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LIFTING TENSORPRODUCTSA LONG NON-ADJOINT FUNCTORS

by Georg GREVE, Jenö SZIGETI and Walter THOLEN

CAHIERS DE TOPOLOGIE

ET GÉOMÉTRIE DIF FÉRENTIELLE

Vol. XXIII -4 (1982 )

This note contains an attempt to axiomatize structure properties
of non-adjoint functors which still allow canonical liftings of tensorprod-
ucts. The type of functors which is adequate for this purpose is described

by the notion of a presemitopological functor,. These functors are, roughly

spoken, non-adjoint semitopological functors [ 12] , more precisely: a func-
tor is semitopological iff it is presemitopological and right adjoint (see the

Proposition below). It turns out that the major results for semitopological
functors hold in a generalized form for presemitopological functors: they
are faithful, they can be completely described by a factorization structure

(Theorem 1), and they are characterized as full reflexive restrictions of so

called pretopologieal functors which can be correspondingly considered as

«non-adjoint topological fun ctors » (Theorem 2).

Although presemitopologicity is an extremely weak property one is

able to lift tensorproducts along presemitopological functors (Theorem 3) .
Even more: within the context of closed categories these tensorproducts
are left adjoint to inner homfunctors, provided the lifting functor is also co-

semitopological. This holds in particular for every topological functor and

the inclusion functor of every full coreflexive subcategory. Therefore one

h as plenty of examples only a few of them could be mentioned in this paper.
The definition of a presemitopological functor was given before by

the first author [5] who already mentioned the useful lifting properties of

presemitopological functors. Theorem 1 was first announced (in a slightly
different form) by the second author [11].

1. PRESEMITOPOLOGICAL FUNCTORS.

Throughout this paper let P: A - X be a functor. For a diagram



364

( = functor) D: D-A ( D may be empty or a proper class), an object A of

A, and a cocone (t P D - A P A , we call an A-morphism e ; A - B a P-

lifterof ( D, E, A) iff th e followin g holds :

There exists a cocone B: D - A B in A with P j3 = A P e. 6 such that
for all A -morphisms f: A - C and all cocones y: D - A C in A with

Py = 0 P f . E there is a unique 4-morpnism t: B - C with

P is called presemitopological (pretopological resp.) iff each triple

(D, g, A ) admits a P-lifter (a P-lifter whose P-image is an X-isomorphism

resp.) . Dual notions : P-coli fter, copresemitopological, copre topo logical,

R EMA RKS. 1. If P is faithful, every P-lifter is an A-epimorphism ; this can

be directly seen from the definition.

2. If P is presemitopological, then P is faithful. This can be shown
as in Lemma 3.2 of [12] using the principle developed in [1] (see also

[ 11] ) . Since only P-lifters to discrete data, i. e. sinks (xi : P Ai- PA)iE I
of X-morphisms, are needed, we therefore get from Remark 1:

3. P is presemitopological iff every sink (xi: P,4i- PA) i E 1 admits

a P-lifter.

P ROPO SITION. I. Every full and faith ful functor is pretopological and,

therefore, presemi topological.
2. P is semitopological [12] iff P is presemiwpological and has a

l e ft adjoint.
3. P is topological [12] i ff P is pretopological and has a full and

faithful left adjoint.
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P ROO F. 1. All P-lifters can be taken to be identities.

2. Every semitopological functor P is known to be right adjoint. Now,
let (D,E, A ) be given as above. 5e form Do = D u 1 with 1 being the dis-

crete category with one object 0, Do: D0 - A with

and E0: PD0- APA with

A P-semifinal prolongation q: P A - P B of E0 (cf. [12]) lifts to an A-

morphism e : A - B which easily turns out to be a P-lifter of ( D,E, A ) .
Vice versa, let P be presemitopological and right adjoint, and let

C: P D- A X be a P-cocone. Its P-semifinal prolongation can be cons-

tructed as (Pf) (nX) : X - P B where 77 X: X - P F X is the unit of the

left adjoint F of P at X and where f: F X - B is a P-lifter of the triple

(D, AnX.C, FX).
3. A left adjoint of P is full and faithful iff the units are isomorphisms

and a topological functor has a full and faithful left adjoint (cf. [12]). Thus
the assertion follows from the constructions given in 2.

Assertion 3 of the Proposition is formally similar to a result due

to Fay, Brummer and Hardie [4] : P is topological iff P is semitopological
and has a full and faithful left adjoint.

By the Proposition one has immediately a whole host of examples
which are, however, not typical because they are described by stronger no-

tions like topologicity or semitopologicity. The following examples are not

covered by these stronger notions.

E x AMP L E S. 1. Let ( X,  ) be a partially ordered set considered as a cat-

egory X with Ob X = X , lX(x, y)l 1 for all x, y E X, and

The unique faithful functor P: X -* 1 (see above) is pretopological iff every
non-void subset of X has a supremum in X . From this example one sees

that pretopological» is not selfdual whereas  topological &#x3E;&#x3E; is (cf. [12] ) .
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2. Let Gtp fin be the category of finite groups. The underlying functor

P: Grpf in - Ens fin is presemitopological. The same holds if Grp fin is

replaced by A fin with A being any monadic category over Ens

3. Many categories in algebra which are not semitopological over Ens
are still presemitopological over Ens , for instance: finitely generated

groups, rings or algebras; solvable groups or algebras; p -groups ; torsion

groups; simple modules or algebras ; semisimple modules or algebras ; Noe-
therian modules or rings, etc.

4. Let Met1 be the category of metric spaces whose metric is bounded

by 1 ; morphisms f: (X, d ) - (X’, d’) are non-expanding maps, i. e.,

The underlying set functor P; Met1 - Ens is known to be semitopological
but not cosemitopological because of the missing right adjoint (there is no

couniversal solution for a two elements set). Nevertheless, P is copretop-

ological : given spaces (X, d) and (Xi’ di)’ i E I, and set mappings

fi ; X - Xi , we can provide X with the new metric

Then i dX : (X, d*)-(X, d) is a P-colifter of ((Xi, di )I, (fi)I, (X, d)).
Since P has a full and faithful left adjoint this example shows that

Assertion 3 of the Proposition becomes wrong if pretopological» is re-

placed by  copretopological ».
5. Take P ; Conn* - Top to be the base point forgetting functor from

pointed connected spaces to topological spaces. P is not semitopological,
but presemitopological: given obj ects ( A, x ) , ( Xi , xi ) , i E I , in Conn*

and a sink ( fi : Xi- X) i E I r of continuous mappings one gets a P -lifter

03C0 X - Xl- from the smallest equivalence relation - identifying all fi (xi )
w ith x . The same result can be obtained for other notions of connected-

ness. Similarly one proves presemitopologicity of the forgetful functor from

connected groups to Top .
6. Take ( Po, TI, 11) to be the covariant power set monad with
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The Kleisli category of this monad is the category Ens R el of sets, with

morphisms R : X - Y being relations R C X x Y with R-1 Y = X (cf. [10]1

1.3) . The inclusion functor ,j : Ens , Ens R el turns out to be presemitop-

ological ; given a sink (Ri: Xi - X )I of relations one gets a J -lifter

n : X - X / - from the smallest equivalence relation - such that

The power set monad can be lifted to the so called Vietoris monad on the

category of compact Hausdorff spaces (cf. [14], [10] Ex. 1.5.23). Corres-

pondingly to the result above one can show that the canonical left adjoint
functor into the Kleisli category of this monad is presemitopological.

2. THE CHARACTE RIZATION THEOREM.

In this section we will characterize pretopological and presemi-

topological functors by factorization structures. From [12] we recall some

phrases: Let E C MorA be a subclass which is closed under composition
with isomorphisms. An (E-) factorization of a cone a : A A D in A con-

sists of an A-morphism e : A - B (in E ) and a cone It A B - D in A with

a = 11 . A e . This factorization is called :

- rigid iff every endomorphism t of B with t e = e and 11. A t = f-1 is

the identity morphism,
- P-semiinitial iff for every cone y: A C - D in A and every X-mor-

phism x:PC-PA with P a . D x = Py there is a unique morphism

- locally orthogonal (with respect to E ) iff for every p: K - L in E,

every k: K-A in A, and every cone B: A L - D in A with À.!1p= a. Ak

there is a unique morphism t: L - B with t p = e k and /1.!1 t = À.

As in [ 12] , Lemma 2.9, one can show :

L EMM A. L e t a = u.Ae be a P-semiinitial factorization. Then for every P-

lifter p : K - L , e v e ry x : P K - P A in X , and e ve ry cone B : A L - D in

A with PB.APp = Pa.Ox there is a unique morphism t: L - B with
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Therefore, if e is a P-lifter and P is faith ful, the factotization is locally
orthogonal with respect to the class o f all P-li fters. 11

Now we can state the main result in this section :

THEO REM 1. The following assertions are equivalent:
(i) P is presemitopological.
(ii) There is a class E o f 4-(epi)morphisms such that every cone

in A admits a locally orthogonal and P-semiinitial E-factorization.
(iii) Every cone in A admits a rigid and P-semiinitial factorization.

P ROO F. ( i ) - (ii) : Given a : A A - D with D: D - A we form the full

subcategory D of the comma-category (PlPA ) consisting of all objects

( C, x) with C (Ob4 and x: P C - P A such that there is a cone

(y is uniquely determined as P is faithful). There is a canonical projec-
tion functor D: D - A, (C, x) l- C, and a cocone

This cocone admits a P-lifter e: A -+ B , and by the universal property of

e one gets, for every d E ObD a unique morphism

Therefore we have an E-factorization a= u. A e with E being the class

of all P-lifters. By construction of D , this factorization is obviously P-

semiinitial. Therefore, by the above Lemma, the factorization is locally

orthogonal .

(ii) = ( iii ) : If every cone in A admits a locally orthogonal E-fac-

torization, then E necessarily consists of epimorphisms only (cf. [12],

Corollary 6.4, [2], Lemma 1). Therefore, every E-factorization is in par-

ticular rigid.

(iii) = ( i ) : As in [12] one first shows P to be faithful. Thus,given

(D, I, A ) with D: D , A , we form the full subcategory D of the comma-

category (AlA) consisting of all objects ( f, C) with f; A - C in A such

that there is a cocone y: D - A C with P y = A P f .E. One gets a cone
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a: A A - D with a ( f , C)= f and D: D - A being the projection functor.
We now consider a rigid and P-semiinitial factorization a = u .A e and

h ave to show that e: A - B is a P-lifter of ( D,E, A) . But this can be

done analogously to the proof of [ 12], Theorem 3.1. 11 

Analyzing the equivalence ( i ) = ( iii ) one obtains immediately:

COROLLARY. P is pretopologacal iff for every cone a : AA - D in A, 
there is a P-initial cone ft: A B - D and an A-morphism e: A - B such

that a = u.A e an d P e is an X-isomo 7p hism.

REMARKS, 1. From Theorem 1 it follows that A is E-cocomplete for E

the class of all P-lifters, provided P is presemitopological. This means

that pushouts of E-morphisms along arbitrary A-morphisms exist and belong
to E and that multiple pushouts of (class-indexed) families of E-morphisms
exist and belong to E (cf. [12]).

2. It is interesting to look at the meaning of Theorem 1 and the Corol-

lary for the mentioned examples. For instance, by application of the dual

of the Corollary one obtains: Given spaces (Xi. di) , i E I, in Met 1 and

mappings fj: Xi - X, i c I, then there is a largest metric on X making all

fi Met1 -morphisms, provided there is at least one metric on X with this

property.

3. As in case of semitopological functors one has also external charac-

terizations (cf. [13]) for presemitopological functors. There is one external

characterization arising from the characterization (iii) in Theorem 1, and

there is another one which can be obtained directly from the definition and

which we mention here without proof:

P is presemitopological (pretopological) iff for all functo rs

and for every natural trans formation 0: PL - P SK there exist a functor
F : B - A and natural transformations p : L - F K, a: S - F (wi th or be in g
an isomorphism) such that P p = PorK.0 and the following universal pro-
perty holds:
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Fo r all fun cto rs G : B - A an d natural transformations

there exists a unique d: F - G with a = dK.p andf3=ô.a.

3. THE REPRESENTATION THEOREM.

Every semitopological functor is the composition of a topological
functor and a preceding full reflexive embedding. This has been shown in

[ 12], and the construction given there turned out to be the Mac Neille com-

pletion (cf. [6]) of the given semitopological functor. We now show the

non-adjoint analogue of this theorem :

THEO.REM 2. The following assertions are equivalent:
( i ) P is presemitopological.
(ii) There is a pretopological functor T : B - X and a full re flexive

embedding E : A - B with P = T E .

(iii) Same as (ii), but, in addition, with E being initially dense

(cf [6] ).

P.RO 0 F.. (ii)=(i) can be easily checked, and (iii)=(ii) is trivial.

Hence, (i) = ( iii ) remains to be shown. The category B is constructed

as follows: objects are all P-lifters, and a B-morphism from e : A - B to

e’: A’ - B’ is given by an X-morphism x and an A-morphism g: B - B’

such that
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commutes, composition is horizontal. The functor T : B - X sends such a

square to x . The functor R: B-A which sends this square to g is the

reflector of the embedding E: A- B which assigns to every f; A , A’ the

square

We apply the criterion given in the Corollary of Theorem 1 in order to show

that T is pretopological. For this purpose we consider a class-indexed

source of B-morphisms given by squares

By Theorem 1, (gie:A- Bi)I admits a locally orthogonal and P-semi-

initial factorization gi e = mi ë, i c I. There is a unique morphism t with

te = e and mi t = gi giving the following factorization of ( * ) in B :

T maps the left factor on 1 p A (which is an isomorphism). The family con-

sisting of the right factors is T-initial; this can be easily proved by ap-

plication of the Lemma preceding Theorem 1. Finally, E is initially dense,
since the reflection morphism

is T-initial.
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REMARK. Like semitopologicity is generalized to presemitopologicity one
can analogously generalize the notion of a topologically algebraic functor

(cf. [8, 2 , 7]) : P is called pretopologicall y alge braic iff every cone

a : A A- D in A admits a factorization a = It. Ae with e : A - B being
an A-epimorphism and 11: A B- D being P-initial. Without giving any de-

tails we just mention that there is a characterization of pretopologically

algebraic functors which corresponds to a result due to Herrlich and Streck-

er [7] : Topologically algebraic functors are just those functors admitting
a «reflexive universal initial completion ».

4. LIFTINGS OF HOMFUNCTORS AND TENSORPRODUCTS.

In this section we shall describe how to use the methods develop-
ed above to lift homfunctors and tensorproducts.

Let v be a symmetric monoidal closed category with inner hom-

functor H and tensorproduct 0 . Take A to be a tensored V-category, and

let P : A-V be a V-fun ctor. Thus we have a V-namral transformation

and V-adjunctions

for all A E 0 bA and Xe0bV; here A (-, - ) : AopOA - V denotes the ex-

temal homfunctor (cf. (3 , 9]). In the following we are mainly interested in

the underlying situation, i. e. we consider the underlying functors

(there will be no confusion by using the same notations for the V-data

and the underlying functors). Furthermore there is a natural transformation

P X A: XOPA - P (XOA) defined by the following diagram
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Obviously, PXA is a P-epimorphism (cf. [12]) if P is V-faithful, i. e, if

PB C is a monomorphism for all B, C E 0 b A .

For the rest of the paper, we assume P to be V-faithful and fix a

full subcategory So of A 0 and functors

such that, for every S E 0 b So , there is an adjunction

satisfying the following compatibility conditions (naturally for all SE Ob So ,

A E ObA0):

The following Theorem describes how to extend the partial functors &#x3E;&#x3E;

-D-, h to functors with domain Ao X Ao , A0opX A0 resp. :

THEOREM 3. (1) Assume that, for all A, BfOb40, the source

has a P-cosemi ftnal lifting ( = dual o f P-semifinal lifting; cf. [12]), i. e.

there is an object h(A, B) in A- 0, a morphism eAB: Ph(A, B) -A (A, B)
in V0’ and a source

in Ao such that the diagram

commutes and ful fills the o bvious couniversal property. Then these data

can be chosen in such a way that h can be uniquel y extended to a functor
h ; A 0 op X A0 -A0 making the morphisms eA B a natural transformation
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(2) Assume that, for all A, B E Ob4o, the sink

admits a P-lifter, i. e. there is an object A N B in A 0, a morphism dAB:
P A OB - ANB in A0’ and a sink

in A o , such that the diagram

commutes and ful fills the obvious universal property. Then these data can

be chosen in such a way that FX7, can be uniquely extended to a fun cto r
D : A0 X A0 - A0 making the mo rphisms dA B a natural transformation
d: ((P-)O-)-(-X-).

(3 ) Under the assumptions o f (1), (2), - D- is le ft adjoint to h .

R EMARK. If P is cosemitopological and presemitopological, then the as-

sumptions of assertions (1) and ( 2 ) of Theorem 3 are fulfilled. This holds

in particular if P is topological (cf. [ 12]) or if P is the inclusion func-

tor of a full coreflective subcategory; in both cases, d is a natural equi-
valence. For P being topological, e is a natural equivalence, too, whereas

e consists of coreflection maps, if P is a full coreflective embedding.

P ROO F (of Theorem 3). (1) is straightforward.
( 2 ) The only remarkable point is to show that the P-lifters dAB can be

chosen in a way that the construction described in the theorem really leads

to an extension of the given functor D: Ao XSo - .10. To see this, for

S c Ob So , A E Ob Ao consider the unique Ao -morphism

By the commutativity of the following diagram one gets PcA S. P(PA) S = 1 v
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Now one can see that cAS is a P-lifter of the sink

Hence one can choose dA S to be cA S , and this shows what we wanted

to show.

( 3 ) The construction of the unit KA for the adjunction E U h is done

by the following diagram using the couniversal property of a P-cosemifinal

lifting :

The counit X A is similarly obtained from the following diagram :
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By complicated, but straigthforward diagram chasing it can be shown that

KAB and Ao are natural in R and extraordinary natural in A . Moreover,

one h as the equations

h ence It is right adjoint to - D - . 11

EXAMPLES. 1. We first mention one trivial application of Theorem 3: Take

V to be symmetric monoidal closed, and let A be a full reflective subcat-

egory of v such that H(A, B) c A for all A, B E Ob A . Taking S = 0 we

obtain R (- O- ) to be left adjoint to H : Aop XA- A, R being the reflector.
2. Let P: Top- Ens be the forgetful functor from topological spaces

to sets ; P is topological, and Top is a tensored Ens-category. Let S be

a class of compact Hausdorff spaces (considered as a full subcategory of

Top ) . For all X, Y c Top and S c S one has the exponential law

where «co» stands for « compact open ». Therefore,

is left adjoint to -77-: Top X S - Top, All compatibility conditions needed

for Theorem 3 are fulfilled. Hence we get a function space functor

which is right adjoint to a tensorproduct N: Top X Top - Top , and

hold for all X c Top and S c S.

3. Theorem 3 can be modified by requiring

A P-cosemifinal lifting of the source
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again yields a pair of adjoint functors

The following example is an application of this situation (up to canonical

bijections) .
Consider the forgetful functor P: Conn *- Ens with Conn* being the

category of pointed connected spaces. Conn* is a tensored Ens-category.
Oe take S to be the subcategory containing only the one-element space.
The functors

are (isomorphic) projections. For (X, x0) , (Y, Yo) E ObConn* we provide

Conn * ( (X ,xo ) , ( Y, yo)) with the initial topology with respect to all

mappings

Let h ((X, x0) , (Y, y0)) be the component of the constant morphism in

Conn*((X, x0 ), (Y, y0)) ; then the inclusion mapping yields the cosemi-

final factorization needed in the theorem.

Next we have to construct a P-lifter of the sink of all mappings

where ix denotes the canonical injection of the copower taken in Conn *.

For this, on XxY, we consider the topology of separate continuity and

identify the points xo and yo . So we get a connected pointed space

(X, xo)x (Y, y0) and the desired P-lifter

In Conn * we therefore have a structure of pointwise convergence and sep-

arate continuity.
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