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INTERNAL PRESHEAVES TOPOSES

by Marta BUNGE

CAHIERS DE TOPOLOGIE

ET GEOMETRIE DIFFERENTIELLE

Vol. XVIII-3 (1977)

ABSTRACT.

Let E be an elementary topos. The main theorem of this paper is

an elementary ( first-order ) characterization of categories of internal pre-

sheaves in E , i. e., of categories of the form E Ço for some internal cat-

egory C in E .

I n order to state the theorem we need some notation and definitions.

Let F.-.f.E be a geometric morphism of toposes, with E : f * f* ---&#x3E; 1 the co-

unit of f * --+ f*. F or any map y in F , y*-+ II y ; let E y : y * . II y ---&#x3E; 7 be

the counit of this adjunction.

An internal family A ’- I in F is said to be E-generating iff the
canonical map

is an epimorphism, and it is said to be E-atomic provided the two follow ing
conditions hold :

( 1 ) for each e : E --&#x3E; f *I in E , the canonical map

whose twice exponential adj oint is

is an isomorphism;

( 2 ) for each morphism g : X - Y of F , if g is an epimorphism so is the
induced map
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THEOREM. Let F f- E be a geometric morphism of topoi. Then the fol-
lowing conditions are equivalent :

(a) there exists an internal category C in E and a factorization of
geometric morphisms

such that O= (O *, O *) is an adj oint equivalence of categories ;

( b ) there exists an internal family A a--&#x3E; I of F which is E-generating
and E-atomic.

This theorem generalizes one due to the author (Dissertation, Univ.
of Pennsylvania, 1966) in which categories of presheaves S C’ , for S the
category of sets, are characterized. However, neither the statement nor any

of its subsequent proofs were elementary ( first order). I t is by exploiting
the powerful internal structure of elementary topoi ( as defined and develop-
ed by F.W. Lawvere and M. Tierney in 1970) that it is possible to achieve

a first order formulation and proof of a more general form of this theorem,
the one given above.
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I NTRODUCTION.

A locally small category X is equivalent to a category of preshea-
ves S C° if and only if X satisfies the following conditions :

(1 ) X is regular ( in the sense of having finite limits and colimits and

satisfying that every congruence relation is a kernel pair and every epimor-

phism a coequalizer ) ;

( 2 ) there exists a family ( Ai)i E I of obj ects of X , indexed by a set

I , such that:

( a ) ( Ai)i E I is generating ;
(b) each A i is proj ective, i. e., homx ( Ai, - ): X --&#x3E; S takes epis

into onto functions ;

( c ) in X arbitrary small coproducts of members of ( Ai )i EI exist;

(d) for each Ai, homX( Ai, - ): X --&#x3E; S preserves coproducts.

The above theorem was proved in [4]; therein, obj ects A satis-

fying (2b) and ( 2d ) above were called atoms, by analogy with a similar

situation for Boolean algebras and fields of sets. In [4], descent techni-

ques were used to prove it and in [5] it was obtained as an application of

a tripleableness theorem for adj oint triples ( in the more general setting
of closed categories and categories and functors relative to them ). F. E. J.
Linton [15] gave a short proof of the above theorem as an application of

a variant of the tripleableness theorem for triples on S . In [15], it is men-
tioned that the theorem is known also to P. Gabriel [7], but we ignore his

method of proof.

When F.W. Lawvere [11] gave an elementary ( i. e., first-order ) cha-

racterization of the category S of sets and functions, a natural question to

pose was whether one could also provide elementary characterizations of

certain categories nearly as basic as S , such as categories of presheaves
and Grothendieck topoi.

The theorem above is not an elementary characterization because
of the presence of arbitrary coproducts and their preservation in conditions

( 2c ) and (2d). Neither is the proof given by J . Giraud [1] of his charac-

terization of Grothendieck topoi.
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An important breakthrough came about around 1970 when F.W. Law-

vere and M. Tierney [ 10] gave an elementary set of axioms for categories

called « elementary topoi, so powerful in nature that many constructions

for sheaves, done with the availability of limits, became possible within

topoi and in the absence of limits (external ones, that is ). Still, the ques-
tion remained of proving a generalization of Giraud’s theorem in elementary
topoi, i. e . to characterize elementary topoi of the form Sh j ( E ) of j -shea-
ves for a topology i on an elementary topos E . On account of the theorem

on factorizations of geometric morphisms, a topos F f E is equivalent
to a topos Shj (E ) ---&#x3E;E iff f is a bounded geometric morphism, i. e., there

exists a factorization

in Fop ( i. e., of geometric morphisms ) with i * fully faithful. A conj ecture
of W. Mitchell [18], proven by R . Diaconescu [6], says that an E-topos

F f E is bounded iff there exists an obj ect G in F such that for every

obj ect X of F , the natural map

obtained using the counit of f * -+ f* and evaluation, is an epimorphism.

Here, X is the partial-maps-into-X classifier and the condition says that,

internally, G generates all the inj ectives. Equivalently, the family of all

subobj ects of G generates everything.

The above result suggested the possibility of obtaining an element-

ary version of the theorem on presheaves in a similar fashion. F.W. Law-

vere conj ectured that a certain set of first-order conditions would be ade-

quate for this purpose. I n the process of trying to establish his claim, we

came up with a definite formulation of Lawvere’s conj ecture and it is the

one we present in this paper. Observe that if a topos F is to be compared

with toposes of the form E C°, of internal presheaves on an internal cat-

egory C in E , we must let F be a topos «over E », i. e ., endowed with a

structural map, a geometric morphism F ---&#x3E;f E . The reason why this is not
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made explicit in the Set-case is simply that a locally small category X ad-
mits a unique (up to natural isomorphism ) functor X - S with a left exact

left adj oint (assuming small coproducts exist in X as well ) ; namely,

This is not the case for arbitrary topoi, although given a geometric morphism

F f E then

where F (-, - ) is the E-valued hom-functor lifted according to f . Secondly,

we should consider F f E to be E-bounded, as the class of presheaves

topoi is a subclass of that of bounded topoi. We know that in SC 
D 

the fa-

mily of representable functors is a generating family; bounded topoi have
an obj ect the family of whose subobj ects is generating: certainly the co-

product of all representables is such an obj ect. Yet, we shall have to

work with the smaller family of the representables. For this reason we give

a condition on a family (internal family) A ---&#x3E;a l of F to be generating,
which is weaker than the Mitchell-Diaconescu definition but is more suit-

able for our purposes. Third question: how to get rid of coproducts in de-

fining atoms, as the family in question must be, in some sense, a family
of atoms. We found that this could be done by working only with E-copro-
ducts, which always exist. Preserving such is a condition which may be

expressed in an elementary way. Proj ectivity presents no problems but it

must also be made relative to E via.f --L g . I n both cases it is the family

A ---&#x3E; a I as a whole that is considered, not its fibers. I n a sense, we accom-

plish this by requiring that A ---&#x3E;a1 be an (relative to E / f* I ) atom in Fl,
a global condition.

The theorem we prove says that a topos F f E is equivalent to

some EC0 --&#x3E; E iff F has an E-generating and E-atomic internal family.

We have profited much from the work of R. Diaconescu [6], although
it has been necessary to introduce several modifications. J. Benabou’s con-

struction (mentioned in [3] ) of the full internal subcategory generated by
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a family in a topos, which we learned from P.T. Johnstone [8], plays an

essential role here. Finally, as a guideline for our work we have used our

own previous non-elementary version of the theorem, particularly the proof
which uses descent techniques [4].

Various constructions in toposes are employed here without much

of an explanation for them; these may be found in the book by A. Kock and

G. C. Wraith [9] or in the Bangor lectures of G. C.Wraith [20] as well as

in the various writings of F.W. Lawvere [ 12, 13, 14]. Category theoretical

background may be acquired in B. Mitchell’s [ 17J or in S. Mac Lane‘s [16]

textbooks. As it seemed unreasonable to refer the reader constantly to the

sources, even for the material immediately relevant to what we do here, we

have been more explicit about it. Yet, only those proofs not appearing else-

where are given here in full.

1. II and exponentiation in a topos.

In a topos F , pulling back along a morphism a : A --&#x3E; / is a func-

tor a *: F/lI--&#x3E; F/A , having a right adjoint [la. Denote by Ea the counit of

the adjointness. Then, for a given B.l2.. A E F/A , the morphism

is over A , i. e. b .a EB - TT 2 with

a pullback. I n particular, if b = X &#x3E;C A II2 A , one has

where evX a: IIa (X x A ) x A --&#x3E; X is def ined to be TT 1 . a E(X x A ) 
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A topos is also a cartesian closed category ; in a topos, exponen-

tiation is related to II as follows. Let X X 1 be the terminal map. Then,
for obj ects X, Y of a topos F, -YX = IIX(Y x X) . Since

is a pullback, YX = IIX ( X *( Y ) ) . More generally, if a : A--&#x3E; I and f3 : B -I

are morphisms in F , i. e., obj ects in Fl I, Ba=IIa(a *(B )).

The evaluation map ev aB :B axa --&#x3E; B is given then by

The map evX above is then a special case of this, hence the name «evalu-
ation » for it. Note for this that

is

2. I nternal categories and internal presheaves.

The notions of an internal category and its modules make sense in

in any category with pullbacks E . Yet assume E to be a topos, for rea-

sons immediately apparent.

A category C in E is given by :
( i ) a pair of obj ects 0 , M of E ;

( ii ) a pair of morphisms a0 , a1: M--&#x3E; 0 of E ;
( iii ) a morphism u : O--&#x3E; M ;

( iv ) a morphism c : M X M - M , where
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is a pullback, such that the following diagrams commute (indicated by the

symbol J):

An internal ( contravariant ) presheaf on C is given by :

(i) a morphism YP---&#x3E; of E ;

( ii ) a morphism lll X Y 0 - Y of E , such that
o -
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The covariant case is obtained by switching do and a1 in this de-

finition.

For an interpretation of internal presheaves as discrete fibrations

see [20] ; viewed as discrete fibrations we may regard the category of all

such on C , E , to be a full subcategory of Cat ( E )/ C , obtaining a rea-

dy-made definition of internal natural transformations. This can also be gi-
ven directly, see [6].

It is well-known that, if C is a category in a topos E , the com-

posite

has the structure of a triple T and that EC°D= (ae/ o;T . This triple has
a right adj oint G by means of

and hence G is a left exact cotriple with E f o 0 )G - By a theorem
in [9], EC° is then a topos. Another application of this approach to cat-

CO
egories of internal presheaves E- is that a theorem about triples (cf. [6])

yields Kan extensions. For a morphism v: 0 -+ 0’ between the objects of

two categories C and C’ in E, the following diagram commutes, where

the top maps are liftings of the bottom ones and v* is pulling back along
the map v :
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One has that v! -+ v * -1 v * . A particular instance with

and

yields functors labelled as in the diagram :

I t follows that the pair A --+r is a geometric morphism E--&#x3E; E ; in fact

0 even has a left adj oint. We shall omit giving this canonical geometric

morphism its label.

For future applications, let us record here the following remarks

about the definition of the functors in the relationship limC A-+ r. Gi-
ven an internal presheave ( Y,0 ), r’ ( Y , e ) is the obj ect IIo( Y ) , i, e.,

II along 0--&#x3E;0 1 of Y LO and

coequalizer of the pair

For an obj ect X of E , AX = (XxX0, X X a0 ) , a presheaf partly by virtue
of the diagrams

which being both pullbacks define also

with
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3. Toposes over E as E-closed categories with E-coproducts.

A topos F is said to be a topos over another topos E if there is

a geometric morphism Ff--&#x3E; E , i. e., a pair

with f * --+ f * and f * left exact. We let (7J,E) be the ( unit, counit ) of the

ad j ointness. It has been shown by W. Mitchell [19] that such a set-up ( in

fact he shows that one needs only that f * preserve finite products and 1 )
endows E with the structure of an E-category, i. e., there is an E-valued

hom-functor F(-, -) such that

up to natural isomorphism. Even if f * is not left exact, we may think of

E (-, - ) as a sort of E-valued hom-functor, although it may not lift the or-

dinary homF (-, - ). The definition on obj ects is

Note that one has a composition induced from the internal composition :
ri -*

YX XZY , ZX by applying f * , which is left exact. Also, 1x ---&#x3E; XX

gives the unit by the same process. The usual laws then follow.

For each X obj ect of F , the functor F ( X , - ): F --&#x3E; E has a left

ad j oint, denoted - X : E ---&#x3E; F , also in the case of a simple adj oint pair

I f* -4 f* ; let E 0 X = f *EX X . We have, moreover, that

and

One should think of E 9X as the «coproducts of X with itself over the E-

ob j ect E &#x3E;&#x3E; and this is reasonable on account of the natural isomorphism
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We shall have the opportunity to apply the above point of view to

the adj oint pair

described by :

and by :

We leave to the reader to show adj ointness. Note also that the above pair
is obtainable as

where ( f *, f *) is the geometric morphism which is obtained by pulling
back ( f *, f *) along (Ar ) in Top, ( Theorem 5.1, [6]). Of course (If ,E * )
need not be geometric and neither is ( f *, Yet we shall think of F/ j as
an E/ f*I -category which has E/ f*I-coproducts, by virtue of the above re-
marks.

With this interpretation, given an 1-indexed family in F , i. e., a mor-

phism A ’ I , i. e., an obj ect of F/ j , then F/ j (a , - ) has a left adjoint
- @a - If E e--&#x3E; f *J is an object of E/ f*I , e @a is then (since products in

F/I are pullbacks in F ) the appropriate diagonal in the pullback drawn here
after. The interpretation of f * E X A --&#x3E; I is that of «coproduct of members of

the family A -a-/ over the E-obj ect E and according to the assignment
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Ee--&#x3E; f*x1 ". I t is this sort of coproducts which will replace the external co-

products of the non-elementary treatment of the subj ect.

4. The full internal subcategory generated by an internal family in a topos.

Let A --&#x3E; 1 be an 1-indexed internal family in F , i. e., a morphism
of F , where F is a topos. Define a category A in F and an internal inclu-

sion uA of A into F as in what follows.

Let A have I for obj ect of obj ects and A1 for obj ect of morphisms
with

in

Let us recall how exponentiation is described by means of II in

a topos ( cf. Section 1 ) :

this gives already the two maps

Composition may be defined by descending to F/ 1 X 1{ I  {s indicated in

[8] ), i. e., let A1 X A1c --&#x3E; A1 be given (modulo pullbacks which commute
with exponentials ) by the exponential adj oint of
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The identity then comes from

in

These data define a category A in F . We now define as

with

I n order to prove that

decompose the left square as in

where the meaning and commutativity of the left bottom square is given by
the following way of decomposing the pullback

as in the diagram
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Proofs of the remaining facts pertaining the presheaf nature of uA are left

to the reader. They involve some manipulation of the c , recalling they are

natural. 

REMARK. The construction of the category D in a topos F given in [6] ,

internally the full subcategory of F whose obj ects are the subobj ects of

an obj ect G , is a particular case of the above construction of Benabou for

the case the family is given by E n---&#x3E; with E   n , e &#x3E;; Q G X G the sub-

obj ect c lass if ied by ev : Q G X G ---&#x3E; Q . Similarly the functor c from D to F

is uD . This remark allows us to make use of the general framework of [6].

5. The functor Hom u - ): F - F- and its left adjoint -’OA uA .
These are defined in general in [6] for any presheaf ( Y, 0 ) E I FAI.

For the case of uA = ( A ,zA ) E | FA I they are described below and given
an alternative construction.

For X an obj ect of F ,

where

hence a map

where
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I t is explicitly described via its transpose in the diagram below :

A 0
The left adj oint is defined, for ( Y,0 E F , as in the coequalizer

diagram

REMARK. It may be of interest to note an alternative construction of the

functor HomA (uA , X=) . The obj ect part is describable as the left vertical

arrow in the pullback

where a is the exponential adj oint of the characteristic function of the

graph of a , i. e. of A 1, a &#x3E;-.A X I . To see this, observe that the fiber

above i of (AX )a is XA i where A i is the fiber above i of A a--&#x3E; 1 , i. e.,

.4i = a *(i ). On the other hand, the fiber above I X XA --&#x3E;II1 I is given by
A
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«all pairs with

internal version, i, e., XAi .

6. The interna family M

Let E be a topos, C a category in E with the data as in Section 2.

Part of this data, especifically the diagrams

plus the equations

and

say, exactly, that (M, c ) is an obj ect of gco.

’We wish to consider the. family of representables * in E co This
is given, at the level of E and internally, by the family M a----&#x3E;0 . The cor-
responding family in E C° is

Let us examine this more carefully. ’We now claim that the morphism

is a natural transformation

C° C)i. e., a morphism of EC° , thought of as an A 0-indexed family in EC° .
Indeed, note the commutativity of the diagram here after. Noting

that in it the appropriate diagrams are pullbacks, it can be shown that
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is, in fact, a «functor from A C to Eco » (where A C is ( by left exactness

of A ) a category in EC0 ), i. e., a presheaf on A C in EC0 . The obvious
interpretation of the family is then the natural inclusion of C in EC0 as

« the full subcategory determined by the representable functors ».

Note, for later use, that the family

acts as M ----&#x3E;a1 0 By this we mean : suppose we are given Z---&#x3E;P0 E/0. 
then the object part of the diagram defining A Z x (M, c) has, as object

AO 

part, the top diagram in the following decomposition of the pullback:

C°
This describes in part the functor E/O -&#x3E; E- , left adj oint to the

forgetful functor. Given Z --&#x3E; P 0 , the morphism Z X M --&#x3E; 0 ( as above ) can

be made into an obj ect of EC 
0 

via the action 

0
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The Classification Theorem of [6] establishes a natural and bijec-

tive correspondence between geometric morphisms V : F -+ EC 
0 

over E and

flat functors from f * C to F . The flat functor corresponding to a given
is XO = O *(M, c ) and the geometric morphism associated to a flat func-

tor X is (Dx given by the pair : 
=

These two processes are inverses to one another.

 If O - 1 

EC° 
then XO - (M, c ) , and conversely.. Corresponding

then to (M, c ) is the identity adj oint pair, given as the pair

This gives two decompositions of the identity 1 co . 
That given by the left

E-
co

adj oint implies that, for an obj ect (Z, C) of E- 

By previous remarks, [*] translates into a coequalizer diagram in  :

The decomposition of 1 C0 given by the right adj oint says that
E-

At the obj ect level, this says that the following is a pullback in E :
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a version of the Yoneda Lemma.

Combining [*] with [ **] we get

and consequently an epimorphism whose obj ect part is an epimorphism

reminiscent of the canonical epimorphism

[4] , where

and

I n fact, it will play the same role here.

7. The canonical adj oint pair F ---&#x3E;EC 0 induced by an internal family
in F . 

For F f E ( geometric ) and A a I in F , letting A E Cat ( F ),

UA E | Ed | be as in Section 4 and C = f * A (a category in E since f * is
left ezact ) there exists ( see [6] ) an adj oint pair 0 * d 0* fitting into a

commutative diagram
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The pair is given by

The functor 4Y * is then given on obj ects by :

for an obj ect X of F . (Verify for this that

and resort to the definition of HomA ( uA , - ) in Section 5. ) If (Z,Z) is

an obj ect of E co then 

Hence, for an X of F , the object O*O X of F is defined by the coequal-
izer

Let us define, for , a morphism

We claim that the diagram
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commutes. Observe for this that, by the definition of ç1, i. e., as the ex-

ponential adj oint of E a. ( 1 xÇA) for the adj oint pau a * -+ nO, whos e co-

unit is fa , the diagram

Then use the fact that evX = II1 . aEXxA 
I t then follows the existence of a unique morphism E X as in:

For (Z, C) E C 0, there is given a coequalizer diagram from the
equation [ *] of Section 6 ; this is

where we have omitted some structure maps ( see Section 6 ). On the other

hand, O *(Z, z) E I f I fits also in a coequalizer diagram :

hence 4Y * carries it into a pair of equal maps, namely : (3 )
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"We shall next give, for each E--e f*I of E , a canonical morphism

with

defined as the twice exponential adj oint (relative to f * --+ f * first and

a * --+ II a next) of

Equivalently,

By naturality of Xae with respect to morphisms E e--&#x3E; f *1 in E/ f*1 , the dia-Xe 

gram (4)

commutes, We now claim that also the diagram (5 ) : 

commutes. This is proved by passing to the twice transpose of this diagram,
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recalling that

by the definition of c .

As a consequence of (4) and (5) when comparing ( 1 ) and (3), one

has that

hence that there exists a unique morphism 7-7 (Z,z) as in the commutative

diagram

The maps - 77 (Z ,(J and E X define natural transformations

and

and they are, respectively, the unit and counit of

8. E-generating internal fami lies in a topos over E .

Let Ff---&#x3E; E be a geometric morphism of topos. An internal I-indexed
family A--&#x3E;aI of F is said to be E-generating for F if and only if for every

obj ect X of F the canonical morphism
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(defined in Section 7) is an epimorphism. By the remark made in Section 5,
the diagram

is a pullback. This serves the purpose of linking our definition with that
of M itchell - Diaconescu [18 and 61 of ((an obj ect of generators» or « a ge-

nerator over E)) of a topos F over E by means of F f E . The internal
family of all subobj ects of A is the morphism f n--&#x3E; QA where

is classified by the evaluation map. It is then easy to see that the diagram :

is a pullback ; by definition, a is given by the correspondence

Hence, there exists a canonical morphism

such that p nX .O = paX , where
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is a pullback. Since the map pi is required to be epi for A to be an «ob-

j ect of generators », w e have

( i) if an internal family A -a---&#x3E;I is generating, so is the ( larger ) in-
ternal family E---&#x3E;QA of «all subobj ects of the union of the members of

the original family;
( ii ) if an obj ect A is generating in the Mitchell - D iaconescu , sense,

then the internal family of all subobj ects of A is generating in our sense .

It is not true, however, that the converse of ( ii ) holds, or that in

( i ), A--&#x3E; 1 generating implies A an obj ect of generators. The latter con-

dition is definitely stronger as is evidenced by the fact that the Mitchell-

Diaconescu theorem asserts, precisely, that if F f E has an obj ect of

generators, the canonical O * in the adj oint pair

( with C induced by the internal family E--&#x3E;OA ) is fully faithful. On the
other hand, consider what it means to assume that the family 1 --&#x3E; 1 in F

is E-generating : it amounts to the condition

epi for each X ,

or f * faithful. Since, in this case,O * = f * , we see that the condition can-
not imply f * ( i. e., 4Y* ) fully faithful.

I t is our aim to give sufficient conditions for O * - where Aa--&#x3E; I is

E-generating - to be fully faithful. An obj ect B of a locally small categ-

ory A has been called (cf. [4] ) abstractly unary if the functor homX ( B , - )
commutes with set-indexed coproducts - indeed not an elementary condition.

There is a canonical map

with

so that requiring that B be abstractly unary amounts to asking that each
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such X (with K a set, Ck an obj ect of X for each k E K ) be an isomor-

phism.
For an elementary version of this property, also restricting ourselves

to ((coproducts of members of the given family A -1!..1 ), to say that A a--&#x3E; I

is a famil y of E-abstractl y unary objects amounts to th e f ollow ing :
let E - --&#x3E;e f *I be a morphism of E , i. e., e E | E/ f * I|; ; define Xe by

means of the following adj ointness correspondences :

require that for each e as above, Xae be an isomorphism. (The notation

e Oa is explained in Section 3, as well as the adj oint pair f * -f *. )
Note that X: is precisely the morphism defined in Section 7 as

A family A -a--&#x3E; 1 of F is said to be a famil y of f*-abstractly unary
obj ects if Xe is iso for every e of the form e = f *B with 8 EF/I I n the
case of the family 1 ---&#x3E; 1 , it is a family of E-abstractly unary obj ects iff

the unit n of f* -t f* is iso and a family of f * -abstractly unary obj ects
iff n f * , equivalently f *E , is iso. Under the condition of being E-generat-
ing, which says that f * is faithful, the latter yields c iso or f * fully faith-

ful. This latter condition plays a similar role in the general situation, as

we shall see immediately.

Ve need, for immediate and later purposes, to record the following
information.

L EMMA. In  the internal family M c  a 1 ’ a0 &#x3E;..LEMMA. In Ec , the internal family (M, c) a, a0&#x3E;" AO is E-generating.
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PROOF. The morphism q of [ ***] of Section 6 is q 
O*(Z, Z) 

of section 7.

Since the adj oint pair (D * -+ (D * is the identity in this case and since the

family in question is the internal family which induces this adj oint pair
in the manner of Section 7, it follows that it must be E-generating. To see

this, note that, in the diagram

which commutes by Section 7, [*] , E (Z , £ j is the identity, Hence, as the

morphism q 
O * (z ,£ ) 

is a coequalizer, so is pai , hence epi.
O * (Z,Z) (Z ,() 

THEOREM. Let F f E be an E-topos. If Aa--&#x3E;1E F is an E-generating
internal family of f*-abstractly unary obj ects, then the induced (defined

in Section 7) O *: F --&#x3E; EC 
0 

is fully faithful.

PROOF. Since A --&#x3E;a I is E-generating, a is epi for each X , hence, by

the commutative diagram of Section 7 defining 7x , it follows that E X is

epi. This says that O* is faithful. Hence, to show O* fully faithful, we

must prove that 6y is iso for each X.

Denote f *IIa(X X A ) by EX and let the following be an exact dia-
gram involving Pxa

Consider the topos

with

Since F/ J FJ for an appropriate category I in F (cf. [20]) the lemma

applies to give JA--&#x3E; J xJ ( over J ) as an F-generating f amily. Let
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be regarded as an obj ect of Flj ; it follows ( after some simplifications)

that there exist an object EA E |F I and an epimorphismK 

over ,T . Letting Y = EAK and considering the canonical epi

one may conveniently compose with the above to give an epi

satisfying

Next, we shall look at the diagram :

Ignoring the dotted arrows ( to be defined below), it is our aim to establish

th e following :

This is, in fact, all we need to ensure EX iso.

Let the dotted arrows be given by two morphisms denoted



320

where ai , bi ( i = 1, 2 ) arise by double exponential adj ointness as fol-
lows, using the fact that A--&#x3E;aI is a family of f *-abstractly unary obj ects,
so that the appropriate X-1 exists with 

and the canonical map :

The two maps defined in (4) have the properties

and

for i = 1, 2 . It follows that

and so, that

for i = 1, 2 , by the definition of 

Hence it will be enough to prove ( 5 )

From the equation

follows that
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and hence the result, by virtue of P Kepi and the commutative diagrams
below ( i = 1, 2 ) :

9. E-atomic families in a topos over E .

Recall that our aim is to give necessary and sufficient conditions

on a geometric morphism .f -L E for it to be «of the form » E C 0 --&#x3E; E for some
category C in E . We have already that, given a family A ’- 1, with C and

induced by it, if a is an E-generating family, (D * is faithful and if, further,
a is a family of f * -abstractly unary obj ects then (D * is fully faithful. We

seek necessary and sufficient conditions for such a pair O * ,O * to be an

adj oint equivalence of categories.

Let A --a-&#x3E;I be an internal family in F (over E ). We shall say that

A--&#x3E;a1 is E-atomic ( or (c a famil y o f E-atoms » ) iff :

( i ) A --a-&#x3E;I is a family of E-abstractly unary obj ects ;

( ii ) A ---&#x3E;a1 is a famil y o f E-pro j ective ob j ects , i. e. ( definition ) : for

every morphism Xg--&#x3E;Y of F , if g is an epimorphism, so is
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C° a1 a0 &#x3E;
LEMMA. I n E- , co the family (M, c ) a1 a2 A0 is E-atomic.
P ROO F . ( i ) Given a morphism E e---&#x3E;TAO in E , note that

is the obj ect part of

where O * : EC° -."Ec 0 is the right adj oint of the adj oint pair induc ed by
(M, C by the Classification Theorem of Diaconescu [6] ( see Section 6 ).
As O* must be the identity in this case, so is al

( ii ) Given g: (Z, z) --&#x3E; ( Y,0) in EC° , then also

is epi, since

We now prove :

THEOREM. Let ELE be a geometric morphism of topos. Let Aa--&#x3E;1 be

an internal family of F which is E-generating and E-atomic. Then, the unit

7j: 1 -+ (O *O* of the adi ointness of the functors

( d e fined in Section 7 ) is an isomorphism.

PROOF. We start out by the consideration of the diagram defining 7i (dis-

cussed in detail in Section 7) where, by assumption of E-atomicity of a ,

each X is an isomorphism ( we have omitted some structure maps in this dia-

gram, drawn here after). In order to proceed from here, we shall find it con-

venient to obtain an alternative description of q (Z,z)’ , 
defined before as

the coequalizer of the pair 
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Using now that (O* is fully faithful on account of a being E-gene-
rating (Section 8, Theorem ) , we proceed as follows : Let

be an exact diagram in Ef1.’ ( again omitting structure maps : we should write
and i.e.,

and

Consider the canonical epi in and recall that

is iso. This gives the following commutative diagram :
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with :

and

Note that

and

Since O * is fully faithful, there exist uniquely determined morphisms

such that

The desired property which says that the coequalizer of 11o ’ qy is precisely

is a consequence now of the following :

LEMMA. Let O : X --&#x3E;, Y be a fully faithful functor between toposes, preserv-
ing epimorphisms. Consider the diagrams ( top one in Y, bottom one in X ):

where :

(henc e (D ( q) epi though not necessarily the coequalizer of O(y0 ), ID (y 1) ),
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u such that (D (yi ) - ai . u (induced), r epi,

It follows that q = coeq (aO’ a1 ).
PROOF OF THE LEMMA. Note that, since s . t is epi, s t is also epi,

since O faithful, hence ref lects epimorphisms .

Also, since q = coeq (Y n’ y1) and ’st7 epi, we have

Hence,

"We now look at the diagrams :

where ( b0, b 1) = kernel pair ( q(Z,z)), hence

since O * preserves kernel pairs (having a left adjoint). Let 6 be the uni-

que morphism such that O * bi. Z = ai i ( i - 0 , 1) . Let r’ be the unique mor-

phism such that bi . r’ = ai ( i = 0, 1 ) . It follows that

To show 6. r = O *(r’) , observe first that
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Since  O * b0, O* b1 &#x3E; is a kernel pair, hence a ( congruence) relation, the

induced

is monic . Hence, O * r’=Z r as required.

The aim now is to show that e is an isomorphism since then it will
follow from this that both p and O *( q(Z,z) have the same kernel pair,
hence that, as coequalizers, they be the same ; more detailed : since

there exists a unique

such that

But then, by the uniqueness, 8 = (n (Z ,z)-1 .
To do so, we shall continue the descent argument further down, as

in the following diagram :

where : ( co, cl ) = unique maps with O*( ci ) = yi - s , i = 0, 1,

(y0, y1 ) - kernel pair (r), s = canonical epi, r" = coeq(co) C1 )
Since r’. co = r’. cl (this can be seen by passing to the O*-images:
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and r" = coeq ( co) cl ) , there exists a unique co such that Cù. r" = r’ . The

same situation repeats itself above, namely,O *w *r" =O *r’ . Since

( this is so since yi . s =O * ci and since r". c 0 = r". cl ), it follows ( as

r = coeq (y0 . s , y 1 . s ) ) that there exists a unique p ( dotted arrow ) with

p . r = O*r".
We also have that O *w . p =Z ( note that

Hence, if we show that p is iso, if we then prove O *w iso, it would fol-

low that 6 is iso (ç is already monic, though). Since 6 is monic, p is

monic and since p . r =O *r" and r" epi, O *r" epi, hence p epi. So, p

is iso. Now

and

hence

so the latter is a congruence relation, as  a0 ,a1 &#x3E; is one. Since O * is

faithful and p iso, it follows that  b0, w , b1 . w &#x3E; is a congruence relation,
hence the kernel pair of its own coequalizer. We know that q = coeq ( a0, a1 )
hence

and

But ( b0 , bl ) = kernel pair ( q ) . Thus, u is iso, hence O *w is iso as re-

quired. This completes the proof.

10. The main Theorem.

We have already given a proof of the following

THEOREM. Let F--&#x3E;f E be a geometric morphism o f elementary toposes.

Then, the following are equival ent :
( a ) there exists a category f in E and a factorization
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in Top , with V = (O) *, O *) an adj oint equivalence of categories ;
( b ) there exists an internal family A a- I in F, E-generating and

E-atomic.

PROOF. In order to prove that the conditions (b) are necessary for (a),
we need only invoke the lemmas proven in Sections 8 and 9, noting for this
that conditions (b) are stable under equivalences of categories. As for the

implication ( b ) =&#x3E; ( a ) , this is the contents of the theorems of Sections

8 and 9 combined.

We may now ask if for the case E = S , the category of sets, the

above theorem reduces to the theorem proved by us in [4]. The answer is

that it does not, and that it gives a better result, in the sense that it is an

elementary characterization. In a sense, the coproducts which we needed

in [4] have not entirely disappeared : The assumption that F be a topos

over S , i. e., Ff--&#x3E; S geometric, already says that S-indexed copowers ex-

ist. However, this is now strictly first-order.

A final observation is that a by-product of our theorem is a form

of the metatheorem of Lawvere’s elementary theory of the category of sets

[11] : discarding those among the eight axioms which are part of the topos
structure on the category, we are left with axioms which say that 1 is a

proj ective generator and that coproducts are disj oint ( 1 is abstractly un-

ary ), i. e., with the special case of our theorem for

and

namely : Given a topos F over S ( which can be done in essentially one

way ), F is equivalent to S iff 1 is an S-generator and an S-atom in F . As
in Lawvere’s metatheorem, there is here a cocompleteness assumption : The

existence of a geometric F---&#x3E;f S says that F has all copowers of 1 index-

ed by a set.
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