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THE GENESIS OF MATHEMATICAL STRUCTURES, AS EXEMPLIFIED

IN THE WORK OF CHARLES EHRESMANN

by Saunders MAC LANE

1. STRUCTURE.

Recently I have become interested in the need to revive the study
of the philosophy of mathematics. Such a revival should avoid the well-worn

and hackneyed standpoints - logicism, formalism and intuitionism. It must

also escape from the inordinately idealistic demands of platonism and the

prevalent but mistaken view that sets are the measure and matter of all math-

ematics. In a recently prepared article [23] I have presented a preliminary

description of an alternative view, that mathematics starts from a variety
of human activities and goes on to construct many interlocking formal mod-

els suggested by various abstractions and generalizations from these human

activities. This point of view, to be effective, must rest on an extended

observation of the actual process by which different mathematical struc-

tures are discovered (or invented). This is intended as a sharp break with

the style of most writing on the philosophy of mathematics, which usually
involves very little reference to any mathematics beyond counting and ele-

mentary geometry.

Thus we hope to examine how mathematical structures arise - not

principally how they actually happened to arise in the historical develop-

ment, but how they logically and genetically must arise. A structure may

be algebraic or geometric, described by axioms, definitions, or construc-

tions, set-theoretic or topos-theoretic. Its genesis starts with observations

of analogies, parallels, and symmetries, and of various needs for conceptual
or invariant description. From these observations various standard pro-

cesses of abstraction or generalization will lead to the structures at issue.

We will be interested not just in the standard forms of abstraction, but in

a variety of specific cases where the process of genesis is more subtle.
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Our examples will be drawn largely from geometry and algebra, but there

should be many striking cases elsewhere in mathematics.

The work of Charles Ehresmann provides splendid examples of the

genesis of mathematical structures. From a starting point in Differential

Geometry and Topology, he took the initiative in disentangling several de-

cisive geometrical structures ; following the logic of these discoveries, he

went on to locate many more structures in and around categories. Here we

can mention only a few of his contributions to such discovery of structure.

2. FiBRAT10N5.

First, consider fiber spaces and fiber bundles. In 1940, algebraic

topology was coming of age ; the techniques of homology, cohomology, co-

products, and homotopy groups were at hand, so that geometers could turn

their attention to the use of these tools in handling tangent and cotangent
bundles on manifolds, sphere bundles, and similar objects. The notion of a

fiber bundle for a group G was ready for development. One of the first form-

al definitions was that given by Ehresmann and Feldbau in 1941 [181. Their

definition involved four essential objects ( E, B , F, G ) , where E is a top-

ological space with a projection p : .’ E - B to the base space B , the top-

ological space F is the typical fiber, while G is a group which acts (per-

haps continuously) on F - all such that locally, over suitable open sets

L’ in B , p-1 v has the structure of a product F X U with the give n G ac-

tion on the first factor. This first paper by Ehresmann and Feldbau was fol-

lowed by two other brief notes on fiber spaces by Ehresmann alone [7, 8~.

Together these papers included the now familiar ideas of induced bundle

(or « associated » bundle ), principal bundle, and the process of reducing the

group G of a fibration to a subgroup. Moreover, the first paper clearly stat-

ed a form of the covering homotopy theorem and some of its consequences
for the relations between the homotopy groups of base, fiber, and total spa-
ce. These ideas were in the air at the time ; as noted in the review [291 by
Weil of Ehresmann’s papers, his definition of a fiber space was intermediate

in generality to definitions crafted at about the same time by Whitney [33]

(who emphasized sphere-bundles ) and by Hurewicz -Steenrod [21] as well
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as by Eckmann r 61. They too had seen the importance of the covering ho-

motopy theorem ; since communications were interrupted by the war, these

must count as independent discoveries. Ehresmann’s own detailed proof of

the covering homotopy theorem was published subsequent to the war [ 11 ] ,
as was his extension of his ideas to the consideration of differentiable fiber

spaces [ 10] .
The notion of a fiber space is a striking example of the genesis of

a complex mathematical structure. This structure involves several objects,
both spaces and groups. Examples of the intended structure are manifest,

but it is by no means clear how to arrange all these examples under any
clear concept. Finding the right concepts must have been hard. I do not

know at first hand how it was in France or in Strasbourg ( where Ehresmann

was then a professor). I do recall that it was hard for topologists in the

United States. In 1940 there was a well attended conference on topology
at the University of Michigan ; there Whitney lectured on sphere bundles.

Most of the audience found his comments very hard to grasp. Even subse-

quently, when Steenrod’s book on fiber bundles [26] had served to codify
and clarify these ideas, it was hard for students to grasp - especially at

the use of a maximal atlas (avoided by Steenrod, loc. cit., page 9, out of

needless logical compunctions ).
The subtle notion of an atlas ( discussed by Ehresmann in several

of his papers, for example in [11~ ) was essential to the conceptual defini-

tion of a manifold  in the large. This is another example of a non-obvious

structure. For years the intentions of differential geometry were clearly

global, but the practice was strictly local ; tensors and all other geometric

objects were defined only in terms of one coordinate system, supplemented

by rules for changes of coordinates (as in the 1927 tract by Veblen on Qua-
dratic Differential forms (27~ ). The first explicit global definition of a

manifold appeared ( in cumbersome form ) in the subsequent tract by Veblen

and ~hitehead [28], while the present form of the definition of a manifold

in the large first appeared in the paper by Whitney [31] on embeddings of

manifolds. One may doubt that this idea was much heeded until it was taken

up and exploited succintly by Chevalley in his first book on Lie groups
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[3]. In short, manifolds were hard to define conceptually, and this is one

of the reasons for the depth of the derivative idea of a fiber space.

Actually, the idea of a fibration involved two different but related

kinds of structures, which were only slowly disentangled. On the one hand,
fiber bundles are given complete with the action of a specific group G on

the fiber, because this is what is really present in examples like the tangent
bundles of differential geometry. These bundles were the subject of Ehres-

mann’s work. However, Steenrod and others considered potentially more

general fibrations p : E - B with no specified group action but with suit-

able local retractions into the fibers. This latter structure has a variety of

definitions, and was disentangled from the notion of a bundle structure only

slowly, so that the right definition was found only gradually. First came

the recognition of the importance of the covering homotopy theorem, and of

its validity both for bundles and in other cases such as the space E ( B ~

of all paths ( from a fixed base point) in a space B , with fiber the loop

space. Only then was the covering homotopy theorem raised to become a

definition : A Serre fibration p : E - B is simply any continuous map such

that the covering homotopy theorem holds for polyhedra ( or similarly, a

Hurewicz fibration with the covering homotopy theore m holding for more gen-
eral spaces ).

This is one typical step in the genesis of a mathematical structure
- a shift of attention from a previous definition to the recognition that some

one property (here the covering homotopy theorem) is central and so can

and should be used to define the structure to be studied.

At this point one should also note that the concept of a Serre fibra-

tion involves much more than the covering homotopy theorem, since the add-

ed structures given by the various associated spectral sequences also enter.

Probably, a spectral sequence should be viewed not as an independent kind

of structure, but as an (important) algebraic constituent of the structure

 fiber space ». In many such cases, each major structure carries with it a

battery of techniques, devices and subordinate structures. Thus it is that

fiber spaces are associated with the half-geometric operations of transgres-
sion and suspension, which in their turn are pieces of the more elaborate

---
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structure of a spectral sequence ( in homology or cohomology).
This observation of associated structures can apply in many other

cases. Thus the structure of a group is a straightforward one, described by

simple axioms abstracted from the evident examples of substitution groups.
The deeper investigation of finite groups shows that there is a great deal

of subordinate structure - for each prime p a Sylow structure, with much

associated local structure, as described for example by Alperin [ 1] .

Another geometric structure studied by Ehresmann [14] is that of

an almost complex structure on a manifold - this being what might be called

a subordinate structure to that of complex structure. Jointly with Wu V’en-

Tsun, Ehresmann made several vital contributions to the recognition and

analysis of this structure and of related structures such as abstract hermi-

tian structures.

3. F 0 L I A T 1 0 N S .

A foliation of a n-dimensional manifold can be described as a

partition of that manifold in a smooth way, into k-dimensional manifolds,
the  leaves » of that foliation. In 1944 Ehresmann and Reeb [20], on con-

sidering the properties of completely integrable Pfaffian systems, came to

the notion of such a foliation, further developed in Reeb’s 1948 thesis

(at Strasbourg). The need for analysing such structure was clearly then
 in the air ». In simpler cases the work of Whitney [32] and his student

Kaplan [23] dealt with families of curves filling the plane. The Ehresmann-

Reeb analysis of foliations is thoroughly developed ; in particular Ehres-

mann observed that a foliation of a manifold M (or a more general space)
could be described conceptually in terms of two topologies on the set M

- one the topology of the manifold itself ; the other given by the discrete

union of the topologies of the leaves, as described systematically in Ehres-

mann [17]. Here again the path from the examples in differential systems

to the resulting conceptual description of the structure was a long one, and

one idea stimulated another by analogy. For example, as Ehresmann pointed
out in 1951 [12], the projections of a foliated manifold upon its space of

leaves ( the quotient space ) is much like the projection of a fiber space.
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4. JETS.

Tangents are special cases of jets. The concept of a k-jet at a point
in a manifold is an important geometric structure first recognized by Ehres-

mann in 1951. As one knows, the k-jet of a real-valued function f defined

in the neighborhood of a point p of a manifold M is determined by the first

k derivatives of the function f at the point p . The study of jets may well

have led Ehresmann to the investigation of category theory; at any rate his

typical categorical notation of a and 0 for source and target of a morphism

appear in his work on jets ( 131 .

More generally, the study of jets can be seen as a development of

the earlier geometrical idea of studying the  infinitely nearby » points on

algebraic curves and manifolds. Presumably it was Ehresmann’s initiative

which stimulated the 1953 paper by Weil [29] on «points proches~; ; in their

turn, these ideas (Weil algebras ) enter into Dubuc’s models for synthetic

differential geometry [4]. Disentangling structures from geometric pheno-
mena to their categorical formulation is a long process ! Can we describe

how it is done ?

5. ABSTRACTION AND GENERALIZATION.

Ordinarily, the genesis of mathematical structure is not formally
described. However, there is an accepted  standard &#x3E;&#x3E; view of the process.
The process starts with observation of elementary mathematical phenomena

(or premathematical phenomena), geometric, algebraic, or otherwise. One

notes analogies - that power series are like congruences modulo p and may

suggest p-adic series, or that the projection of a fiber bundle to the base

B is like the projection of a foliated manifold onto the space of the leaves
of the foliation. One notices phenomena of invariance - this or that geom-

etric object does not really depend on its expression in any one coordinate

system. One analyses simple proofs or even fallacious proofs - just as the

analysis of the covering homotopy theorem led to a deeper understanding
of fiber bundles and spectral sequences. Again, Kummer’s analysis of his

own failed proof of Fermat’s last theorem led him to  ideal &#x3E;&#x3E; prime factors

of algebraic integers, and these ideal factors were subsequently revealed
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to be « ideals) in the present structural sense.

After observation comes generalization. There are probably several
different sorts of generalization. First, there is what I might call general-
ization by parallels . Thus plane, solid, and 4-dimensional geometry lead

to n-dimensional geometry and on beyond to infinite dimensional spaces.

The observation of the systems of real numbers, complex numbers, and qua-
ternions suggests the study of division algebras and linear algebras more

generally. Quadratic number fields, cyclotomic number fields (as with Kum-

mer) and then abelian number fields are the source of the more general con-

sideration of algebraic number fields. The study of algebraic varieties aro-
se from sequential consideration of conics, cubics, quartics, and general

plane curves and their algebraic surfaces.

Generalization can also take place by what could be called rraodi fi-
cation. A desirable theorem, true in some cases, breaks down in others. The

mathematician searches for ways to restore its original correctness. Thus

prime ideals of algebraic integers restored the unique prime factorization

valid for rational integers. The Jordan curve theorem, proved with such pain-
ful displays of rigor, fails for surfaces more general than the sphere - but

the right ideas about homology will restore the status quo.
Abstractaon is a somewhat different genetic process of generaliza-

tion. The vital elements of a preceding theory are not just generalized as

they stand, but are altered to apply to other, more abstract entities, which

may have been there all along - hidden in some specific presentation. Such

observations can take place by analogy. For example, observations on the

multiplicative group of integers prime to n , modulo n and of other struc-

tures arising in number theory came together to suggest the much more abs-

tract notion of an abelian group and of the structure theorems for finitely

generated such groups. Or the analogy between formal power series and p-
adic numbers suggests the abstract notions of a field with a ( discrete) val-

uation. Or the examples of smooth, C 1, and analytic manifolds suggest more
general concepts of manifolds and local structures. Or these specific ex-

amples of local structures may, as with the work of Ehresmann ~ 15J suggest
a general notion of local structure, as expressed say by the groupoid of
allowable coordinate transformations.
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Another process we might call abstraction by « subtracting». One

takes a given situation - say proofs of a given type - and discovers that

everything can be done (the proof remaining valid) with only part of the

data. The transition from groups of transformations to abstract groups and

that from algebra of sets to Boolean algebra are examples of such abstrac-

tion by subtraction. Such cases can give rise to representation theorems

which «justify » the process of subtraction by showing that every one of the

abstract objects can be presented (perhaps in more than one way ) as an

unabstracted object. Instances are the Cayley theorem representing every
abstract group as a permutation group of some set (not necessarily all per-
mutations of that set) and the Stone theorem representing every Boolean

algebra as an algebra of subsets of a universe (not necessarily all sub-

sets of that universe ).

There can also be abstraction by «shift of attention ». On the basis

of considerable experience, one discovers that the important features of a

situation may be quite different from those which appear on the surface.

An example is the discovery of the notion of a topological space. Initially,
mathematicians were concerned with quite specific spaces, where one sees

nearness in terms of the distances between points or of small neighborhoods
of points - and used distance or neighborhoods to define, inter alia, the con-

tinuity of functions. It requires a massive shift of attention to think primar-

ily of the continuity of functions and to observe the remarkable fact that

continuity can be defined by using only the knowledge of those subsets of
the space which are op en . The result of this is the appearance of an essen-

tially new mathematical object - a topological space. Recent studies, as

yet to be published, of my student Joel Fingerman, have emphasized to me

how massive was the shift of attention in this case. It would be difficult

to describe in general the process of such a shift, since it is hard to find

many really similar cases. For example, continuity requires only open sets,
but there appears to be no way to describe the differentiability of a function

just in terms of selected subsets of its domain and codomain.
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6. MORE COMPLEX STRUCTURES.

This completes our list of the generally accepted processes of ge-

nerating new mathematical structures ; one observes analogies and invar-

iances. One then generalizes by parallel cases or by modifications while

abstraction takes place by processes of analogy, subtraction, or shift of

attention. A mathematical structure so discovered consists of one or more

sets with additional data. If the structure is algebraic, the additional data

consists of unary, binary, ..., n-ary operations, satisfying appropriate iden-

tities. In more geometric cases, the data may also involve binary or tertiary

relations, «specified elements &#x3E;&#x3E; of double power sets (the open sets of a

space) and the like, again subject to suitable conditions. Structures in this

sense are the subjects of study in universal algebra, model theory, Bourba-

ki’s early description of structure [2] or the «geometric theories » currently
under examination in topos theory.

Other examples, in particular many of those arising in the work of

Charles Ehresmann, indicate that actual mathematical structure can be much

more complex, and that the genetic process of its discovery is much more

convoluted. Thus the notion of a fiber bundle is not really just that of a

few sets with some added structure, but it is built up in a complex way out

of previous structural concepts (space, group, and group action). Similarly,
the notion of a fiber space hides subordinate structures, now revealed only

in part by the array of differentials of the associated spectral sequences.
A foliation can be described as a pair of topologies on a set - but these

two topologies have very specific character, suggested by the intended geo-
metric examples. For group theory, the algebraic structure needed to des-

cribe a group is simple and straightforward, but the properties flowing from

this apparently simple structure are subtle and manifold. I suggest that this

is because the basic group structure carries with it many subordinate or

associated structures - all the associated spectral sequences and their dif-

ferentials for the group extensions involved and the local structure (Sylow
structures for each prime p ) so heavily used in the current work on finite

simple groups (Alperin [11 ).

Another instance of a hidden structure is the presence of «prime
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spots » in an algebraic number field. Originally, they do not appear with the

field. Only later, with the discovery of prime ideals to restore unique factor-

ization or valuations to understand the analogy with algebraic function, do

the prime spots gradually stand revealed - described then not as one struc-

ture but in many equivalent ways (prime ideal, valuation, a map into a

complete field ), Mathematics is a network of hidden structures.

7. CATEGQRIES AND STRUCTURE.

The complexity of describing an algebraic or a topological structure

in terms of things attached to a set is one of the main reasons for the intro-

duction of the notion of a category - where the objects with a given struc-

ture are not described by explicit sets, as in Bourbaki ( 2 ~ , but as abstract

objects equipped only with morphisms suitably composable. This view,

and its expansion, must have motivated much of Ehresmann’s work. Study-

ing manifolds and their associated structures ( connections, jets, folia-

tions ) he shifted attention to the coordinate transformations (on the inter-

section of allowable neighborhoods in an atlas ), noted that they formed a

groupoid, and so came to use categories to formulate local structures (15].
Not stopping there, he went on to discover double categories [18] (such
is just a category in the category Cat ) and topological categories [16]

( that is, a category in the category of topological spaces ). By these two

examples he paved the way for the general recognition of the notion of an

object with a specified structure in a category. He made vital contributions

to the study of such structures by means of sketches (where the structure

is described by specified local cones to be preserved). His most recent

work, with Madame Ehresmann, on multiple functors [7] and the existence

of lax limits, again arises from such study of structure.

The thesis of this paper is this : Just as category theory was needed

to analyse flexibly the notion of mathematical structure, so will there be

a need for more explicit and precise analysis of the genesis of mathemati-

cal structure, going beyond the familiar simple stories about generalizations
and abstraction so as to get at the subtle interplay between different struc-

ture s ,
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8.AFTERTHOUGHTS.

The original version of this paper was delivered on the first day of

Colloquium at Amiens. This allowed time for several of the participants
to tell me what I had omitted. They gave me many examples :

( a ) There should be more emphasis on the subject matter of mathema-

tics so as to distinguish what is mathematics more clearly, say, from what

is physics.

( b ) My emphasis on structure does not sufficiently recognize the im-

portance of mathematical problems ; mathematics can better be described

as the attempt to solve a sequence of specific problems, with new struc-

tures used as a means to get at such problems.

( c ) An adequate philosophy of mathematics would surely need to ex-

plain why particular items in mathematics are interesting, while others are

uninteresting.
( d ) Among existing philosophies of mathematics, my list omits empir-

icism and materialism.

( e) My negative observation on Russell and Hilbert does not note that

they were addressing the central philosophic problem facing mathemati-

cians : Now that mathematics has considerably expanded beyond the old and

simple confines of number and geometry, how does one explain anew the

security and applicability of mathematics ?

( f ) My criticism of existing ph ilosophies of mathematics should have

observed that the major gap is a failure to adequately explain how formal

mathematical structures can be applie d.

( g) Lawvere’s penetrating analyses of the nature of mathematics clear-

ly show that the study of the philosophy of mathematics is not now dead.

(h) The idea of using « neighborhoods» to define the topology of the

plane is due to Hilbert ( 1902 [21]).

I look forward to future meetings when these and other omissions

might be explored.

363



364

S. MAC LANE

BIBLIOGRAPHY.

1. ALPERIN, J. L., Finite groups viewed locally, Bull. Amer. Math. Soc. 83 (1977),
1271-1285.

2. BOURBAKI, N., Eléments de Mathématiques, Théorie des ensembles ( fascicule
de résultats), A.S.I. 846, Hermann, Paris, 1939.

3. CHEVALLEY, C., Theory of Lie groups I, Princeton Math. Series 8, Princeton
Univ. Press, 1946.

4. BASTIANI, A. &#x26; EHRESMANN, C., Categories of sketched structures, Cahiers

Topo. et Geom. Diff. XIII-2 (1972), 105-214.

5. DUBUC, E. J., Sur les modèles de la géométrie différentielle synthétique, Ca-
hiers Topo. et Geom. Diff. XX- 3 ( 1979 ), 231- 280.

6. ECKMANN, B., Zur homotopietheorie gefaserte Räume, Comment. Math. Helv. 14

(1942), 141- 192.

7. EHRESMANN, A. &#x26; C., Multiple functors IV: Monoidal closed structures in

Catn , Cahiers Topo. et Géom. Diff. XX- 1 (1979), 59- 104.

8. EHRESMANN, C., Espaces fibrés associés, C. R. Acad. Sc. Paris 213 (1941),
762-764.

9. EHRESMANN, C., Espaces fibrés de structures comparables, C. R. Acad. Sc.

Paris 214 ( 1942 ), 144- 147.

10. EHRESMANN, C., Sur les espaces fibrés différentiables, C. R. Acad. Sc. Paris

224 ( 1947), 444- 445.

11. EHRESMANN, C., Sur la théorie des espaces fibrés, Colloques Int. CNRS, To-

pologie algébrique Paris 1947, 3- 15.

12. EHRESMANN, C., Sur la théorie des variétés feuilletées, Rend. Mat. e Appl.
10 ( 1951), 64-82.

13. EHRESMANN, C., Les prolongements d’une variété différentiable: Calcul des

jets, prolongement principal, C. R. Acad. Sc. Paris 233 ( 1951), 598- 600.

14. EHRESMANN, C., Sur les variétés presque complexes, Proc. Int. Cong., Math.
Cambridge 1950, Amer. Math. Soc., 1952, Vol. 2, 412- 419.

15. EHRESMANN, C., Gattungen von lokalen Strukturen, Jahr. Deutsch. Math. Ver-

ein. 60 ( 1957), 49 - 79.

16. EHRESMANN, C., Catégories topologiques et catégories différentiables, Col.

Géom. Diff. Globale Bruxelles 1958, C.B.R.M. Louvain, 1959, 137- 150.

17. EHRESMANN, C., Structures feuilletées, Proc. Fifth Canadian Math. Cong.,
Univ. of Montréal 1961, The Univ. of Toronto Press, 1963, 109- 172.

18. EHRESMANN, C., Catégories doubles et catégories structurées, C. R. Acad. Sc.
Paris 256(1963), 1198-1201.



THE GENESIS OF MATHEMATICAL STRUCTURES

19. EHRESMANN, C. &#x26; FELDBAU, J., Sur les propriétés d’homotopie des espaces
fibrés, C. R. Acad. Sc. 212 ( 1941), 945-948.

20. EHRESMANN, C. &#x26; REEB, G., Sur les champs d’éléments de contact de dimen-
sion p complétement intégrables, C. R. Acad. Sc. Paris 218 ( 1944), 995.

21. HILBERT, D., Grundlagen der Geometrie, B. G. Tubner, Leipzig und Berlin, 6th
edition, 1923.

22. HUREWICZ, W. &#x26; STEENROD, N. E., Homotopy re lations in fibre spaces, Proc.

Nat. Acad. Sci. USA 27 ( 1941), 60-64.

23. KAPLAN, W., Regular curve families filling the plane I, II, Duke Math. J. 7

( 1940), 154- 185 ; and 8 ( 1941 ), 11- 46.

24. MAC LANE, S., Mathematical models: A sketch for the philosophy of Math-

ematics, submitted to the Amer. Math. Monthly.

25. REEB, G., Sur certaines propriétés topologiques des variétés feuilletées, A.S.I.
Hermann, Paris, 1952.

26. STEENROD, N. E., The topology of fibre bundles, Princeton Univ. Press, 1951.

27. VEBLEN, O., Invariants of quadratic differential forms, Cambridge Tracts 24,

Cambridge Univ. Press, 1927.

28. VEBLEN, O. &#x26; WHITEHEAD, J. H. C., The foundations of differential geometry,
Cambridge Tracts 29, Cambridge Univ. Press, 1932.

29. WEIL, A., Review of Ehresmann [8], in Math. Reviews 3 (1942), 58.

30. WEIL, A., Théorie des points proches sur les variétés différentiables, Col. Int.

CNRS Géom. Diff. Strasbourg 1953, CNRS, Paris, 1953, 111- 117.

31. WHITNEY, H., Topological properties of differentiable manifolds, Bull. Amer.

Math. Soc. 43 ( 1937), 785-805.

32. WHITNEY, H., On regular families of curves, Bull. Amer. Math. Soc. 47 ( 1941),
145- 147.

33. WHITNEY, H., On the topology of differentiable manifolds, Lectures in Topolo-
gy, Univ. of Michigan Press, Ann Arbor, 1941, 101- 141.

Mathematics Department
The University of Chicago
5734 University Avenue

CHICAGO, Ill. 60637, U. S. A.

365


