
CAHIERS DE
TOPOLOGIE ET GÉOMÉTRIE DIFFÉRENTIELLE

CATÉGORIQUES

FRIEDRICH W. BAUER
Homology functors on shape categories
Cahiers de topologie et géométrie différentielle catégoriques, tome
21, no 4 (1980), p. 427-438
<http://www.numdam.org/item?id=CTGDC_1980__21_4_427_0>

© Andrée C. Ehresmann et les auteurs, 1980, tous droits réservés.

L’accès aux archives de la revue « Cahiers de topologie et géométrie
différentielle catégoriques » implique l’accord avec les conditions
générales d’utilisation (http://www.numdam.org/conditions). Toute
utilisation commerciale ou impression systématique est constitutive
d’une infraction pénale. Toute copie ou impression de ce fichier
doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=CTGDC_1980__21_4_427_0
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


CAHIERS DE TOPOLOGIE 3e COLLOQUE SUR LES CATEGORIES

ET GEOMETRIE DIFFERENTIELLE DEDIE A CHARLES EHRESMANN

Vol. XXI-4 (1980)

HOMOLOGY FUNCTORS ON SHAPE CATEGORIES

by Friedrich W. BAUER

One of the first appearances of categories and functors on the math-

ematical scene was in connection with attempts of an axiomatic treatment

of homology and cohomology theories. It turned out that a few very simple

properties can be used to characterize ( co-)homology at least for nice spa-
ces (like for example finite polyhedra). Then very soon, one found it ne-

cessary to abolish one of these axioms, the «dimension axiom », in order

to get access to the wide variety of « generalized ( co- )homology theories »

like different kinds of K-theories, cobordism theories, etc.

Let E = I En I be a CW-spectrum (cf. I ~ ) ; then G. ~l. ~’hitehead
defined homology with coefficients in E for a based C~’-space X by

(1) ,~n(X) _ ~n(E~X) = li~~n+k(Ekt~X), nr Z.
k

In the case

E = K ( G ) ( = Eilenberg - Mac Lane spectrum for an abelian group G ),

we get back ordinary homology Hn ( X ; G ).
On the other hand it is well-known that there are many different ho-

mology functors (which readily deserve this name) on larger categories of

topological spaces or pairs of spaces ( like

M ( - category of compact metric pairs) ).

The main objective of this talk is to indicate that there is, roughly

speaking, only one generalized homology (with fixed coefficient spectrum)
on aCM (or equivalently on Com - category of based compacta) having
reasonable properties. To this end we do not change the definition of homo-

logy ( 1 ) but the category in which we are working and go over to the strong
shape category K = Corn .

So, the homology in question is defined by :

427



428

F. W. BAUER

 2 &#x3E; .~n(‘Y) - L~ ~’n+k(Ek~lX), where rr~(X,xo ) = Comh(,~n,X)
and where Ã denotes the smash-product which turns out to be appropriate for

the purposes of strong shape theory.
In the course of our investigation of ( 2 ) we will meet several old

friends, like:

1) Steenrod - Sitnikov homology SHn ( X ; G ) ( in fact achieving a gene-
ralization of J. Milnor’s axiomatic characterization [7] of this important

homology), as well as

2) the Brown -Douglas - Fillmore [6) K-homology ~* on Comf ( = fin-

ite dimensional compacta), and finally
3) shape-singular homology ( for connected X ) :

En~~’~ = En(, s(~’)~ )~
where

~5’ ~ I~ -~ SE ( = category of Kan-complexes )

is the shape-singular complex-functor, defined in complete analogy to the

ordinary singular-complex-functor S: Top - 8~ .
This talk is based on results which are laid down in ( 5 ) where

proofs and further references can be found.

1. STRONG SHAPE THEORY.

,fe do not attempt to give a detailed account on the construction of

a strong shape theory, referring to the relevant expositions ( e, g. (3,4~ ).
. 

Here, we will confine ourselves to the following conceptual remarks :

Let K be a suitable category of topological spaces ( e. g. I~ _ ~’o p o ,
Com ( = based compact metric spaces ), Comf ( = finite dimensional spa-

ces in Com ), etc. ) and let P C K be a (traditionally supposed to be full )

subcategory of « good» spaces.
In shape theory, we are dealing with those invariants of a topolo-

gical space X which are determined by mappings of X into « good &#x3E;&#x3E; spaces.

It turns out very soon that this general program allows many different
- and by no means equivalent - interpretations. We will indicate three pos-
sible realizations of this general idea ; 1
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1) Let K be a homotopy category of topological spaces, i. e. h = Fop , .
A shape mapping f : X, Y is a transformation which assigns to each mor-

phism g c K ( Y, P ), P E P , a f (g~ E K ( X, P ) such that for a commutative

triangle r g’ = g" in K one has
A A -

f (rg y = f(gn~ = rf(~r~.

This yields a category K , having the same objects as K , with such shape

mappings as morphisms. By making the right choice of K and P ( e. g.,
K = G‘omh, I P - compact ANRs ) this gives us precisely K. Borsuk’s shape

category ( in the description of S. Mardesi~ ).

2) Repeat the construction in 1 but put K = Topo (rather than the ho-

motopy category). Thus r g’ = g" means now strict commutativity, not as

in 1, an equality of homotopy classes.

’While the category K of 1 is for most purposes of algebraic topology
too weak, the K of 2 is on the contrary much too rigid.

3) In order to do algebraic topology, one has to take into account the

fact that K = Topo is a category equipped with the concept of a homotopy

(rather than just with an equivalence relation «-r » ). But at the same time

we must avoid to go over to the homotopy category Kt. right away. So, in

strong shape theory we start off with a category like K = Topa , not with

a homotopy category ( this resembles the procedure in 2 ). A /’6~~,~ is
again, as in 2, an assignment

( g: Y - P E P ) ~--~( f(g~: X-~ P~ P J~
but now we do not simply consider commutative triangles r g’ = g" (neither

in K nor in Kh ) but pairs ( r , c~ J : g’ -~ g n as morphisms in a category P y
(having continuous g: Y - P e P as objects ) where ú): r g’ ~ g" is a given

A A

homotopy. Now f is required to be a functor f : Py - PX between these

categories, where we assume that f ( r, c~ ) ---- ( r, c~’ ) for a suitable (but

well-defined) homotopy úJ’: r f ( g’ ~ ~ f ( g") .
To illustrate the essential difference between this procedure and

that of 1 or 2, we observe that it may very well happen that o is the cons-

tant homotopy, i. e., that r g’ = g" , although (o’ is not constant. Moreover

it turns out to become necessary to endow P y , 2Cx with the structure of a
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2-category and i with the structure of a 2-functor which, in addition to what

we have indicated, involves higher homotopies (between homotopies, etc).
We do not intend to enter into these technical details, referring to

[3, 41 .

By investing some more work, one could perform the whole cons-

truction for some kind of abstract 3-categories K coming together with a

prescribed 3-subcategory P .

In our concrete example, the 2-morphisms are ( suitably adjusted)

homotopies and the 3-morphisms homotopies between homotopies. Here one

has to take care of the fact that the original definition of a homotopy bet-

ween two maps f’, f": X - Y does not automatically turn K (X, Y) ( X,
Y fixed) into a category, because, although composition of homotopies can

be defined, one does not have an identity nor is this composition asso-

ciative.

In all three cases, we have a functor h : K - K which is defined by
h ( X ) = X on the obje cts and by h ( f ~( g ~ = g f on the morphisms f ~ I~ .

Assume that we have Y c P , then there exists an assignment 

h’: K (X , Y) ~ K (X , Y) defined by h’~ f ) = f ( 1 y ).
All this can be accomplished in particular in the strong shape category K

(case 3 above) and we obtain

( 1 ) h’h( f) = f and (2 ) hh’( f~ ~ f
whenever the left expressions are defined. Here the ~-sign refers to a ho-

motopy relation in K , which is defined in complete analogy to ordinary ho-

motopy by means of shape mappings 19 - ~ (X &#x3E;C C D , 11 1 Y ) .
In particular, we deduce from ( 2 ) :

1.1. PROPOSITION. To each f ~ i K(X, Y), Yf P, there exists a continuous

fF ,I~(X, Y) with h(f) ± i.
There is one important relation between Borsuk - Mardesic shape

( 1 ) and strong shape ( 3 ) which should be mentioned :

1.2. PROPOSITION [3 ]. L et K = Com , P = full subcategory o f ANI~s,
then Sh X = Sh Y (i. e., X and Y are equivalent in the Borsuk shape cat-

egory) iff they are homotopy equivalent in K~ .
.4,qn
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This result does not imply that the Borsuk shape category and the

strong shape category are equivalent as categories !

The main objective of shape theory is to find a category I~ in which

one can do topology ( in our case : algebraic topology, primarily homology

theory) in the same way as in the category of CW-spaces but with a much

richer supply of objects ( including for example all compacta). So we need

in our strong shape category a smash product X l~ Y for spaces (which

could be accomplished quite easily) but also for shape mappings :

f ~ I Z : X A Z -~ YAZ.

The major obstacle in doing this is embodied in the fact that a continuous

g : Y l1 Z ~ P ~ P does not necessarily factors over a product

glAg2: f Y A Z ? P1~1P2,

Pi c P . As a result we have to define a new kind of smash-product XA Y
even for spaces X, Y E I~ which is not anymore a topological space in K

(but which carries the structure of a special category).
This kind of smash-product is needed in K for defining homology.

In many special cases it turns out that this A-product coincides with the
classical N-product ( cf. [4], Proposition 1.4 ).

2. HOMOLOGY.

Let E=!E~,7~;XE~-~E~~.~! I be a spectrum, i. e., a sequence

of based spaces En , n ( Z, together with continuous mappings (7~ ; S de-
notes reduced suspension. A CW-spectrum is one in which all the En are

C~-complexes and all the an are cellular inclusions. It is well-known that

the last assumption is not essential and can always, up to homotopy, be

achieved.

Let X be any based space : then we can define homology with co-

efficients in E by:

) En~X) - L.+’Tn+k~Ek~X), n E Z.
k

This functor is not very useful unless one agrees to impose some restric-

tions on E and on X . So, for a CW-spectrum E and a CW-complex X we

evidently have :
431
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2.1. PROPOSITION. The natural trans formation c,~ : ~ S ( X )~ -~ X ( S ( ) -

singular complex, I. ~.I = geometric realization) induces an isomorphism:

( Ej~~~r!s~~u.
This factorization of E* over S( ) justifies calling E*  singular

homology &#x3E;&#x3E;.

Of particular interest is the case E - K ( G ) , the Filenberg - Mac
Lane spectrum to an abelian group G . In this case, the right hand side is

simply ordinary singular homology Hn ( X; G ).
Another important example is furnished by the classifying spectrum

BU { BO ) of complex (real) K-theory. Here, BUn ( X ) is a very important

group for a finite CW-space, while for an arbitrary space X , it does not de-

serve much interest.

The situation changes as soon as one tries to convey ( I) into strong
shape theory : Using the ~-product mentioned in Section 1, we can define

shape homology with coefficients in E by

(3) ~n(X) = Li nk+n(~k11 X)~
where 17, ( y = Kh ( S"z , Y ) denotes the shape homotopy groups. This fur-

nishes a functor E*: K - AbZ which is well-defined at least for any CW-

spectrum. For K = Com , we can say a little more:

2.3. THEOREM [4, 5]. The functor E*: I~ -~ AbZ has the following pro-
perties :

1) fo ~ ii ~ E* f~ = E* f~ .
2) There exists a natural isomorphism Qn : En(X) =-- En+ 1 (~ X )’
3) L et i : A c X be an inclusion, p : X -~ XIA the projection, then

there exists an exact sequence:

2013 ~ 2013 P * 2013

E ~4 
~* 

En(X) 
p * 

0- E X A).~.r~~201320132013~r~ 2013-2013~-Bj~/~~
I~ere we set e. g. L* = En (h (i )).

4) L et i : A C X be an inclusion, A contractible (in I~ ) ; then the pro-
jection p : X - XIA induces an isomorphism E*( X ) ~ E *( X/A ).

These are the Eilenberg-Steenrod axioms for reduced homology.
Axiom 4, for example, reflects the important fact that any inclusion in Com



HOMOLOGY FUNCTORS ON SHAPE CATE GORIES

becomes a cofibration in Com ( cf. [41 ).
The question arises under what conditions the following axiom ( Mil-

nor’s celebrated «cluster axioms) holds:

5) Let Xi = ( X i , xin ) ~ Com be given, i = 1, 2 , ... , and

CL X L = L am X 1 V ... V X~1,=1 - ’ "

be the cluster ( or strong wedge). Then the natural isomorphism
- 00 00 -

(4) E*( CL Xi) = IT E*(Xi)i=1 i= 1

becomes an isomorphism.

Since we can replace 1 by the following ( weaker ) axiom:

1’) fo, f~ f Com, fo ~ fl ~ E~~/0=E~~/7,
we can speak about the Eilenberg-Steenrod axioms for E*h : K - AbZ .

In the case of the cluster axiom we will have to deal with the fact

that sometimes (4) becomes only an isomorphism on the subcategory Comf

(consisting of all compacta of finite dimension), i. e., we require that all

the XL as well as the cluster Cl Xi are spaces in Comf . ~’e will hence-
’ 

i=1 
’

forth say that a spectrum E having this property fulfills the cluster axiom
on Comf . We have

2.4. THEOR EM. 1) There exist CW-spectra E such that 5 does not hold

(neither on Com nor on Comf ).
2) For E = K (G’~ ( G an arbitrary abelian group ) as well as f’or any

susp ension spe ctrum, th e cluster axiom is valid.

3) The sp ectra BU and BO fulfill the cluster axiom on Comf.

Let Po C Com denote the full subcategory of all ( based) finite CW-

space s. The importance of 2.4, 2 and 3, lies in the validity of the following

uniqueness theore m :

2.5. THEOREM. Let E be a CW-spectrum such that the cluster axiom holds

(resp. holds in Comf ); then any extension of E*: P’~ -~ AbZ over Com

(resp. over Comf ) which fulfills the Eilenberg- Steenrod axioms 1- ~ and

the cluster axiom 5 (resp. on Comf ~ is naturally isomorphic to
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- Com , Ab2 ~ resp. E *h : Comf -~ ~6~~.

As an immediate corollary we obtain :

2.6. COROLLARY. L et E be as in Theorem 2.5; then any extension of
E*: Po - Abz over Com (over Comf ) which fulfills the Eilenberg-Steenrod
axioms 1- 4~ and the cluster axiom 5 (resp. the cluster axiom on Comf ) al-
lows an extension over Com (resp. over Comf ).

We will return to this point very soon.

3. HOMOLOGY AND SINGULAR COMPLEX.

In Proposition 2.1 we took notice of the fact that En ( ) factors over

the singular complex. In K (now we take for K the category Top, and for

P the full subcategory of all AI~IEs (for metric spaces), we have also a

kind of singular complex ( cf. [2, 4] ) : --

3: K - ~E ( = category of Kan-complexes ) ,

sr~ = I ~"~rA",~;},

with face and degeneracy defined in the classical manner. Moreover there

exists a natural transformation of functors cJ: 5( J) -~ 1 K which induces

a weak homotopy equivalence in K ( cf. (2J). Here a weak homotopy equi-
valence is evidently a shape mapping i-t K( X , Y ) having the property that

77*(i) becomes an isomorphism.
We are trying to detect those CW-spectra E which have (at least

for suitably chosen categories K ) the following property:
A 

- A

~’) Every weak homotopy equivalence i induces an isomorphism E*(f)
For this purpose we need a special class of spectra :

A cs-spectrum { = compact skeleton spectrum ) E = { En ~ I is a C~U-
- n

spectrum having the following properties :
a) Every m-skeleton ( En )"t for all m - 0, 1, ... and all n f Z is com-

pact.

b) There exists a no such that all En &#x3E; n &#x3E; no , are simply connected.

Then we have :

.4.14.4
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3.1. THEOREM. I, et E be a cs-spectrum and:

a) let f ~ G’om (X , Y) be a weak homotopy equivalence for connected

X , Y; then g *( ¡) Ls an isomorphism..

b) Let X f Com be a continuum; then we have an isomorphism

r~ E*(I S(X)~ ~ ~ E*(X~.

In other words : E *( X) turns out to be singular homology in the

strong shape category.

REMARKS. 1) Condition b for a cs-spectrum is not essential, becausefor

each E there always exists a spectrum E’ such that b holds as well as a

natural isomorphism E * = E

2) 3.1 a ensures that, at least on the category of continua, awhite-

head axiom holds for E* ( E being a cs-spectrum). One cannot expect this

being true for Com or even for Topo . However there exists an extension

~* of E* for any spectrum E such that (V) holds (cf. (5 ] ).

4. RELATIONS TO OTHER HOMOLOGY THEORtES.

In ~ 7~ J. Milnor proved that the so-called Steenrod - Sitnikov homo-

logy H~~ ~ X , A; G ) , defined on the category of compact metric pairs and for
an arbitrary abelian coefficient group G , is, up to a natural isomorphism,
determined by the properties 1-4 in Theorem 2.3 together with the cluster

axiom 5.

Differently from our approach, he uses these axioms for pairs (not
for based spaces as we did), but the transition from a homology for based

spaces to a homology which is defined on a category of pairs and vice-versa

is standard and does not need any further explanation.
In particular we deduc e from [7] that H* ( X ; G ), X = ( X , xo ) ~ Com,

fulfills the Eilenberg-Steenrod axioms as well as the cluster axiom. From

Theorem 2.5 we obtain the following assertion, which implies Miln or’s ori-

ginal uniqueness Theorem :

4.1. THEOREM, Steenrod - Sitnikov homology (in its reduced form, defined
on th e category Com ) with coefficients in an abelian group G is naturally
isomorphic to K ( G )*( ) ( more precisely to K (G )*h ( ) ).
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For G being finitely generated, we can realize K ( G ) as a cs-spec-

trum, hence we have :

4.2. THEOREM. Let X be a continuum, G finitely generated; then we have
a natural isomorphism:

K(G)*(X) ~ H*(~ S(X)~ ; G).

The case G - Z has already been settled in [ 2 ~ , Theorem 7.7, but

by using different methods.

As our second application, we deduce from Theorem 2.5 that every

functor /7~; Comf , AbZ is, up to an isomorphism, determined by the Eilen-

berg-Steenrod axioms, the cluster axiom and the fact that H* is isomorphic
to BU~ on Po ( = category of compact CVU-spaces ).

In [61 the authors introduced a kind of homology theory 6* on Com
by purely functional analytic methods, which plays an important role in ana-

lysis. Moreover they were able to verify that 6* fulfills the Eilenberg-
Steenrod axioms, the cluster axiom and, in addition, that 5;* is isomorphic

to BU * on Po . As a consequence, we have due to Theorem 2.4:

4.3. THEOREM. The isomorphism a: 6* r-- BU* on Po allows a unique ext-

ension a : &#x26;* ~ BU*h over Comf.

REMARK. One should observe that the excision axiom for ctc M ( = category

of compact pairs ) which is obtained by translating property 4 in 2.3 is in

fact the strong excision of [7].

5. COHOMOLOGY.

Although we are dealing in this talk exclusively with homology, a

few words on cohomology are in order :

Let E be a CW-spectrum, X = (X, xo ) any space, then we can de-

fine cohomology with coefficients in E :

(1) En(X ) - h= [~k ~’,~n+k~ ~ , n ~ Z .( 1 ) 
k 

, X,’E n+kl , n c Z

Because all spaces En are by assumption CW-spaces, we deduce from Pro-

position 1.1 that there is no need to distinguish between En(X) and En ( X )

(the latter defined in Kh ). A well-known theorem (cf. [8], also for fur-

l/ O~
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ther references) asserts that, under mild restrictions on the coverings in-

volved, li (G )*( ) is nothing else than Cech cohomology.
This changes immediately whenever one agrees to deal with spectra

E which are not CW-spectra (cf. [4]). Furthermore, it should be kept in

mind that ( 1 ) in general is not identical with the cohomology in the sense
of Boardman ( defined in the Boardman category r 11 ) :

(2) gEn(X~ _ ~ ~’~ ~‘n.~~ ~
where X / Ek X I is either a suspension spectrum ( whenever X is a COW-

space itself) or a CW-substitute for such a spectrum, and where the ( .., J

brackets are denoting the morphisms in the Boardman category.

While ( 1 ) is Cech cohomology with coefficients in ~’ , ( 2 ) is what

one should call singular cohomology with coefficients in E .

The relations between homology ( in the sense of Section 2 ( 3 ) ) and

( 1 ) are treated elsewhere ( cf. (4~ ).
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