x, y &#x3E; : D - X x Y by

Then

commutes and thus o preserves products.
To show that o preserves equalizers, suppose that

is an equalizer diagram in 6. Let y: C - Y be a D-element of Y with

f 1 y = f 2y Since y is a D-element of Y there is q: C -- D in DC and

y : D - Y such that 

Since fl y q - f 2 y q and q is epi, it f ollows that f1 y - f 2 y , Thus,

y: D - Y factors through X - Y and so does y: C - Y , hence it is a

D-element of X . This shows that o preserves equalizers, and completes
the proof for left exactness.

L EMM A 1.6. If X EE, then o (X) i s a shea f for the c anonical topology on C.

PROOF. This will follow directly from condition (3) in Definition 1.1.

Suppose xi : Ci, X are D-elements of X where ICi-* C}iEI is a cover
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for the canonical topology. Then, there are q.: C- D. in DCi, and

x; : Di - X for all i with

commuting. Since X is a sheaf for the canonical topology there is a unique
x : C - X such that

commutes for all i . By ( 3 ) in Definition 1.1, if we form the pushout

then q: G- D is in DC . It follows that there is x : D - A with

commuting. Thus, o (X) is a sheaf for the canonical topology on C.

We are now ready to define our cotriple G: E- 5; , whose coalgebras
will preceisely be the D-generated objects of E. Let G :E-E be the func-
tor defined by G X = i *( 0 (X )) for X f 5;, where we recall that i : &#x26; -+ SCop
is the canonical inclusion given by Giraud’s Theorem.

P ROPOSITION 1.7. I f X E E, G X &#x3E; X is the largest D-generated sub-
object o f X.

P ROO F. To see that G X is D-generated, let x : C- G X be a morphism
in E with G’ E C . By Lemma 1.6, i*(G X) o (X) , since (k (X) is a sheaf
and it follows that
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is in o (X) (C). Thus, there is q : C - D in Dc and x: D - X with

commuting. But, x must factor through G X - X . So, G X is D-generated.
If Y P X is another :D-generated subobject, then o (Y) = i *( Y ).. Since

0 is left exact, o (Y)- o (X), So,

THEOREM 1.8. G:E-E is a left exact cotriple and &#x26;G , the category of
G-coalgebras, is precisely &#x26;T, the category of D-generated objects. Hence
is a topo s and there is a surjection o f topoi E - 5;5).
P ROOF. Since G =i*oo, G is left exact, as both i* and o are. That

G is a cotriple follows readily from Proposition 1.7. There is a monomor-

phism G - I where I is the identity functor, and G is idempotent, since

G(G X) must be the largest D-generated subobject of G X . It readily fol-

lows that X is a G-coalgebra iff G X = X and thus the G-coalgebras and

D-generated objects coincide. Thus, [2, Chapter 2], 6j is a topos and

there is a surjection &#x26; , ED of topoi.

REMARKS. (1) One should note the dual nature of the notions of quotient

system D and D-generated object with those of j-den se monics for a topo-
logy j and j-sheaf.

(2) Condition (3) in Definition 1.1 is not always necessary, for ex-

ample if lil = SCop. In those cases, it is easy to verify whether the con-

ditions for a quotient system are satisfied.

(3) If J is any subcanonical topology on C , condition (3) of Defini-

tion 1.1 can be modified to deal with J-coverings which will make our 3)-

quotients dual in some sense to J-coverings.

(4) The concept of D-generated object is a simple and natural one. It

would make sense in categories other than topoi and is essentially purely

algebraic not depending on the higher order structure of topoi.



431

EXAMPLES. 1. Let G be a group. We look at E = SGop, the topos of G-

sets. We can take I G } to be our generating set and if we take all finite

G-quotients of G , we have a quotient system T and ED is the topos of

G-sets with finite orbits.

2. Let E be the topos of sets equipped with an endomorphism, which is

equivalent to the topos SNop, where N is the monoid of natural numbers.

Let {N, o} be our generating set, where a : N - N is the successor func-

tion. Define quotients of (N, o) as follows. Let (Sn, pn ) be the object

where S = {0, 1, 2, ... , n-1} and

Define

Then, it is not hard to see that {qn : ( N, o) - ( Sn, pn ) l n E N} form a

quotient system D in lil and ED is the topos of sets equipped with a local-
ly eventually constant endomorphism, i. e. (X, r ) c &#x26;T iff r : X - X and

(This example was first observed by F. W. Lawvere.)

3. Let G be a topological group and let @ = SGop. It is well known

that given a G-set X , the action of G on X is continuous with respect to

the topology on G iff for every x f X, the isotropy group of x in G is an

open subgroup. Let x: G - X be an element of X . If U is an open sub-

group of G and we have a diagram

commuting in 6, then U must be contained in the isotropy group of x .

Since the identity is in U , it follows that the isotropy group must be open.
Let {G - G/U ) l U an open subgroup of G} be our quotient system (con-

ditions (1) and ( 2 ) of Definition 1.1 are easily verified). Then, ED from

the above reasoning must be the topos of continuous G-sets, C (G).
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4. Let lil be a Grothendieck topos and C be a set of generators. Given

C c C , let Dc be all quotients of C, which are quotients of decidable ob-

jects. Since quotients of decidable objects are closed under subobjects,
finite products, quotients and coproducts [5], Conditions (1 ), ( 2 ) and ( 3 )

of Definition 1.1 are readily verified and we have a quotient system D. The

topos ED is the topos Johnstone has denoted Fgqd , the topos of quotients
of decidable objects. (Again, see [ 3D

Examples such as this will become clear in the next section as we

establish the connection between quotient systems and hyperconnected
geometric morphisms.

2. Q UOTIENT SYSTEMS AND HYPE RCONNECTE D GEOMETRIC

MORPHISMS.

The important class of hyperconnected geometric morphisms was

introduced in [3] and studied extensively in [4] by P. Johnstone. They
are orthogonal to the localic geometric morphisms and together with these

provide a factorization system which is stable under pullback along bound-

ed geometric morphisms. The geometric morphisnl 8 - lil f in Section 1 is

11 yperconnecred and in this section we investigate the connection between

these morphisms and quotient systems.

D E F INIT ION 2. 1. A geometric morphism f :F-E is hyperconnected iff

any of the following equivalent conditions holds :

(1) f* is full and faithful, and its image is closed under subobjects
in 5: .

( 2 ) f * is full and faithful, and its image is closed under quotients

in 5: .

(3) The unit and co-unit of the adjunction ( f *-l f *) are both mono.

(4) f* preserves Q, i., e, the comparison map for f* (QF)-QE is

an isomorphism.

For a proof of the equivalence of these conditions, see [4, Proposi-
tion 1.5]. From (3), since the unit of E the ,?, adjunction is mono, we have P a

surjection of topoi. Since every surjccticn I:: equivalent to one given by a
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left exact cotriple [2; 4], we see from ( 3 ) that a hyperconnected geometric
morphism corresponds to a left exact cotriple with monic co-unit. We shall

phrase our discussion in terms of cotriples, since there is a ready connec-

tion between coalgebras and D-generated objects.
D E F IN IT IO N 2. 2. Let 6 be a Grothendieck topos. Let G :E - &#x26; be a left

exact cotriple such that for every X E E , the co-unit map G X - X is

mono. We shall call G an interior operator on C5
REMARK. The terminology follows from the fact that if X is a set and we

consider the poset 2X , then the left exact cotriples on 2X correspond pre-
cisely to interior operators taking « interior» in the topological sense.

Thus, hyperconnected geometric morphisms are equivalent to int-

terior operators.

PROPOSITION 2.3. Let G : lil - lil be an interior operator.

(1 ) X c 6 is a G-coalge bra iff G X = X ,

(2 ) Every subobject o f a G-coalgebra is a G-coalge bra.
(3) Every quotient o f a G-coalge bra is a G-coalgebm.
(4) An arbitrary coproduct o f G-coalge bnzs is a G-coalge bra.

P ROO F. ( 1) follows immediately since G X - X is mono. (2) and (3)

are merely restatements of Definition 2.1, ( 2 ) and ( 3 ). For ( 4), if G (Xi) =
X. 

i 
for iEI, the maps X X. i induce a map l i X. 1, -+ G (E Xi) and since

G (E X. X. we are done.
i 

We have seen that a quotient system D one gives rise to an int-
erior operator (i. e, hyperconnected geometric morphism). Now, we shall

show that given a choice of generators for 6 , the converse holds.

THEOREM 2.4. Let E be a Grothendieck topos and C a set of generators
for 5;. I f G: E-E is an interior operator, then the G-coalgebra quotients
o f o bjects in C form a quotient system in E.

P ROO F. We must check that the conditions of Definition 1.1 are satisfied.

Suppose q1 : C - D1, q2&#x3E; C - D2 are epimorphism s with C c C and D1,
D2 are C-coalgebras. Form the pushout in E
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Since pushouts of epis are epis, from Proposition 2.3 ( 3 ), it follows that

D1 t D2 a coalgebra. Now, from the pullback

D is a G-coalgebra, and from the commutativity of the pushout diagram and

properties of pullbacks, it follows that there is a map q : C 4 D such that

- n - - n -

If q : C - D is not epi, take the image of q . It is a subobject of D and

hence by Proposition 2.3 a G-coalgebra.
For the second condition, if f : C - C’ and q’: C’ - D’ is epi with

D’ a G-coalgebra, then the image of q’ is a subobject of D’ and hence a

G-coalgebra quotient of C , again by Proposition 2.3.

For the last condition of Definition 1.1, suppose { Ci- C}iEI is a

canonical cover of C and qi : C. - Di are G-coalgebra quotients of Ci for

i E I. Then, EiDi is a G-coalgebra by Proposition 2.3 and when we form

the pushout

then D is a G-coalgebra being a quotient of S D. and hence q : C - D is

a G-coalgebra quotient of C. 

So, every interior operator on a Grothendieck topos @ induces a



435

system of quotients T on 6. Now, we shall show that the D-generated ob-
jects coincide with the G-coalgebras.

THEOREM 2.5. Let G : 11 - E be an interior operator and let T be the

system of quotients it induces on a set of generators C of E. Then, the
topos 6j of D-generated objects is precisely the topos EG of G-coal-

ge bras.

P ROOF. Suppose X is a G-coalgebra. Let C 6 C and x: C - X be a mor-

phism in E. If we take the image factorization

then x: D - X is a G-coalgebra since they are closed under subobjects,
and hence X is D-generated. Conversely, suppose X is D-generated. To
show that X is a G-coalgebra, since G is an interior operator it suffices

to show that G X = X . Suppose G X - X is not equal to X . Since C is

a set of generators, choose x: C - X such that x does not factor through

G X &#x3E;- X . Since X is D-generated, there is a G-coalgebra quotient q :

C - D of C and x: D - X such that

commutes. If we take the image factorization

then D’ is a G-coalgebra, being a quotient of D and hence is a G-coal-

gra subobject of X . Since G is left exact and idempotent, it follows

that G X - X is the largest G-coalgebra subobject of X , hence i : D’P X

factors through G X - X. Therefore, so does x: C - X. This is contradic-

tion. Hence, G X = X and X is a G-coalgebra.
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From these results, we see that the concepts of quotient system D
and T-generated object provide another perspective on hyperconnected geo-
metric morphisms. If f :E-F is hyperconnected with corresponding int-

erior operator f*of*:E- Fg, the above method of obtaining a quotient sys-
tem on E is by no means always the most efficient.

For instance in [4] it was shown that if a functor a : C - B bet-

ween small categories is full and essentially surjective on objects, then

the induced geometric morphism SCop - SBop is hyperconnected. So,
SBop= SCop)D for a quotient system T . In fact, we can choose S so

that Dt consists of a single quotient for each C c C (where C denotes the
associated representable functor). If f, g: C’ - C are maps in C , say

f - g iff a(f) = a(g) . Let [f ] denote the equivalence class of such

an f . For C c C, define a quotient I- D in SCop by

It is not hard to see that this is a quotient system and that

3. QUOTIENT SYSTEMS, ETENDUES AND THE DIACONESCU COVER.

In this section, we wish to briefly argue that given a Grothendieck

topos @, there is an etendue lil’ (for a discussion of etendues, see [8])
and a quotient system T on lil’ such that E= &#x26;1) .

In [1] , Diaconescu offered a simple proof of Barr’s Theorem that

every Grothendieck topos 6 admits a surjection from a topos of the form

sh (B), where B is a complete Boolean algebra. As an initial step, Dia-

conescu constructed a poset D from a set of generators C of E and ob-

tained a pullback diagram

where i is the canonical inclusion, H is a Heyting algebra and p is an
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open surjection (see [6], [9] for discussions of open surjections). In [8]
it was observed that p factors through an etendue E’. If C denotes the
free category generated by the graph C , then the poset D is C/l gl and

we have

Since maps in C are monic, SCop is an 6tendue and hence so is E’ [8],
and p : 5;’ - 6 is again an open surjection. Ike would in fact like to show

that p’ is hyperconnected. This follows easily. From [4; Proposition 2.3J,
we know that pullback along a bounded morphism preserves hyperconnected-

ness, so it suffices to see that f: sto p -+ SCIOP is hyperconnected. This

is clearly true from the discussion following Theorem 2.5 about functor

categories. Thus, we have the following equivalent statements:

THEOREM 3.1. (1) Given a Grothendieck topos 5;, there is a hypercon-
nected geometric morphism f: E’ - 6, where 6’ is an itendue,,

(2) Given a Grothendieck topos E, there is an itendue 6’ and a quo-
tient system 9 on 6’ such that E= ED).

Every 6tendue with enough points is equivalent to a topos sh (X; G)
of G-sheaves where G is an 6tale topological groupoid on a topological

space X and these topoi have a natural set of generators [8]. These topoi
are geometrically interesting and an investigation of the possible quotient

systems on these generators should shed light on exactly how an arbitrary
Grothendieck topos with enough points is obtainable from G-sheaves.
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