CAHIERS DE TOPOLOGIE ET GÉOMÉTRIE DIFFÉRENTIELLE CATÉGORIQUES

J. R. DENNETT Modulo *C* homotopy

Cahiers de topologie et géométrie différentielle catégoriques, tome 23, nº 4 (1982), p. 389-396

http://www.numdam.org/item?id=CTGDC_1982_23_4_389_0

© Andrée C. Ehresmann et les auteurs, 1982, tous droits réservés.

L'accès aux archives de la revue « Cahiers de topologie et géométrie différentielle catégoriques » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

MODULO C HOMOTOPY

by J. R. DENNETT

This work arose from an attempt to understand how the ideas of localization and completion relate to p equivalences as defined by Serre i.e. maps $f: X \to Y$ such that $f^*: H^*(Y, Z_p) \to H^*(X, Z_p)$ is an isomorphism. Localization is usually set up by defining for a space X its localization EX, i.e. in a sense enlarging the category by including more objects. It seemed to me that it might be fruitful to keep the same objects but to change the morphisms by defining a modp homotopy relation.

In suitable circumstances the localization can also be regarded as a functor $\eta : \mathfrak{A} \to \mathfrak{A}/\Sigma$ where \mathfrak{A}/Σ is the category of fractions with respect to a suitable morphisms class [3]. This suggests taking Σ to be the class of p equivalences and defining maps f and g to be modp homotopic if $\eta(f) = \eta(g)$. This is just the situation studied by Bauer and Dugundji [1] although not in the cases (e.g. p equivalences) in which I was interested. They define morphisms f and g in \mathfrak{A} to be Σ -homotopic if $\eta(f) =$ $\eta(g)$, and show, for example, that if \mathfrak{A} is the category of topological spaces and continuous maps and Σ is the class of homotopy.

In this note we investigate the homotopy relation, in the homotopy category of pointed topological spaces, determined by the class of morphisms which induce C isomorphisms in homology, where C is a Serre class of abelian groups. Since this class admits a calculus of left fractions, the homotopy relation has another description in terms of equalisers. In the category of 1-connected spaces this class also admits a calculus of right fractions and so the homotopy relation has a description in terms of coequalisers too. This mod C homotopy relation enables us to define mod C homotopy groups. If we take C to be the Serre class of all finite abelian groups with p torsion (p prime) and work in the category of 1-connected finite CW-complexes, then the mod C homotopy groups are the p components of the usual homotopy groups.

J.R. DENNETT 2

Let \mathcal{T} denote the category of pointed topological spaces and continuous base point preserving maps and let $\overline{\mathcal{T}}$ denote the homotopy category of \mathcal{T} . Let \mathcal{C} denote a Serre class of abelian groups and let Σ denote the set of maps in \mathcal{T} which induce \mathcal{C} isomorphisms in integral homology. Let $\overline{\Sigma}$ denote the image of Σ in $\overline{\mathcal{T}}$.

THEOREM 1. $\bar{\Sigma}$ admits a calculus of left frattions in $\bar{\mathcal{I}}$.

PROOF. The constructions in Lemma 3.6 of [2] work in this situation.

Let \mathcal{T}_{I} denote the category of 1-connected pointed topological spaces and let Σ_{I} denote the set of maps in \mathcal{T}_{I} which induce \mathcal{C} isomorphisms of all homotopy groups. Let $\overline{\Sigma}_{I}$ denote the image of Σ_{I} in $\overline{\mathcal{T}}_{I}$, the homotopy category of \mathcal{T}_{I} .

THEOREM 2. $\bar{\Sigma}_{1}$ admits a calculus of right fractions in $\bar{\mathcal{I}}_{1}$.

PROOF. (i) It is obvious that $\overline{\Sigma}_I$ contains identity maps and is closed under composition.

(ii) Suppose that we have

$$\begin{array}{c} Z \\ \downarrow f \\ \chi _ _ g _ Y \end{array}$$

where $f \in \overline{\Sigma}_{l}$. Replace f and g by fibrations and pullback to

where $s: \mathbb{W} \to X$ is the induced fibration. Since $f \in \Sigma_{1}$,

$$\pi_i(F) \in \mathcal{C} \text{ for } i \geq 1$$

where F is the fibre of f. This implies that $s_{\#}: \pi_i(W) \to \pi_i(X)$ is a \mathcal{C} isomorphism for $i \ge 2$, $\pi_1(W) \in \mathcal{C}$ and $\pi_0(W) = 0$. Now apply Corollary 8 page 444 of [5] to get $s': W' \to W$ where W' is 1-connected and

$$s'_{*}: \pi_{i}(W') \approx \pi_{i}(W)$$
 for $i \geq 2$.

(iii) Suppose that we have

$$X \xrightarrow{f} Y \xrightarrow{r} Z$$

where $rf \approx rg$ and $r \in \overline{\Sigma}_{I}$. We may assume that r is a fibration. Let S be

$$\{(y_1, \omega, y_2) \in Y \times Z^I \times Y \mid \omega(0) = r(y_1), \omega(1) = r(y_2)\}$$

and define

$$a: YI \rightarrow S$$
 by $a(\lambda) = (\lambda(0), r\lambda, \lambda(1))$.

By Corollary 10 page 416 of [5] α is a (Serre) fibration and the fibre is ΩF_r where F_r is the fibre of r. The homotopy sequence of the fibration r gives

$$\pi_i(F_r) \in \mathcal{C} \text{ for } i \ge 1 \text{ and } \pi_0(F_r) = 0.$$

Therefore $\pi_i(\Omega F_r) \in \mathcal{C}$ for $i \ge 0$. Define

$$\beta: X \to S$$
 by $\beta(x) = (f(x), F(x), g(x))$

where $F: X \to Z^{I}$ is given by the homotopy between rf and rg. Pullback

$$X \xrightarrow{\beta} S$$

$$W \xrightarrow{G} Y^{I}$$

$$h \downarrow a$$

$$X \xrightarrow{\beta} S$$

to

G yields a homotopy between *fh* and *gh*. Moreover the homotopy sequence of the fibration *h* shows that $h_{\#}: \pi_i(\mathbb{W}) \to \pi_i(X)$ is a \mathcal{C} isomorphism for $i \ge 2$ and $\pi_1(\mathbb{W}) \in \mathcal{C}$. Replace \mathbb{W} by its path component containing the base point and, as before, approximate by $s': \mathbb{W}' \to \mathbb{W}$ where \mathbb{W}' is 1-connected and $s'_{\#}: \pi_i(\mathbb{W}') \approx \pi_i(\mathbb{W})$ for $i \ge 2$.

Theorem 1 also holds in $\overline{\mathcal{I}}_1$ and in the following categories:

 $\overline{\emptyset}$ = homotopy category of CW complexes,

 $\overline{\mathfrak{W}}_{1}$ = homotopy category of 1-connected CW-complexes, $\overline{\mathfrak{F}}$ = homotopy category of spaces of finite type, $\overline{\mathfrak{F}}_{1}$ = homotopy category of 1-connected spaces of finite type, $\overline{\mathfrak{F}}_{1}$ = homotopy category of CW-complexes of finite type, $\overline{\mathfrak{F}}_{1}$ = homotopy category of 1-connected CW-complexes of finite type.

Theorem 2 holds in $\overline{\mathfrak{Q}}_{I}$ since having obtained W' we can find a CW complex K and a weak homotopy equivalence from K to W'.

PROPOSITION 3. Theorem 2 holds in $\overline{\mathcal{F}}_{I}$ and in $\overline{\mathcal{F}}_{U}$.

PROOF. The construction of W in (ii) and (iii) does not depend on \mathcal{C} . If we take \mathcal{C} to be the Serre class of finitely generated abelian groups and work in the categories $\overline{\mathcal{F}}_1$ or $\overline{\mathcal{F}}_0$, then any map induces \mathcal{C} isomorphisms of homotopy. But $\pi_i(W')$ is \mathcal{C} isomorphic to $\pi_i(X)$ where X is of finite type. Therefore W' is of finite type.

If \mathcal{C} is an acyclic ideal of abelian groups and we work in one of the categories of 1-connected spaces, then $\Sigma = \Sigma_I$ and $\overline{\Sigma}$ admits a calculus of left and right fractions. Let us call a map in Σ a \mathcal{C} equivalence.

DEFINITION [1]. Suppose that f and $g: X \to Y$ in \mathcal{T}_1 . Then f is mod \mathcal{C} homotopic to g if $\eta(f) = \eta(g)$ where $\eta: \mathcal{T}_1 \to \mathcal{T}_1 / \Sigma$ is the localization functor. We write $f \gtrsim g$.

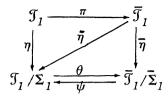
PROPOSITION 4. (i) $f_{\mathcal{C}}^{\approx}$ g iff there is a \mathcal{C} equivalence $h: Y \to Z$ in \mathcal{T}_1 such that $h f \approx h g$.

(ii) $f \underset{C}{\sim} g$ iff there is a \mathcal{C} equivalence $k: \mathbb{W} \to X$ in \mathcal{T}_{I} such that $fk \approx gk$. (Here $\ll \gg$ denotes the usual homotopy relation.)

PROOF. Let $\overline{\eta}: \overline{\mathcal{I}}_1 \to \overline{\mathcal{I}}_1 / \overline{\Sigma}_1$ be the localization functor and let $\pi: \mathcal{I}_1 \to \overline{\mathcal{I}}_1$ be the natural surjection. If $f \approx g$ in \mathcal{I}_1 then $\eta(f) = \eta(g)$, so that η induces $\overline{\eta}: \overline{\mathcal{I}}_1 \to \mathcal{I}_1 / \Sigma_1$. By the universal property for η there exists a functor $\theta: \mathcal{I}_1 / \Sigma_1 \to \overline{\mathcal{I}}_1 / \overline{\Sigma}_1$ such that $\theta \eta = \overline{\eta} \pi$. By the universal property for $\overline{\eta}$ there exists a functor $\overline{\eta}$ there exists a functor

 $\psi: \overline{\mathcal{I}}_1 / \overline{\Sigma}_1 \to \mathcal{I}_1 / \Sigma_1 \quad \text{such that } \psi \, \overline{\eta} = \overline{\eta} \, .$

Then θ and ψ give an equivalence $\mathcal{I}_1 / \Sigma_1 \approx \overline{\mathcal{I}}_1 / \overline{\Sigma}_1$.



Therefore,

$$\begin{split} f \underset{\mathcal{C}}{\sim} g & \iff \eta(f) = \eta(g) \iff \theta \eta(f) = \theta \eta(g) \\ & \iff \overline{\eta}(\overline{f}) = \overline{\eta}(\overline{g}) \quad \text{where } \overline{f} = \pi(f) \\ & \iff \text{ there exists } \overline{h} \text{ in } \overline{\Sigma}_{1} \text{ such that } \overline{h} \overline{f} = \overline{h} \overline{g} \end{split}$$

(since $\overline{\Sigma}_I$ admits a calculus of left fractions in \mathcal{T}_I)

 \iff there exists h in Σ_1 such that $h f \approx h g$

 \iff there exists k in Σ_1 such that $fk \approx gk$

(by Part (iii) of Theorem 2).

Clearly mod $\mathcal C$ homotopy is an equivalence relation and behaves correctly under composition.

Let $[X, Y]_{\mathcal{C}}$ denote the set of mod \mathcal{C} homotopy classes of maps from X to Y and let $[f]_{\mathcal{C}}$ denote the mod \mathcal{C} homotopy class of a map f. If $f: X \to Y$ in \mathcal{T}_1 then f induces mappings

 $f_{*}: [Z, X]_{\mathcal{C}} \rightarrow [Z, Y]_{\mathcal{C}}, f^{*}: [Y, Z]_{\mathcal{C}} \rightarrow [X, Z]_{\mathcal{C}}$

for any Z in \mathcal{T}_1 .

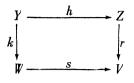
Let SX denote the (reduced) suspension of X and ΩY denote the space of loops on Y.

THEOREM 5. $[SX, Y]_{\mathcal{C}}$ is a group. It is abelian if X = SZ or $Y = \Omega Z$. If $\Omega Y \in \mathcal{T}_1$ then $[X, \Omega Y]_{\mathcal{C}}$ is a group and there is an isomorphism

$$[SX, Y]_{\mathcal{C}} \approx [X, \Omega Y]_{\mathcal{C}}.$$

PROOF. If $f, g: SX \to Y$ let f * g denote $(f \vee g) v: SX \to Y$ where $v: SX \to SX \vee SX$ is the comultiplication. Define $[f]_{\mathcal{C}}*[g]_{\mathcal{C}}$ to be $[f * g]_{\mathcal{C}}$. It suffices to show that if $f_1 \overset{\sim}{\to} f_2$ and $g_1 \overset{\sim}{\to} g_2$ then $f_1 * g_1 \overset{\sim}{\to} f_2 * g_2$.

Suppose there are \mathcal{C} equivalences $h: Y \to Z$ and $k: Y \to W$ such that $h f_1 \approx h f_2$ and $k g_1 \approx k g_2$. By Theorem 1 there exist \mathcal{C} equivalences r and s such that $rh \approx sk$.



Then

$$rh(f_1 \vee g_1) v = ((rh f_1) \vee (rh g_1))v \approx ((rh f_1) \vee (sk g_1))v$$
$$\approx (rh f_2) \vee (sk g_2))v \approx ((rh f_2) \vee (rh g_2))v = rh(f_2 \vee g_2)v.$$

Since *rh* is a \mathcal{C} equivalence $f_1 * g_1 \underset{\widetilde{\mathcal{O}}}{\approx} f_2 * g_2$.

If $\Omega Y \in \mathcal{T}_1$ then a similar argument using Theorem 2 shows that the usual operation on $[X, \Omega Y]$, the group of homotopy classes of maps from X to ΩY , yields a group structure on $[X, \Omega Y]_{\mathcal{O}}$.

Let $\theta: [SX, Y] \rightarrow [X, \Omega Y]$ and $\psi: [X, \Omega Y] \rightarrow [SX, Y]$ be the usual isomorphisms. To complete the proof of the theorem it is sufficient to show that θ and ψ preserve mod \mathcal{C} homotopy. Suppose that $f, g: SX \rightarrow Y$ and $f \approx g$, i.e. there is a \mathcal{C} equivalence

 $h: Y \rightarrow Z$ such that $F: h f \approx h g$.

The homotopy $F: SX \times I \to Z$ yields a homotopy $\overline{F}: X \times I \to \Omega Z$, and $\overline{F}: \Omega h \theta f \approx \Omega h \theta g$. Since Ωh is a \mathcal{C} equivalence, $\theta f \stackrel{\sim}{\mathcal{C}} \theta g$. Similarly, by taking a \mathcal{C} equivalence on the left, ψ also preserves mod \mathcal{C} homotopy.

DEFINITION. For $n \ge 1$ the $n^{th} \mod \mathcal{C} \hom \limsup \pi_n^{\mathcal{C}}(X)$ is $[S_n, X]_{\mathcal{C}}$ It is abelian if n > 1.

Then $f: X \to Y$ in \mathcal{T}_1 induces $f_{\#}: \pi_n^{\mathcal{C}}(X) \to \pi_n^{\mathcal{C}}(Y)$. Also there is a canonical epimorphism $a: \pi_n(X) \to \pi_n^{\mathcal{C}}(X)$.

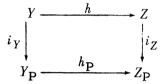
DEFINITION. $f: X \to Y$ in \mathcal{T}_1 is a mod \mathcal{C} homotopy equivalence if there exists $g: Y \to X$ in \mathcal{T}_1 such that

$$fg \stackrel{\sim}{\mathcal{C}} {}^{l}y \quad \text{and} \quad gf \stackrel{\sim}{\mathcal{C}} {}^{l}x.$$

We now consider the situation in \mathcal{H} , category of finite 1-connected CW-complexes. Let P be a (possibly empty) subset of the primes and let $\mathcal{C}_{\mathbf{p}}$ be the class of finite abelian groups without P torsion. Then $\mathcal{C}_{\mathbf{p}}$ equi-

valences are precisely P equivalences [4]. Let $\pi^{\mathbf{P}}(X)$ denote $\pi^{\mathcal{C}_{\mathbf{P}}}(X)$ and let $\tilde{\mathbf{P}}$ denote $\tilde{\mathcal{C}}_{\mathbf{P}}$. In the homotopy category $\bar{\mathcal{H}}$ the homotopy classes of P equivalences admit a calculus of left fractions and (as in Proposition 4) we have $f_{\tilde{\mathbf{P}}} g$ iff there is a P equivalence h in \mathcal{H} such that $h f \approx h g$. For X in \mathcal{H} let $X_{\mathbf{P}}$ denote the localization [4] and $i_X: X \to X_{\mathbf{P}}$ the canonical inclusion.

PROPOSITION 6. Suppose that $f, g: X \to Y$ in \mathcal{H} . Then $f \underset{P}{\approx} g$ iff $i_Y f \approx i_Y g$. PROOF. Suppose that $f \underset{P}{\approx} g$, i.e. there exists a P equivalence $h: Y \to Z$ in \mathcal{H} such that $h f \approx h g$. Then we have the commutative diagram



where $h_{\mathbf{p}}$ is a homotopy equivalence [4, Theorem 2.4]. Therefore

$$i_Y f \approx h_P^{-1} i_Z h f \approx h_P^{-1} i_Z h g \approx i_Y g$$

Conversely, suppose that $H: X \times I \to Y_P$ is a homotopy between $\iota_Y f$ and $i_Y g$. Since $X \times I$ is a finite CW-complex, $H: X \times I \to Y_\lambda$ where Y_λ is a finite CW-complex occuring in the construction of Y_P . Thus $H: if \approx i$: where $i \in Y \to Y_\lambda$ is the inclusion and a P equivalence.

THEOREM 7.
$$\pi_n^{\mathbf{P}}(X) \approx (\pi_n(X))_{\mathbf{P}}$$
, the **P** component of $\pi_n(X)$.

PROOF. It follows from Proposition 6 that there is a well defined monomorphism $\beta: \pi_n^{\mathbf{P}}(X) \to \pi_n(X_{\mathbf{P}})$ such that the diagram

$$\pi_{n}(X) \xrightarrow{a} \pi_{n}^{\mathbf{P}}(X)$$

$$\downarrow^{\beta} \\ \pi_{n}(X_{\mathbf{P}})$$

commutes. Thus

$$\pi_n^{\mathbf{P}}(X) \approx \frac{\pi_n(X)}{ker_{a}} \approx \frac{\pi_n(X)}{ker(i_X)_{*}}$$

Now $\pi_n(X_P) \approx \pi_n(X) \otimes Q_P$, where Q_P is the ring of rationals which, in

their lowest form, have denominator prime to p for all p in P and $(i_X)_{\#}$ is

$$1 \otimes i : \pi_n(X) \otimes \mathbb{Z} \to \pi_n(X) \otimes \mathbb{Q}_{\mathbb{P}}$$

where $i: Z \rightarrow Q_P$ is the inclusion [4, Theorem 2.5]. Hence

$$\pi_n(X) \approx (\pi_n(X))_{\mathbf{P}}.$$

THEOREM 8. If $f: X \rightarrow Y$ in \mathcal{H} is a mod \mathcal{C}_p homotopy equivalence for all primes p, then f is a homotopy equivalence.

PROOF. For each prime p there exists $g_p: Y \to X$ such that $fg_p \ \tilde{p} \ l_Y$ and $g_p f \ \tilde{p} \ l_X$. By Proposition 6, $i_Y fg_p \approx i_Y$ and $i_X g_p f \approx i_X$. Therefore $g_p^* f^* i_Y^* = i_Y^* : H^*(Y_p; Z_p) \to H^*(Y; Z_p)$ and $f^* g_p^* i_X^* = i_X^* : H^*(X_p; Z_p) \to H^*(X; Z_p)$.

Since i_Y^* and i_X^* are isomorphisms so is $f^*: H^*(Y; \mathbb{Z}_p) \to H^*(X; \mathbb{Z}_p)$. Thus f is a pequivalence. Since this holds for all primes p, f is a homotopy equivalence.

REFERENCES.

- F.W. BAUER & J. DUGUNDJI, Categorical homotopy and fibrations, Trans. A. M.S. 140 (1969), 239-256.
- 2. A.K. BOUSFIELD, The localization of spaces with respect to homology, Topology 14 (1975), 133-150.
- 3. P. GABRIEL & M. ZISMAN, Calculus of fractions and homotopy theory, Springer 1967.
- 4. M. MIMURA, G. NISHIDA & H. TODA, Localisation of CW-complexes and its applications, J. Math. Soc. Japan 23 (1971), 593-624.
- 5. E.H. SPANIER, Algebraic Topology, McGraw Hill 1966.

Department of Pure Mathematics The University of Hull 22-24 Newland Park HULL HU5 2DW. G.-B.