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FACTORIZATION THEOREMS FOR GEOMETRIC MORPHISMS, I

by P.T. JOHNSTONE
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3e COLLOQUE SUR LES, CATEGORIES

DEDIE A CHARLES EHRESMANN

Vol. XXII - 1 ( 1981 )

0. INTRODUCTION.

This paper is the first of two in which we aim to investigate a num-

ber of factorization structures ( = bicategory structures in the sense of

Mac Lane [14] or Isbell [10] ) which can be imposed on the category 5ap
of toposes and geometric morphisms. Since factorization theorems play an

important role in the study of the category of topological spaces and con-

tinuous maps ( see, for example, [3, 5 and 7]) and of the category of small

categories and functors [15], both of which are embeddable in -Tap , it
seems worthwhile to investigate whether these factorization theorems have

topos-theoretic generalizations. On the other hand, since flimp is in fact

a bicategory (in the sense of Bénabou [2]! ), it is necessary to interpret

the term «factorization structure» in an «up-to-isomorphism» sense which

is weaker than the usual one. We therefore begin by giving a precise de-

finition.

A factorization structure on a bicategory K consists of a pair of
classes of morphisms (E, M), both closed under composition and contain-
ing all equivalences of K , and satisfying the following conditions :

( a) For every morphism f: X -+ Y of K , there exists a factorization

(b) The elements of E are orthogonal to those of V , i. e. given a

square 
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commuting up to a 2-isomorphism a , with e f E9 and m c m, there exists
,

h: Z -+ Y and 2-isomorphisms .

Moreover, h is unique up to a 2-isomorphism which is itself uniquely det-

ermined by j6 and y.

Given such a structure, we can derive the following familiar pro-

perties of 6 and t by straightforward generalizations of the usual 1-cat-

egorical methods :

0.1. LEMMA. (i ) EnM consists precisely of the equivalences of K.

(ii ) Given a composable pair

we have g E E. ( The dual result holds for m. )
(iii ) Any morphism orthogonal to the whole of m is in 6. Hence ff,

is determined by m, and vice versa.
( iv ) The factorization in part (a) of the definition is unique up to

equivalence, the equivalence being itself unique up to uniq ue 2-isomor-

phism.

We may also deduce the ( pseudo- )functoriality of the factorization

in ( a ), and the fact that ,it provides, for each object Y, a left adjoint for
the inclusion M/Y -+ K/Y, at least at the 1-categorical level; to check

that these functors are defined on 2-arrows, we need a stronger version of

condition (b), referring to squares which commute up to a non-invertible

2-arrow.

The most familiar example of a factorization system in sap is that

given by surjections and inclusions [11, 4.141. It is well-known that this

corresponds to the surjection-inclusion factorization in the category of

topological spaces, and to the factorization of functors into those which

are surjective on objects and those which are full and faithful. However,
it has a number of undesirable properties : it is not stable under pullback
( a pullback of a surjection need not be surjective ), and the class of in-

clusions is in some sense too restrictive (it is far from containing even all
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the split monomorphisms in 5ap, whereas surjections need not be epi in
any reasonable 2-categorical sense ). Thus we are provided with additional

reasons for seeking other factorization theorems in 5ap

1. THE LOCALIC FACTORIZATION.

In the present paper, we shall be concerned with a factorization

which in one sense goes to the opposite extreme from the surjection-in-
clusion one, in that it makes the class l$ as small as one might reason-

ably expect.

We recall that a geometric morphism f: F -+ ff, is said to be localic

if «F is generated relative to &#x26;, by subobjects of 1», i. e. if 1 is an ob-

ject of generators for ? over @ in the sense of Ill, 4.43]. Explicitly,
this means that for every object Y of if we can find an object X of Fg
and a diagram of the form

in J. (One should think of S -+-+ Y as an «X-indexed cover of Y by sub-

obj ects of 1 ».)

The following lemma is an easy special case of ( 11, 4.44] and

we omit the proof:

1.1. L EMMA. Let

be a composable pair of geometric morphisms.
( i ) I f f and g are localic, so is the composite f g.

(ii ) I f f g is localic, so is g.

For localic mcrphisms, the relative Giraud Theorem [11, 4.46] can
be made more explicit:

1.2. L EMMA. The following conditions on an E-topos f: F Fg are equi-
valent :

( i ) f is localic.

(ii ) There exists an internal poset A in 6 such that if is equivalent
to a sheafsubtopos of .



6

(ain ) There exists an internal locale ( = complete Heyting algebra)
A in 6 such that 5: is equivalent to the topos Fg [A I of E-valued sheaves

( for the canonical topology) on A.

P ROO F. (iii) =&#x3E; (ii) is trivial; and (ii) =&#x3E; (i) by a relativize d version

of the proof of [11, 5.341. For (i)=&#x3E; ( iii ) , we take A = f*(S2F) and

work through the proof of the relative Giraud theorem ( cf. also ( 11, 5.37j ).

If f: F -+ 6 i s not localic, the class of objects of if which can be

expressed as quotients of subobjects of « constant objects» f *X is clear-

ly of interest. We shall (until further notice) write 9 for the full subcat-

egory of if consisting of all such objects : we shall say that f is h yper-
connected if f * induces an equivalence between E and 9 , i. e. if f * is

full and faithful and its image in ? is closed under subobjects and quo-

tients.

1.3. LEMMA. L et f: F -+ @ be a geometric morphism. and let g be the full
subcategory of F defined as above. Then q is a topos, and the inclusion

9 -+ F is the inverse image of a geometric morphism h : 1 -+ G.
P ROO F. Since f * preserves finite products ( and since a product of epi-
morphis.ms in ? is epi ), it is clear that the class of objects of g is closed
under finite products. It is also closed under arbitrary subobjects in ? (in

particular, under equalizers), since pullbacks of epis are epi. So G has
finite limits, and the inclusion h*: G -+ J preserves them.

If Y is in G, we have a canonical way of choosing the objects
X and S which prove it, as follows : form the pullback

where Y is the partial-map representer for Y [ 11, 1.25] and f is the co-

unit of (f*1 f*). Now if we are given X and S as before, there is a

unique a: f*X -+ Y such that 
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is a pullback : and then a factors as

So we get a factorization of S -- Y through P + Y , and in particular the

latter must be epi; thus we have the canonical choice

For an arbitrary object Y of if , let us form the pullback P as

above and then consider the image factorization

of P - Y. h * is clearly a functor F -+ F, since all the constructions in-
volved in its definition are functorial; and in fact h*Y is in G, since
P is a subobj ect of f*f*Y. Moreover, the monomorphism h * Y P- Y de-
fines a natural transformation from h * to the identity, which is an isomor-

phism precisely when Y is in G. It now follows at once that h*: 5: -+ G
is right adjoint to the inclusion h * . 

The adjunction (h* -l h*) is coreflective and therefore comonad-

ic, and we saw earlier that h * is left exact. So by [ 11, 2.32] G is a topos

and h is a geometric morphism.

1.4. THEOREM. The pair (hyperconnected morphisms, localic morphisms)
is a factorization structure on 5’4ap.
P ROO F. (a) Given a morphism f : j= -+ E, define 9 and h : F -+ G as in

Lemma 1.3. It is clear that h is hyperconnected, and since the image of

f * is contained in G, we can regard f * as a composite 

Also, if Y is any object of 9 and X any object of 6, we have natural
bijections

so that the composite f*h* is a right adjoint g* for g* . It is clear that

g * is left exact, so we have a factorization f = g h in 5ap. The fact that
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g is localic is immediate from the definition of 9 -

( b ) Suppose given a commutative square (up to isomorphism)

where f is localic and h is hyperconnected. For any object Y of 5:, we
have a diagram

in 5:, and hence a diagram

in 1( . Since the image of h * is closed under subobjects and quotients, it

follows that it contains k*Y, and hence we have a factorization l*:F -+ G
(unique up to unique isomorphism) of k * through h * . As before, we find

that the composite 1* k * h * is right adjoint to k * ; l* is left exact since

h * creates finite limits; and since h * is full and faithful the isomorphism

uniquely induces an isomorphism g* = l * f * .

Although localic morphisms have been fairly widely studied, the

class of hyperconnected morphisms has received less attention. The next

result provides various equivalent characterizations of this class.

1.5. P ROP OSITION. The following conditions on a geometric morphism
f: F -+ E are e qui val en t :

(i ) f is hyperconnected.
(ii)f * is full and faithful, and its image is closed under subobjects

in 5:.

(iii) f * is full and faithful, and its image is closed under quotients
in 5:.

(iv) The unit and counit o f the adjunction ( f * -l f*) are both mono.

(v) f* preserves U, i. e. the comparison map f*(S2F) -+ S3E is an
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isomorphism. (Equivalently, f.(true5:): 1 +-+ f*(S2F) is a subobject

classifier in 6. )

P ROO F. (i) =&#x3E; ( ii ) and (i) =&#x3E; ( iii ) are trivial.

( iii ) =&#x3E; ( iv) : if f * is full and faithful, then the unit of ( f * -l f*) is

iso, since we can identify E with a coreflective subcategory of 5:. Now

consider the counit map ify: f * f * Y -+ Y , and form its image factoriza-

tion

By assumption, I is in the image of f*, so from the universal property of

f * , we deduce that q must be split mono and therefore iso. So EY is a

monomorphi sm .

( iv) =&#x3E; ( v ) : First we deduce from ( iv ) that the unit q of ( f * -l f*)
is actually iso. From the triangular identity

and the fact that c is mono, we deduce that f *1J is iso ; but since 11 is

mono, we know that f * is faithful and so reflects isomorphisms. So 11 is

iso; hence f * is full as well as faithful, and so we may identify @ with

a coreflective subcategory of 5:. Since f * preserves 1 , it is easily seen

that the square

commutes, and since E S2 is mono it must be a pullback. Now if X is any

object of l$ , each subobject X’ &#x3E;--+ X in E is mono in if and hence has
a classifying map 0: X 4 0 , which must factor uniquely through E Q . Now

in the following diagram, the outer and right-hand square are pullbacks,
and the left-hand square commutes ( since X’ is in @ ); so an easy dia-
gram-chase shows that the left-hand square is a pullback. On the other hand
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the requirement that this square be a pullback determines 7o uniquely; so

f * ( tru e F ) is a subobject classifier for 6.

( ii ) =&#x3E; ( v ) : As above, we identify 6 with a coreflective subcategory
of 5:, and form the pullback

P is a subobject of fQ 5: so by hypothesis it lies in 6. As before, we

show that any subobject X’ +--+ X in l$ is uniquely obtainable as a pull-
back of P /- f,Q , i. e. the latter is a subobject classifier in E. It now

follows that P is a terminal object in Fg ( and hence also in F ) ; i. e.

P + 1 is iso and P +--+ f,Q must therefore be isomorphic to f * ( true F).
(v)=&#x3E; ( i ) : Given a morphism f : F -+ 6 satisfying ( v ), form its factor-

ization

as in 1.4. Then h is hyperconnected and so satisfies (v) by the above

argument; so an easy diagram-chase shows that g also satisfies ( v ). But

g is localic, and so by 1.2 G is equivalent as an 6-topos to

That is, g is an equivalence, and so f is hyperconnected.

1.6. COROLLARY. A hyperconnected geometric morphism is open in the

sense of [13].

PROOF. Let f : F -+ @ be hyperconnected. By 1.5 (v) the comparison map

f *S2 E -+ 12 y is, up to isomorphism, just the counit map
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and by 1.5 (iv) the latter is mono. Now consider the comparison map

where X and Y are objects of @ . Regarding @ as a coreflective subcat-
egory of J:, it is easy to see that exponentials in 5; may be computed

by forming exponentials in 1 and then coreflecting. So Y x is isomor-

phic to f *( f * Y f * X ) , and the above comparison map may again be iden-
tified with the counit of ( f * -l f * ). Hence it is a monomorphism, and f
is open by [13, 1.2].

2. STABILITY UNDER PULLBACKS.

2.1. P ROP O SITION . A pullback of a localic morphism in 5-p is localic.

P ROO F. Consider the pullback of

Since 6 [A] is a sheaf subtopos of the presheaf topos EAop, , it follows

from [11, 4.47] that the pullback is a sheaf subtopos of F f*Aop. So by
1.2 the pullback is localic over if .

Following [12], we shall write f#A for the internal locale in

corresponding to the pullback of E[A] along f . Using the equivalence
between internal locales in E and localic 6-toposes, we may easily de-
duce

2.2. COROLL ARY. f’ is a functor from the category loc (6) of internal
locales in E to loc(F), and is right adjoint to

PROOF. The functoriality of f# follows from the functoriality of pullback
along f . Let B be a locale in ? ; then locale morphisms B -+ f OA corres-

pond to geometric morphisms y[ B ] -+ F[f#A] over if , and hence to mor-

phisms F[B] -+ E[A] over Fg. But the orthogonality condition of 1.4
tells us that any such map factors ( essentially uniquely) through the hyper-
connected part of the composite 
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and by 1.5 (v) the image of this composite is equivalent to

So, locale morphisms B + f#A in if correspond to locale morphisms

f*B -+ A in E.

To show that the factorization of 1.4 is stable under pullback, it

suffices after 2.1 to show that pullbacks of hyperconnected morphisms are

hyperconnected. In fact this follows easily ( at least for pullbacks along
bounded morphisms) from the results on open surjections in [13].

2.3. PROPOSITION. A pullback of a hyperconnected morphism along a

bounded morphism is hyperconnected.

PROOF. Let

be a pullback square with f hyperconnected and g bounded. By Corollary

1.6, f is an open surjection, so by [13, Theorem 4.7] k is an open sur-

jection. In particular, this tells us that the unit of (k* -l k* ) is mono,

so by 1.5 (iv) it remains to prove that the counit is also mono. To do this,
we consider the particular cases :

( a) when g is an inclusion, and

(b) when has the form @ for some internal category C in 6.
Since every bounded morphism is a composite of morphisms of these two

types, this will suffice.

( a) Suppose g is an inclusion. Then the counit of (g* -l g* ) is iso,
and so the counit of r k* -l k* ) is isomorphic to the counit of the compo-
site adjunction (k * g * -l g*k * ). But the latter can be rewritten as

the counit of (f* -l f*) is mono by assumption, and that of (h* -l h* )
is iso, since h is an inclusion. Since h * preserves monomorphisms the
result follows.



13

(b) Suppose G = E Cop ; then H = Ff*Cop, and we can identify

k *, k * respectively with the functors:

« apply f * to discrete fibrations over C »

and

«apply f* to discrete fibrations over f * C , then pullback along the

unit C -+ f*f*C».
But since f is hyperconnected, the above unit map is an isomorphism, and
so the fact that the counit of (k* -l k*) is mono follows at once from the

corresponding fact for f.

2.4. COROLLARY. The hyperconnected-localic factorization of an arbi-

trary geometric morphism is stable under pullbacks along bounded mor-

phisms.

PROOF. Combine 2.1 and 2.3 with the uniqueness of the factorization

(Lemma 0.1 (iv)).

As a by-product of 2.3, we have yet another characterization of hy-

perconnected morphisms :

2.5. P ROPOSITION. A geometric morphism f: F -+ E is hyperconnected
iff the adjunction (f* -l ftl) of Corollary 2.2 is a reflection (i. e. f# is
full and faithful ).

PROOF. If the adjunction is a reflection, then the counit map

is an isomorphism in loc(E). But from the definition of f#, it is clear

that f#(S2E) = S2F, and so this tells us that f * preserves Q , i. e. f is

hyperconnected. Conversely, if f is hyperconnected, then so is its pull-

back F(f#A] -+ l$ [A I for any locale A in &#x26; ; so the hyperconnected-
localic factorization of the composite

is equivalent to

and hence the counit f*f#A -+ A is an isomorphism in loc (6).



14

3. EXAMPLES AND APPLICATIONS.

Since any morphism between localic S-toposes is localic by 1.1,

the hyperconnected-localic factorization clearly cannot give us any use-

ful information about morphisms of spatial toposes. However, for morphisms
of presheaf toposes, we do obtain a familiar factorization. In what follows,
we shall assume for notational convenience that S is the topos of cons-

tant sets, but since our arguments are constructive they will in fact work

over any base topos.

3.1. PROPOSITION. Let f: D - C be a functor between small categories.

(i) If f is faithful, then the induced geometric morphism SDop -+ SCop
is localic.

(ii ) I f f is full and essentially suriective on objects, then the induced

geometric morphism SDop -+ SCop is hyperconnected.

P ROO F. (i) Suppose f is faithful. Now every functor Dop -+ § may be

expressed as a quotient of a coproduct of representable functors ; but faith-

fulness of f implies that the canonical natural transformation

is a monomorphism. Since a coproduct of monos is mono, the result fol-

lows.

( ii ) If f is full and essentially surjective, then C is equivalent to

the quotient category D/ Q , where Q is the congruence on D induced by

f ( i. e. the set of parallel pairs (a, B) such that f a = /j3 ). Hence we

can identify S Cop with the full subcategory of SD op consisting of pre-
sheaves which respect the congruence Q ; since this subcategory is clear-

ly closed under subobjects and quotients in SD op , the result follows.

3.2. COROLLARY. For a functor f: D -+ C, the Ityperconnected-localic

factorization o f the induced morphism SDop -+ SCop corresponds to the

factorization

of f, where Q is the congruence on D induced by f. (In particular if f



15

is a monoid homomorphism, this is just the usual image factorization in

the category of monoids. ) 

It is also of interest to characterise those morphisms for which the

hyperconnected-localic factorization coincides with the more usual surjec-
tion-inclusion one. In this direction we have the following result.

3.3. PROPOSITION. The following conditions on a geometric morphism

f: lf - E are equivalent :
(i ) The hyperconnected-localic and surjection-inclusion factoriza-

tions of f coincide.

( ii ) f can be factored as the composite of a hyperconnected mor-
phism and an inclusion.

(iii) The counit of (f -l f*) is mono.

P ROO F . (i) =&#x3E; ( ii ) is trivial. For (ii) =&#x3E; ( iii ) , we note that both hyper-
connected morphisms and inclusions satisfy ( iii ), and that this property
is stable under composition. Conversely, if f satisfies ( iii ), form its sur-

jection-inclusion factorization

Then the comonad on if induced by (h* -l h*) is the same as that ind-

uced by (f* -l f*), so its counit is mono; but h is also surjective, so

by 1.5 ( iv ) it is hyperconnected.

3.4. COROLLARY. L et f: D , C be a functor between small categories.
Then f is full iff the counit of the adjunction (f* -l lim/ ) is a mono-

+-

morphism.

PROOF. Clearly, f is full iff the second half of the factorization of 3.2

is full as well as faithful, i. e. iff the geometric morphism it induces is

an inclusion. So this result is immediate from 3.3. (In fact it is not hard to

prove directly. )

In [8 and 9], P. Freyd has investigated exponential varieties in

Grothendieck toposes, i. e. full subcategories which are closed under the

formation of arbitrary limits, colimits and power objects. If iS is such a
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subcategory of Y, then the inclusion E - F has both left and right ad-

joints, and so we have a geometric morphism f: F -+ 6 which is connec-
ted and atomic ( i. e. its inverse image is full, faithful and logical). Now

any such morphism must in fact be hyperconnected, since the bijection

implies that every subobject of f *X in ? is in the image of f * . A. Joyal
has recently given a simple proof of Freyd’s representation theorem [91

which depends on the fact that connected atomic morphisms are stable

under ( bounded ) pullback; this follows easily from 2.3 and the fact (prov-
ed in [1]) that atomic morphisms are stable under pullback.

Freyd’s own proof of the representation theorem involves study-

ing locales in the topos er G) of continuous G-sets, where G is a topo-

logical group. He proves that every such locale is obtained from a locale

in the topos SG of all G-sets by applying the coreflection functor

Since this coreflection is the direct image of a hyperconnected morphism
SG -+ C(G), this fact is easily seen to be a special case of our Proposi-
tion 2.5.
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