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PRINCIPAL HOMOGENEOUS OBJECTS

AS REPRESENTABLE FUNCTORS

by D. H. VAN OSDOL

CAHIERS DE TOPOLOGIE

ET GEOMETRIE DIFFERENTIELLE

Vol. XVIII-3 ( 1977 )

I NTRODUCTION.

I Let R be a ring with identity and A the category of unitary left

R-modules. L et X and II be in A ; then XXII represents the functor

More generally, let

be an exact sequence of R-modules. Does Y represent some functor, and

if so what is it ?

Let G: A - A be the free R-module functor with 6: G - A the nat-

ural proj ection. Since p is onto and G X is free, there is a homomorphism
s: GX- Y such that pos = EX . If z: Z --&#x3E; Y in A then

so there exists a unique h : G Z --&#x3E; II such that

Thus z gives rise to a pair of maps

and

These are related in the following way. Since

there is a unique f: G 2 X --&#x3E; II such that

and one can show that
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I n addition, f is a one-cocycle, i. e.

Thus if we define

then there is a function (depending on s ) A ( Z , Y ) -&#x3E; D ( Z , f ) . In fact,

D( -,F) is a functor AOP - Sets and A ( - , Y ) - D (- , f ) is a natural trans-

formation. I n this case, it is a natural equivalence ( see I .5 ). Thus to define

a homomorphism from Z into an extension of X by II it is necessary and

sufficient to give two homomorphisms g : Z --&#x3E; X, h : G Z --&#x3E; II such that

I f X is a topological space and II is a topological abelian group,
then X XII represents

More generally let Y--&#x3E; X be a principal homogeneous fibre bundle with
fibre II . Then there are an open cover I U. } of X and hom eomorphisms

O i :Ui x--&#x3E; P-1(Ui) such that
p o Oi = the first proj ection p ,
and there exist fij : Ui n U. - n such that

for all x in Ui. n Uj. and all a in II .

Then f = II fij represents a Cech one-cocycle. If z : Z --&#x3E; Y , define

by taking the coproduct of the compositions

One can show that for u in (poz)-l Ui n ( p o z)-1 U . we have
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Hence we have a function Top ( Z , Y ) --+ D ( Z , f ) where

Once again this is a natural equivalence so that to give a map into the total

space of a bundle, it is necessary and sufficient to give a map Z --+X

and maps g -1 (Ui) --&#x3E;hi II such that

I for all u in

To complete the analogy between this example and that of R-modules, we

leave it to the reader to define G and c ( see [2] ).

I t is the purpose of this paper to examine the relationships between

principal homogeneous obj ects (extensions) defining a cocycle f and the
functor D (-, f) . The main results are I .5, I .6, I I.5 and I I.6. Theorem I I.6

is perhaps worthy of further consideration since it suggests a connection

between realization of one-cohomology classes and generalized descent

(for the standard theories of descent, see [3,4] ). I n addition, I I.7 shows

that tripleableness is a sufficient condition for interpretation of H, by prin-
cipal homogeneous obj ects ( a result of Beck [1]), while I I.6 indicates

that it is probably not a necessary condition. All of our results hold in case

G is a cotriple arising from a tripleable adj oint pair.

The author would like to thank Michael Barr, Robert Par6 and Jack
Duskin (especially the latter for communicating Proposition 6.6.3 of [2] ) for

helpful conversations on the content of this paper. Some of the results were

first announced at the 1975 winter meeting of the American Mathematical So-

ciety.
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I. COCYCLES, HOMOGENEOUS OBJECTS AND REPRESENTABLE FUNCTORS.

Te assume from the outset that A is a category, G: A --&#x3E; A is a

functor and c : G - A is a natural transformation such that c is the coequa-

lizer of c G and Ge . Let X be an obj ect of A and n an abelian group ob-

ject in A , whose operations will be denoted additively.

1.1. DEFINITION. A one-cocycle ( on X with values in II ) is a morphism
f : G2 X --&#x3E; II such that 

Given a one-cocycle f we define a functor D(-, f ): Aop --&#x3E; Sets as

follows. For Z an obj ect of A , I

Lnd

Given z: Z’ --&#x3E; Z in A , D(z, f ) on (g, h) is (goz, hoGz) in D(Z’, f ) . 
I t is easy to check that this does indeed define a functor.

I .2. D EFI NITION. A G-trivial [I-principal homogeneous obj ect over X con-
sists of an object Y in A , a right action p : Y X II --&#x3E; Y of II on Y ( i. e.

a morphism p such that p o( z , 0 ) = z and

for morphisms z : Z --&#x3E; Y, aI’ a2 : Z--&#x3E; 11 ), a morphism p : Y --&#x3E; X , and a mor-

phism s: GX -* Y such that: 

is a kernel pair diagram,

I .3. PROPOSITION. I f ( Y---&#x3E;X , p , s ) is a G-trivial fi-principal homogen-
eous obj ect over X then diagram 1.2.i is a coequalizer, and there exists

a uni que t : GY ---&#x3E; II such that p o ( s o G p , t ) = E Y .

PROOF. Since
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and I .2.i is a kernel pair, the existence of t as asserted is guaranteed. Now

suppose z : : Y - Z has the property that Z op 1 = z o p . Then we have

so there exists a unique

z’: X - Z such that z’ o E X - z o s

(recall that c is the coequalizer of E G and GE ). A computation similar

to that just given shows that

and thus z’op = z . Since p os = c X is a coequalizer, p is an epimorphism
and hence z’ is the unique morphism such that z’op - z .

QED

I .4. PROPOSITION. I f ( Y-P.----&#x3E;X, P, s) is a Gtrivial fl-principal homogen-
eous obj ect over X then there is a unique f: G 2 X --&#x3E; II such that

Moreover f is a cocycle and

i. e. (p, t) is in D(Y, f ).

PROOF. The existence of f is assured by I.2.i and the fact that

That f is a cocycle follows from I.2.i and the verification that

The last assertion is proved analogously, since

I .5. THEOREM. I f ( Y Lx, p , s ) is a Gtrivial II prancipal homogeneous
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obj ect over X and f: G 2 X --&#x3E; II is the cocycle constructed in 1.4 then Y

repres ents D (- , f ) .

PROOF. Given z in A(Z, Y) define a (z) (po z, toGz). Then a(z ) is
in D (Z , f ) by I .4, and a is obviously a natural transformation

Given (g, h) in D(Z, f ) we have :

so there exists a unique

such that

Def ine B ( g, h ) = z ; then B : D ( Z , f ) --&#x3E; A ( Z , Y ) . A simple c omputation
shows that

so

Thus to prove that a oB ( g, h) = (g, h ) it suffices to see that t o G z = h .

But

so I .2.i implies t o G z = h . Finally

so

QED

1.6. THEOREM. I f f: G2X --&#x3E; II is a cocycle and Y represents D(-,f ),
then there exist

and

such that ( p , p , s ) is a G-trivial IT-principal homogeneous ob j ect over X .
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Moreover the cocycle which it defines is exactly f .

PROOF. Let [-, -] : D(-, f ) --&#x3E; A(-, Y) be a natural equivalence. There
exist p : Y --&#x3E;X, t: G Y---&#x3E; II such that [ p, t] is the identity on Y and we

get the following computational rules :

i) if z : Z’--&#x3E; Z then, for any (g, h) in D(Z, f ) :

ii) if (g, h) is in D(Z, f ) then g=po[g,h] and h =toG[g,h] ;
iii) if y : Z ---&#x3E; Y then y = [ p oy, to Gy] .

Moreover since f is a cocycle, (f X, f) is in D ( G X , f ) and, by ii ,

Hence for s = [ E X, f] y I .2.ii is satisfied. Next notice that

is in D ( Y X II , f ) , and let

By ii, p o p - p o p 1 , so suppose z , z’: Z - Y are such that p o z = p o z’ ;
we want to show that there is a unique w: Z - Y Xfl such that

plow=z’ and pow =z

(this is I .2.i ). Let g, g’: Z - X and h, h’: GZ - fl be the unique maps
such that

and

Then p o z - p o z’ means g = g’ , and we have

Thus there exists a unique

such that
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and  Now by the above

I f also satisfies

and

then

so

Thus , which implies

and 1

Therefore I .2. i is verified. I t remains to check that p is an action of M on

Y . This follows easily from iii. Hence (p , p , s ) is a G-trivial II-principal

homogeneous obj ect over X . For the final sentence we use I .4, together
with i and ii:

1.7. THEOREM. L et (Y Lx, p, s) be a G-trivialll-principal homogeneous
object over X and f the cocycle that it induces (see 1. 4 ). I f D (- , f ) is
represented by Y’ then there exists an isomorphism y: Y ---&#x3E; Y’ such that
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commutes.

P ROO F . Th e bottom row of the diagram was derived in I .6. Sinc e Y repre-
s ents D (- , f ) by I .5, there is an isomorphism y: Y ---&#x3E; Y’ such that

is equal to

In particular, but so

and

by I .6.ii. Now

whereas

so it remains to show that

But

1.8. DEFINITION. A morphism of G-trivial II-principal homogeneous obj ects
over X is a map such that the diagram in I .7 commutes.

1.9. PROPOSITION.I f 
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are G-trivial 11-principal homogeneous obj ects over X, with corresponding
cocycles f, f’, and y: Y -+ Y’ is a morphism between them, then there ex-
ists u; GX---&#x3E; II suchthat f-f’=uo GEX-uoE GX.
P ROO F . Since

there exists a unique u : G X ---&#x3E; II such that p ’o (y os , u)= s’ . The comput-

ation

shows that the stated condition holds.

I .10. DEFINITION. If two cocycles are related as in I .9 then they are said

to be cohomologous.

I .1 I . PROPOSITION. I f f and f ’ are cohomologous, then D (- , f ) and
D (- , f ’ ) are naturally equivalent functors. I f, in addition, D (- , f ) and

D (- , f ’) are repres entable, then there is a morphism between the associated

homogeneous objects over X .

PROOF. Let

If (g, h) is in D(Z, f ) then (g, h - uoGg) is in D(Z, f’), and this de-
fines a natural transformation D( -, f ) -. D( -, f’ ). The inverse is given

by sending (g, h ) to ( g, h + uo G g) . The second sentence follows from

the first and I .7.

QED

I t follows from all the above that if f: G 2 X - Il is a cocycle and
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D(-, f ) is representable, then there is a G-trivial II-principal homogeneous

obj ect over X associated to it. Conversely a G-trivial II-principal homo-

geneous obj ect over X gives rise to a cocycle. These two assignments are

mutually inverse, provided we identify cohomologous cocycles on the one

hand, and homogeneous obj ects if there is a morphism between them on the

other. Since HI ( X, II) is by definition the abelian group of one-cocycles
modulo the relation «is cohomologous to », we see that there is an interpre-
tation of H1 (X , II ) in terms of equivalence classes of G-trivial II-principal

homogeneous obj ects over X provided each D (- , f ) is representable.

I n the next section we will give some necessary and sufficient con-

ditions for a given D(-, f ) to be representable. For now, we offer the fol-

lowing problem :
Give necessary and sufficient conditions that a functor F : A°P --&#x3E; Sets

be naturally equivalent to D (-f : for some cocycle f: G 2 X ---&#x3E; f,

11. NECESSARY AND SUFFICIENT CONDITIONS FOR D(-, f ) TO BE
REPRESENTABLE.

Given a cocycle f : G 2 X - II , under what conditions is D (-, f ) re-

presentable ? The main purpose of this section is to provide two necessary
arid sufficient conditions for the representability of D(-, f ) . The results
of Section I serve as motivation for interest in this question. Throughout
this section, let f: G 2 X ---&#x3E; II be a cocycle and assume Gn X X II exists for

0n 3.

1 .1. PROPOSITION. If f = 0, then D(-, f ) is represented by X X II.

PROOF. Define 4(Z, XxII)-+ D(Z, f ) by sending (z, a) to (z, ao CZ).
This obviously gives a natural transformation. For its inverse, if (g, h) is

in D ( Z , f ) , then hoGEZ = hoEGZ, so there exists a unique

a : Z - Il such that a o E Z - h ;

thus sending ( g , h ) to ( g, a ) provides an inverse. This result also follows
from 11.6. 

QED
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11.2. DEFINITION. A three-tuple (G,l,8) is a cotriple on A if G: A-.4

is a functor, E : G - A and 8 : G - G 2 are natural transformations such that

and

11.3. P ROPOSITION. If (G, E ) is part o f a cotriple (G, ,E d) on A and

X = G Xo for some Xo in.4, then D(-, f ) is represented by X X II .

PROOF. If (z, a) is in A(Z, XxII), then a short computation (using 11.2

and the fact that f is a cocycle ) shows that

is in D ( Z , f ) . Thus

defines a function

and v : A (- , X x II ) --&#x3E; D (-, f ) is obviously a natural transformation. Given

( g, h ) in D ( Z , f ) one can see (for the same reasons as before ) that

Hence there is a unique

such that

I t is easy to verify that the inverse of Ifr Z is given by sending ( g, h ) to

(g, a).
QED

I I.4. L EMMA. Let Z : r- -+ 4 be a functor which has a colimit C:

Then there is a function 9: D ( C, f ) ---+ lim D( Z. ,f ) which is one-to-one.

PROOF. Define

for a in r ;
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this clearly defines a function. To see that it is inj ective, suppose (g, h )
and (g’, h’) are members of D( C, f ) such that

for each a in h . Then since

and

it follow s that g = g’ . Now

so there exists a unique

such that

I f a = 0 then we will be done. But for each a in h ,

so a o i a = 0 . Since C = colim Z , a = 0 .
QED

I I.5. THEOREM. Suppose that A is cocomplete and G X x II has only a set

of regular quotients ( i. e. quotients which are coequalizers ). Then, D (- , f )
is representable if and onl y if the function 0 of 11. 4 is onto for all functors
Z : that is, if and onl y if D (- , f ) preserves limits.

PROOF. Obviously if D(-, f) is representable then it preserves limits.

Conversely, it suffices to verify the solution set condition [ 5, V .6.3]. Let
L be the class of all coequalizers of the form

for all Z in A , and all (g, h) in D(Z, f ). Since L is a subclass of the

set of all regular quotients of G X x II , it is a set. We proceed to show that

L is a solution set for D(-, f ) . Since D(-, f ) preserves limits, if (g, h )
is in D ( Z , f ) then

is an equalizer. Now
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is in D ( G X x II , f ) since f is a cocycle, and its two images in D ( G 2 Z , f )
are

and

But these images are equal by the naturality of c and the fact that (g, h )
is in D ( Z , f ) . Hence there exists a unique ( g’, h’ ) in D ( C, f ) such that:

and

Noticing that 

we find a unique

such that

If

and

then the solution set condition will be verified. But we have

and D( f Z , f ) is one-to-one since

is an equalizer.
QED

I I.6. THEOREM. I n order that D(-, f ) be representable it is necessary and

sufficient that the following « descent-type. condition (see [3,4] ) be ful-
filled : For the diagram
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there should exist such that

is a pullback and

PROOF. Suppose that Y represents D(- , f ) . Then by 1.6 there exists the
structure of G-trivial II-principal homogeneous obj ect on Y , say

Let q = p o( s X II ): G X x II --&#x3E; Y . Condition ii follows from 1.4 and the last

sentence of I .6. For condition i , recall that in any category

is a pullback. Applying this with u = s and C = II and using I.2.i we see
that each square in

is a pullback. Now the j uxtaposition of two pullbacks is a pullback, p o s -
= E X by 1.2.ii, and p o ( s X II ) = q . Hence condition i has been verified.
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Conversely assume conditions i and ii . Define D ( Z , f ) --&#x3E; A ( Z , Y ) by

sending (g, h) to b : Z - Y , where b is the unique map such that

Such a morphism exists since

Then D(-, f) --&#x3E; A(-, Y) so defined is clearly a natural transformation. Gi-
ven a : Z - Y , consider

Since the outside diagram commutes and the inside is a pullback, there ex-

ists a unique

such that

I claim that (p o a, k ) is in D ( Z , f ) , and this will be true provided

These will be equal if their compositions with p1 , as well as q , are equal.
The first components are obviously equal, and
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Hence we can map 4 ( Z, Y) - D(Z, f ) by taking a to ( p o a, k ) , where
k is uniquely determined by the condition

We need to show, using the above notation, that

and

For the first,

sothatpob =g, and thus k = h since

For the second,

QED

11.7. COROLLARY ( Beck [1] ). I f U: A , B is tripleable (also called mo-
nadic in [5] ) with le ft adj oint F, G = F U, and U G n X X UII exists for
0  n  2, then D(-, f ) is represented by the coequalizer (which exists)

PROOF, We have the following U-split coequalizer diagram [5] :

where 77: B --&#x3E; U F is the unit for the adj unction. The only problem invol-
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ved in the vetifioation is that f o F n U X = 0 , but

Since U is tripleable, there exists G X xII---q Y as asserted, and such that

Since

and q is a coequalizer, there exists a unique

such that

By 11.6 we need only s ee that p o q = f X o p1 is a pullback diagram . But
since U creates limits [5], it suffices to prove that

is a pullback. This was first noticed by Duskin and is proved in [2].
QED

We will end with two examples in which 11.7 is not directly applic-
able but 11.6 is. Let A be the category of torsion-free abelian groups and

all homomorphisms. Let ( G , E , 8 ) be the free abelian group cotriple on A .

Then E is the coequalizer of E G and GE in A . I f f : G 2 X --&#x3E; 11 - is a co-

cycle in A then we can verify I I .6 by using I I.7 indirectly. Consider the

diagram of 11.6 in the category of abelian groups. By I I.7, D (- , f ) is re-

presented by an abelian group Y ; if Y is in A then we will be done. But,

by I .6, 

is an exact sequence of abelian groups and hence Y is in A .

An example in which the technique of the last paragraph is not avail-

able is that of (C simplicially generated » spaces. Let G be the functor which
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assigns to a topological space the geometric realization of its singular

simplicial set. Then there exist c , 8 making G a cotriple. Let A be the

category of spaces X such that E X is the coequalizer of E G X and GE X ,

and all continuous maps. Then ( G, E , 8 ) is a cotriple on A and it is not

(known to be ) the cotriple of any tripleable adjoint pair. If f; G2 X ---&#x3E; II is

a cocycle and II is discrete, then a space in A representing D (-, f ) would

be a kind of simplicially generated simplicial covering space of X .
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