CAHIERS DE

TOPOLOGIE ET GÉOMÉTRIE DIFFÉRENTIELLE CATÉGORIQUES

D. H. VAN OsDOL
 Principal homogeneous objects as representable functors

Cahiers de topologie et géométrie différentielle catégoriques, tome 18, n ${ }^{0} 3$ (1977), p. 271-289
http://www.numdam.org/item?id=CTGDC_1977__18_3_271_0
© Andrée C. Ehresmann et les auteurs, 1977, tous droits réservés.
L'accès aux archives de la revue «Cahiers de topologie et géométrie différentielle catégoriques » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme

PRINCIPAL HOMOGENEOUS OBJECTS
 AS REPRESENTABLE FUNCTORS

by D. H. VAN OSDOL

INTRODUCTION.

Let R be a ring with identity and \underline{A} the category of unitary left R-modules. Let X and Π be in \underline{A}; then $X \times \Pi$ represents the functor

$$
\underline{A}(-, X) \times \underline{A}(-, \Pi): \underline{A}^{o p} \rightarrow \underline{\text { Sets }} .
$$

More generally, let

$$
0 \rightarrow \Pi \xrightarrow{i} Y \xrightarrow{p} X \longrightarrow 0
$$

be an exact sequence of R-modules. Does Y represent some functor, and if so what is it?

Let $G: \underline{A} \rightarrow \underline{A}$ be the free R-module functor with $\epsilon: G \rightarrow \underline{A}$ the natural projection. Since p is onto and $G X$ is free, there is a homomorphism $s: G X \rightarrow Y$ such that $p \circ s=\epsilon X$. If $z: Z \rightarrow Y$ in \underline{A} then

$$
p \circ(z \circ \varepsilon Z-s \circ G(p \circ z))=0
$$

so there exists a unique $h: G Z \rightarrow I I$ such that

$$
i \circ h=z \bullet_{\epsilon} Z-s \circ G(p \circ z)
$$

Thus z gives rise to a pair of maps

$$
p \circ z: Z \rightarrow X \text { and } h: G Z \rightarrow \Pi .
$$

These are related in the following way. Since

$$
p \circ(s \circ \epsilon G X-s \circ G \epsilon X)=0:
$$

there is a unique $f: G^{2} X \rightarrow \Pi$ such that

$$
i \circ f=s \circ \epsilon G X-s \circ G \epsilon X,
$$

and one can show that

$$
f \circ G^{2}(p \circ z)=h \circ G \epsilon Z-h \circ \epsilon G Z
$$

In addition, f is a one-cocycle, i.e.

$$
f \circ G \epsilon G X=f \circ G^{2} \epsilon X+f \circ \epsilon G^{2} X
$$

Thus if we define

$$
\begin{aligned}
D(Z, f)=\{(g, h) \mid & g: Z \rightarrow X, h: G Z \rightarrow \Pi, \\
& \left.f \circ G^{2} g=h \circ G \epsilon Z-h \circ \epsilon G Z\right\}
\end{aligned}
$$

then there is a function (depending on $s) \underline{A}(Z, Y) \rightarrow D(Z, f)$. In fact, $D(-, f)$ is a functor $\underline{A}^{o p} \rightarrow \underline{\text { Sets }}$ and $\underline{A}(-, Y) \rightarrow D(-, f)$ is a natural transformation. In this case, it is a natural equivalence (see I.5). Thus to define a homomorphism from Z into an extension of X by Π it is necessary and sufficient to give two homomorphisms $g: Z \rightarrow X, h: G Z \rightarrow \Pi$ such that

$$
f \circ G^{2} g=h \circ G \epsilon Z-h \circ \epsilon G Z
$$

If X is a topological space and Π is a topological abelian group, then $X \times \Pi$ represents

$$
\underline{T o p}(-, X) \times \underline{\text { Top }}(-, \Pi): \underline{T o p}^{o p} \rightarrow \underline{\text { Sets }} .
$$

More generally let $Y \xrightarrow{p} X$ be a principal homogeneous fibre bundle with fibre Π. Then there are an open cover $\left\{U_{i}\right\}$ of X and homeomorphisms $\Phi_{i}: U_{i} \times \Pi \rightarrow p^{-1}\left(U_{i}\right)$ such that
$p \circ \Phi_{i}=$ the first projection p_{1},
and there exist $f_{i j}: U_{i} \cap U_{j} \rightarrow \Pi$ such that

$$
\Phi_{j}(x, a)=\Phi_{i}\left(x, f_{i j}(x)+a\right)
$$

for all x in $U_{i} \cap U_{j}$ and all a in Π.
Then $f=\amalg f_{i j}$ represents a Čech one-cocycle. If $z: Z \rightarrow Y$, define

$$
h: \amalg(p \circ z)^{-1} U_{i} \rightarrow \Pi
$$

by taking the coproduct of the compositions

$$
h_{i}:(p \circ z)^{1} U_{i} \xrightarrow{z} p^{-1}\left(U_{i}\right) \xrightarrow{\Phi_{i}^{-1}} U_{i} \times \Pi \xrightarrow{p_{2}} \Pi .
$$

One can show that for u in $(p \circ z)^{-1} U_{i} \cap(p \circ z)^{-1} U_{j}$ we have

$$
h_{i}(u)-h_{j}(u)=f_{i j}((p \circ z)(u))
$$

Hence we have a function $\operatorname{Top}(Z, Y) \rightarrow D(Z, f)$ where

$$
\begin{aligned}
D(Z, f)=\{ & (g, h) \mid g: Z \rightarrow Y, h: \amalg g^{-1}\left(U_{i}\right) \rightarrow \Pi, \\
& \left.h_{i}(u)-h_{j}(u)=f_{i j}(g(u)) \text { for } u \in g^{-1}\left(U_{i}\right) \cap g^{-1}\left(U_{j}\right)\right\}
\end{aligned}
$$

Once again this is a natural equivalence so that to give a map into the total space of a bundle, it is necessary and sufficient to give a map $Z \xrightarrow{g} X$ and maps $g^{-1}\left(U_{i}\right) \xrightarrow{h_{i}} \Pi$ such that

$$
h_{i}(u)-h_{j}(u)=f_{i j}(g(u)) \text { for all } u \text { in } g^{-1}\left(U_{i}\right) \cap g^{-1}\left(U_{j}\right)
$$

To complete the analogy between this example and that of R-modules, we leave it to the reader to define G and ϵ (see [2]).

It is the purpose of this paper to examine the relationships between principal homogeneous objects (extensions) defining a cocycle f and the functor $D(-, f)$. The main results are I.5, I.6, II. 5 and II.6. Theorem II. 6 is perhaps worthy of further consideration since it suggests a connection between realization of one-cohomology classes and generalized descent (for the standard theories of descent, see [3,4]). In addition, II. 7 shows that tripleableness is a sufficient condition for interpretation of H^{1} by principal homogeneous objects (a result of Beck [1]), while II. 6 indicates that it is probably not a necessary condition. All of our results hold in case G is a cotriple arising from a tripleable adj oint pair.

The author would like to thank Michael Barr, Robert Paré and Jack Duskin (especially the latter for communicating Proposition 6.6.3 of [2]) for helpful conversations on the content of this paper. Some of the results were first announced at the 1975 winter meeting of the American Mathematical Society.

I. COCYCLES, HOMOGENEOUS OBJECTS AND REPRESENTABLE FUNCTORS.

We assume from the outset that \underline{A} is a category, $G: \underline{A} \rightarrow \underline{A}$ is a functor and $\epsilon: G \rightarrow \underline{A}$ is a natural transformation such that ϵ is the coequalizer of ϵG and $G \epsilon$. Let X be an object of \underline{A} and Π an abelian group object in \underline{A}, whose operations will be denoted additively.
I.1. DEFINITION. A one-cocycle (on X with values in Π) is a morphism $f: G^{2} X \rightarrow \Pi$ such that

$$
f \circ G \epsilon G X=f \circ G^{2} \epsilon X+f \circ \epsilon G^{2} X
$$

Given a one-cocycle f we define a functor $D(-, f): \underline{A}^{O P} \rightarrow \underline{\text { Sets }}$ as follows. For Z an object of \underline{A},

$$
\begin{aligned}
D(Z, f)=\{(g, h) \mid & g: Z \rightarrow X, h: G Z \rightarrow \Pi, \text { and } \\
& \left.f \circ G^{2} g+h \circ \epsilon G Z=h \circ G \in Z\right\}
\end{aligned}
$$

Given $z: Z^{\prime} \rightarrow Z$ in $\underline{A}, D(z, f)$ on (g, h) is ($\left.g \circ z, h \circ G z\right)$ in $D\left(Z^{\prime}, f\right)$. It is easy to check that this does indeed define a functor.
I.2. DEfinition. A G-trivial П-principal homogeneous object over X consists of an object Y in \underline{A}, a right action $\rho: Y \times \Pi \rightarrow Y$ of Π on Y (i.e. a morphism ρ such that $\rho \circ(z, 0)=z$ and

$$
\rho \circ\left(\rho \circ\left(z, a_{1}\right), a_{2}\right)=\rho \circ\left(z, a_{1}+a_{2}\right)
$$

for morphisms $z: Z \rightarrow Y, a_{1}, a_{2}: Z \rightarrow \Pi$), a morphism $p: Y \rightarrow X$, and a morphism $s: G X \rightarrow Y$ such that:
i) $Y \times \mathrm{II} \xrightarrow[\rho]{\mathrm{p}_{1}} Y \xrightarrow{p} X$ is a kernel pair diagram,
ii) $p \circ s=\epsilon X$.
I.3. PROPOSITION. If $(Y \xrightarrow{P} X, \rho, s)$ is a G-trivial II-principal homogeneous object over X then diagram $1.2 . i$ is a coequalizer, and there exists a unique $t: G Y \rightarrow \Pi$ such that $\rho \circ(s \circ G p, t)=\epsilon Y$.

PROOF. Since

$$
p \circ(s \circ G p)=\epsilon X \circ G p=p \circ \epsilon Y
$$

and I.2.i is a kernel pair, the existence of t as asserted is guaranteed. Now suppose $z: Y \rightarrow Z$ has the property that $z \circ p_{1}=z \circ \rho$. Then we have

$$
\begin{aligned}
& (z \circ s) \circ \epsilon G X=z \circ \epsilon Y \circ G s=z \circ \rho \circ(s \circ G p, t) \circ G s= \\
= & z \circ p_{1} \circ(s \circ G p, t) \circ G s=z \circ s \circ G p \circ G s=(z \circ s) \circ G \epsilon X,
\end{aligned}
$$

so there exists a unique

$$
z^{\prime}: X \rightarrow Z \text { such that } z^{\prime} \circ \epsilon X=z \circ s
$$

(recall that ϵ is the coequalizer of ϵG and $G \epsilon$). A computation similar to that just given shows that

$$
z^{\prime} \circ p \circ \epsilon Y=z \circ \epsilon Y
$$

and thus $z^{\prime} \circ p=z$. Since $p \circ s=\epsilon X$ is a coequalizer, p is an epimorphism and hence z^{\prime} is the unique morphism such that $z^{\prime}{ }_{o p}=z$.
I.4. PROPOSITION. If $(Y \xrightarrow{P} X, \rho, s)$ is a G-trivial Π-principal homogeneous object over X then there is a unique $f: G^{2} X \rightarrow \Pi$ such that

$$
\rho \circ(s \circ G \epsilon X, f)=s \circ \in G X
$$

Moreover f is a cocycle and

$$
f \circ G^{2} p+t \circ \epsilon G Y=t \circ G \epsilon Y
$$

i. e. (p, t) is in $D(Y, f)$.

PROOF. The existence of f is assured by I.2.i and the fact that

$$
p \circ(s \circ G \in X)=p \circ(s \circ \in G X)
$$

That f is a cocycle follows from I.2.i and the verification that

$$
\begin{gathered}
\rho \circ\left(s \circ G \epsilon X \circ G^{2} \epsilon X, f \circ G^{2} \epsilon X+f \circ \epsilon G^{2} X\right)= \\
\rho \circ\left(s \circ G_{\epsilon} X \circ G^{2} \epsilon X, f \circ G \epsilon G X\right) .
\end{gathered}
$$

The last assertion is proved analogously, since

$$
\begin{gathered}
\rho \circ\left(s \circ G \epsilon X \circ G^{2} p, f \circ G^{2} p+t \circ \epsilon G Y\right)= \\
\rho \circ\left(s \circ G \epsilon X \circ G^{2} p, t \circ G \epsilon Y\right)
\end{gathered}
$$

QED
I.5. THEOREM. If $(Y \xrightarrow{p} X, \rho, s)$ is a G-trivial Π-principal homogeneous
object over X and $f: G^{2} X \rightarrow \Pi$ is the cocycle constructed in 1.4 then Y represents $D(-, f)$.

FROOF. Given z in $\underline{A}(Z, Y)$ define $\alpha(z)=(p \circ z, t \circ G z)$. Then $\alpha(z)$ is in $D(Z, f)$ by I.4, and α is obviously a natural transformation

$$
a: \underline{A}(-, Y) \rightarrow D(-, f) .
$$

Given (g, h) in $D(Z, f)$ we have:

$$
\begin{aligned}
& \rho \circ(s \circ G g, h) \circ G \epsilon Z=\rho \circ\left(s \circ G \epsilon X \circ G^{2} g, h \circ G \epsilon Z\right)= \\
& =\rho \circ\left(s \circ G \epsilon X \circ G^{2} g, f \circ G^{2} g+h \circ \epsilon G Z\right)= \\
& =\rho \circ\left(\rho \circ(s \circ G \epsilon X, f) \circ G^{2} g, h \circ \epsilon G Z\right)= \\
& =\rho \circ\left(s \circ \epsilon G X \circ G^{2} g, h \circ \epsilon G Z\right)=\rho \circ(s \circ G g, h) \circ \epsilon G Z,
\end{aligned}
$$

so there exists a unique

$$
z: Z \rightarrow Y \text { such that } z \circ \in Z=\rho \circ(s \circ G g, h)
$$

Define $\beta(g, h)=z$; then $\beta: D(Z, f) \rightarrow \underline{A}(Z, Y)$. A simple computation shows that

$$
p \circ z \circ \epsilon Z=g \circ \epsilon Z, \text { so } p \circ \beta(g, h)=g .
$$

Thus to prove that $\alpha \circ \beta(g, h)=(g, h)$ it suffices to see that $t \circ G z=h$. But

$$
\begin{gathered}
\rho \circ(s \circ G g, t \circ G z)=\rho \circ(s \circ G p, t) \circ G z=\epsilon Y \circ G z= \\
=z \circ \epsilon Z=\rho \circ(s \circ G g, h),
\end{gathered}
$$

so I.2.i implies $t \circ G z=h$. Finally

$$
\begin{gathered}
(\beta \circ \alpha(z)) \circ \epsilon Z=\beta(p \circ z, t \circ G z) \circ \epsilon Z= \\
=\rho \circ(s \circ G p \circ G z, t \circ G z)=\epsilon Y \circ G z=z \circ \epsilon Z,
\end{gathered}
$$

so $\beta \circ \alpha(z)=z$.
QED
I.6. THEOREM. If $f: G^{2} X \rightarrow \Pi$ is a cocycle and Y represents $D(-, f)$, then there exist

$$
\rho: Y \times \Pi \rightarrow Y, \quad p: Y \rightarrow X \text { and } s: G X \rightarrow Y
$$

such that (p, ρ, s) is a G-trivial Π-principal homogeneous object over X.

Moreover the cocycle which it defines is exactly f.
PROOF. Let $[-,-]: D(-, f) \rightarrow \underline{A}(-, Y)$ be a natural equivalence. There exist $p: Y \rightarrow X, t: G Y \rightarrow \Pi$ such that $[p, t]$ is the identity on Y and we get the following computational rules:
i) if $z: Z^{\prime} \rightarrow Z$ then, for any (g, h) in $D(Z, f)$:

$$
[g, h] \circ z=[g \circ z, h \circ G z] ;
$$

ii) if (g, h) is in $D(Z, f)$ then $g=p \circ[g, h]$ and $h=t \circ G[g, h]$;
iii) if $y: Z \rightarrow Y$ then $y=[p \circ y, t \circ G y]$.

Moreover since f is a cocycle, $(\epsilon X, f)$ is in $D(G X, f)$ and, by ii,

$$
p \circ[\epsilon X, f]=\epsilon X
$$

Hence for $s=[\epsilon X, f]$, I.2.ii is satisfied. Next notice that

$$
\left(p \circ p_{1}, t \circ G p_{1}+\epsilon \Pi \circ G p_{2}\right)
$$

is in $D(Y \times \Pi, f)$, and let

$$
\rho=\left[p \circ p_{1}, t \circ G p_{1}+\epsilon \Pi \circ G p_{2}\right] .
$$

By ii, $p \circ \rho=p \circ p_{1}$, so suppose $z, z^{\prime}: Z \rightarrow Y$ are such that $p \circ z=p \circ z^{\prime}$; we want to show that there is a unique $w: Z \rightarrow Y \times \Pi$ such that

$$
p_{1} \circ w=z^{\prime} \text { and } \rho \circ w=z
$$

(this is I.2.i). Let $g, g^{\prime}: Z \rightarrow X$ and $h, h^{\prime}: G Z \rightarrow \Pi$ be the unique maps such that

$$
[g, h]=z \quad \text { and }\left[g^{\prime}, h^{\prime}\right]=z^{\prime}
$$

Then $p \circ z=p \circ z^{\prime}$ means $g=g^{\prime}$, and we have

$$
\begin{aligned}
& \left(h-h^{\prime}\right) \circ \epsilon G Z=h \circ \epsilon G Z-h^{\prime} \circ \epsilon G Z= \\
& =-f \circ G^{2} g+h \circ G \epsilon Z-\left(-f \circ G^{2} g^{\prime}+h^{\prime} \circ G \epsilon Z\right) \\
& =h \circ G \epsilon Z-f_{\circ} G^{2} g+f \circ G^{2} g-h^{\prime} \circ G \epsilon Z= \\
& =\left(h-h^{\prime}\right) \circ G \epsilon Z .
\end{aligned}
$$

Thus there exists a unique

$$
k: Z \rightarrow \Pi \text { such that } k \circ \in Z=h-h^{\prime}
$$

and $\left(\left[g, h^{\prime}\right], k\right): Z \rightarrow Y \times \Pi$. Now by the above

$$
\begin{aligned}
& \rho \circ\left(\left[g, h^{\prime}\right], k\right)=\left[p \circ\left[g, h^{\prime}\right], t \circ G\left[g, h^{\prime}\right]+\epsilon \Pi \circ G k\right]= \\
& \quad=\left[g, h^{\prime}+k \circ \epsilon Z\right]=\left[g, h^{\prime}+h-h^{\prime}\right]=[g, h] .
\end{aligned}
$$

If also $([x, y], z): Z \rightarrow Y \times \Pi$ satisfies

$$
p_{1} \circ([x, y], z)=\left[g, h^{\prime}\right] \text { and } \rho \circ([x, y], z)=[g, h]
$$

then

$$
[x, y]=\left[g, h^{\prime}\right] \text { and }[x, y+\epsilon \Pi \circ G z]=[g, h]
$$

so

$$
x=g, \quad y=h^{\prime}, \quad y+\epsilon \Pi \circ G z=h
$$

Thus $h-h^{\prime}=z \circ \epsilon Z$, which implies

$$
z=k \quad \text { and } \quad([x, y], z)=\left(\left[g, h^{\prime}\right], k\right) .
$$

Therefore I.2.i is verified. It remains to check that ρ is an action of Π on Y. This follows easily from iii. Hence (p, ρ, s) is a G-trivial Π-principal homogeneous object over X. For the final sentence we use I.4, together with i and ii:

$$
\begin{aligned}
\rho \circ & \left(s_{\circ} G \epsilon X, f\right)=\left[p \circ p_{1}, t \circ G p_{1}+\epsilon \Pi \circ G p_{2}\right] \circ([\epsilon X, f] \circ G \epsilon X, f)= \\
& =\left[p \circ[\epsilon X, f] \circ G \epsilon X, t \circ G[\epsilon X, f] \circ G^{2} \epsilon X+\epsilon \Pi \circ G f\right]= \\
& =\left[\epsilon X \circ G \epsilon X, f \circ G^{2} \epsilon X+f \circ \epsilon G^{2} X\right]= \\
& =[\epsilon X \circ \epsilon G X, f \circ G \epsilon G X]=[\epsilon X, f] \circ \epsilon G X=s \circ \epsilon G X .
\end{aligned}
$$

QED
1.7. THEOREM. Let $(Y \xrightarrow{p} X, \rho, s)$ be a G-trivial П-principal homogeneous object over X and f the cocycle that it induces (see I.4). If $D(-, f)$ is represented by Y^{\prime} then there exists an isomorphism $y: Y \rightarrow Y^{\prime}$ such that

commutes.
PROOF. The bottom row of the diagram was derived in I.6. Since Y represents $D(-, f)$ by $I .5$, there is an isomorphism $y: Y \rightarrow Y^{\prime}$ such that

$$
D(-, f) \xrightarrow{\langle-,-\rangle} \underline{A}(-, Y) \xrightarrow{\underline{A}(-, y)} \underline{A}\left(-, Y^{\prime}\right)
$$

is equal to

$$
D(-, f) \xrightarrow{[-,-]} \underline{A}\left(-, Y^{\prime}\right)
$$

In particular, $y_{0}\langle p, t\rangle=[p, t]$; but $\langle p, t\rangle=Y$ so

$$
y=[p, t] \text { and } p^{\prime} \circ y=p^{\prime} \circ[p, t]=p
$$

by I.6.ii. Now

$$
\begin{array}{r}
\rho^{\prime} \circ(y \times \Pi)=\left[p^{\prime} \circ p_{1}, t^{\prime} \circ G p_{1}+\epsilon \Pi \circ G p_{2}\right] \circ([p, t] \times \Pi)= \\
=\left[p^{\prime} \circ[p, t] \circ p_{1}, t^{\prime} \circ G[p, t] \circ G p_{1}+\epsilon \Pi \circ G p_{2}\right]= \\
=\left[p \circ p_{1}, t \circ G p_{1}+\epsilon \Pi \circ G p_{2}\right]
\end{array}
$$

whereas

$$
y \circ \rho=[p, t] \circ \rho=[p \circ \rho, t \circ G \rho]=\left[p \circ p_{1}, t \circ G \rho\right]
$$

so it remains to show that

$$
t \circ G p_{1}+\epsilon \Pi \circ G p_{2}=t \circ G \rho
$$

But

$$
\begin{aligned}
& \rho \circ\left(s \circ G p \circ G p_{1}, t \circ G p_{1}+\epsilon \Pi \circ G p_{2}\right)= \\
& =\rho \circ\left(\rho \circ(s \circ G p, t) \circ G p_{1}, \epsilon \Pi \circ G p_{2}\right)= \\
& =\rho \circ\left(\epsilon Y \circ G p_{1}, \epsilon \Pi \circ G p_{2}\right)=\rho \circ \epsilon(Y \times \Pi)= \\
& =\epsilon Y \circ G \rho=\rho \circ(s \circ G p, t) \circ G \rho= \\
& =\rho \circ(s \circ G p \circ G \rho, t \circ G \rho)=\rho \circ\left(s \circ G p \circ G p_{1}, t \circ G \rho\right) .
\end{aligned}
$$

QED
I.8. DEFINITION. A morphism of C-trivial Π-principal homogeneous obj ects over X is a map such that the diagram in I .7 commutes.
I.9. PROPOSITION. If

$$
(Y \xrightarrow{p} X, \rho, s) \text { and }\left(Y^{\prime} \xrightarrow{p^{\prime}} X, \rho^{\prime}, s^{\prime}\right)
$$

are G-trivial П-principal homogeneous objects over X, with corresponding cocycles f, f^{\prime}, and $y: Y \rightarrow Y^{\prime}$ is a morphism between them, then there exists $u: G X \rightarrow \Pi$ such that $f-f^{\prime}=u \circ G \epsilon X-u \circ \epsilon G X$.

PROOF. Since

$$
p^{\prime} \circ(y \circ s)=p \circ s=\epsilon X=p^{\prime} \circ s^{\prime},
$$

there exists a unique $u: G X \rightarrow \Pi$ such that ρ ' $\circ(y \circ s, u)=s^{\prime}$. The computation

$$
\begin{aligned}
& \rho^{\prime} \circ\left(y \circ s \circ G \epsilon X, u \circ G \epsilon X+f^{\prime}\right)=\rho^{\prime} \circ\left(s^{\prime} \circ G \epsilon X, f^{\prime}\right)= \\
& =s^{\prime} \circ \epsilon G X=\rho^{\prime} \circ(y \circ s \circ \epsilon G X, u \circ \epsilon G X)= \\
& =\rho^{\prime} \circ(y \circ \rho \circ(s \circ G \epsilon X, f), u \circ \epsilon G X)= \\
& =\rho^{\prime} \circ\left(\rho^{\prime} \circ(y \times \Pi) \circ(s \circ G \in X, f), u \circ \epsilon G X\right)= \\
& =\rho^{\prime} \circ\left(\rho^{\prime} \circ(y \circ s \circ G \in X, f), u \circ \epsilon G X\right)= \\
& =\rho^{\prime} \circ(y \circ s \circ G \epsilon X, u \circ \in G X+f)
\end{aligned}
$$

shows that the stated condition holds.
I.10. DEFINITION. If two cocycles are related as in I. 9 then they are said to be cohomologous.
1.11. PROPOSITION. If f and f^{\prime} are cohomologous, then $D(-, f)$ and $D\left(-, f^{\prime}\right)$ are naturally equivalent functors. I f, in addition, $D(-, f)$ and $D\left(-, f^{\prime}\right)$ are representable, then there is a morphism between the associated homogeneous objects over X.

PROOF. Let

$$
f-f^{\prime}=u_{\circ} G \epsilon X-u_{\circ} \in G X
$$

If (g, h) is in $D(Z, f)$ then $(g, h-u \circ G g)$ is in $D\left(Z, f^{\prime}\right)$, and this defines a natural transformation $D(-, f) \rightarrow D\left(-, f^{\prime}\right)$. The inverse is given by sending (g, h) to ($\left.g, h+u_{\circ} G g\right)$. The second sentence follows from the first and I.7.

QED
It follows from all the above that if $f: G^{2} X \rightarrow \Pi$ is a cocycle and
$D(-, f)$ is representable, then there is a G-trivial Π-principal homogeneous object over X associated to it. Conversely a G-trivial Π-principal homogeneous object over X gives rise to a cocycle. These two assignments are mutually inverse, provided we identify cohomologous cocycles on the one hand, and homogeneous objects if there is a morphism between them on the other. Since $H^{1}(X, \Pi)$ is by definition the abelian group of one-cocycles modulo the relation «is cohomologous to», we see that there is an interpretation of $H^{1}(X, \Pi)$ in terms of equivalence classes of G-trivial Π-principal homogeneous objects over X provided each $D(-, f)$ is representable.

In the next section we will give some necessary and sufficient conditions for a given $D(-, f)$ to be representable. For now, we offer the following problem :

Give necessary and sufficient conditions that a functor $F: \underline{A}^{o p} \rightarrow \underline{\text { Sets }}$ be naturally equivalent to $D\left(-f:\right.$ for some cocycle $f: G^{2} X \rightarrow \Pi$.

II. NECESSARY AND SUFFICIENT CONDITIONS FOR $D(-, f)$ TO be REPRESENTABLE.

Given a cocycle $f: G^{2} X \rightarrow \Pi$, under what conditions is $D(-, f)$ representable? The main purpose of this section is to provide two necessary and sufficient conditions for the representability of $D(-, f)$. The results of Section I serve as motivation for interest in this question. Throughout this section, let $f: G^{2} X \rightarrow \Pi$ be a cocycle and assume $G^{n} X \times \Pi$ exists for $0 \leqslant n \leqslant 3$.
II.1. PROPOSITION. If $f=0$, then $D(-, f)$ is represented by $X \times \Pi$.

PROOF. Define $\underline{A}(Z, X \times \Pi) \rightarrow D(Z, f)$ by sending (z, a) to $\left(z, a_{\circ} \epsilon Z\right)$. This obviously gives a natural transformation. For its inverse, if (g, h) is in $D(Z, f)$, then $h \circ G \epsilon Z=h \circ \epsilon G Z$, so there exists a unique

$$
a: Z \rightarrow \Pi \text { such that } a \circ \epsilon Z=h
$$

thus sending (g, h) to (g, a) provides an inverse. This result also follows from II.6.
II.2. DEFINITION. A three-tuple (G, ϵ, δ) is a cotriple on \underline{A} if $G: \underline{A} \rightarrow \underline{A}$ is a functor, $\epsilon: G \rightarrow \underline{A}$ and $\delta: G \rightarrow G^{2}$ are natural transformations such that

$$
\epsilon G \circ \delta=G=G \epsilon \circ \delta \quad \text { and } \quad \delta G \circ \delta=G \delta \circ \delta
$$

II.3. PROPOSITION. If (G, ϵ) is part of a cotriple (G, ϵ, δ) on \underline{A} and $X=G X_{0}$ for some X_{0} in \underline{A}, then $D(-, f)$ is represented by $X \times \Pi$.

PROOF. If (z, a) is in $\underline{A}(Z, X \times \Pi$), then a short computation (using II. 2 and the fact that f is a cocycle) shows that

$$
\left(z, a_{\circ \epsilon} Z+f \circ G \delta X \circ G z\right)
$$

is in $D(Z, f)$. Thus

$$
\psi Z(z, a)=(z, a \circ \in Z+f \circ G \delta X \circ G z)
$$

defines a function

$$
\psi Z: \underline{A}(Z, X \times \Pi) \rightarrow D(Z, f)
$$

and $\psi: \underline{A}(-, X \times \Pi) \rightarrow D(-, f)$ is obviously a natural transformation. Given (g, h) in $D(Z, f)$ one can see (for the same reasons as before) that

$$
(h-f \circ G \delta X \circ G g) \circ G \epsilon A=(h-f \circ G \delta X \circ G g) \circ \epsilon G A
$$

Hence there is a unique

$$
a: Z \rightarrow \Pi \quad \text { such that } a_{\circ} \subset Z=h-f \circ G \delta X \circ G g
$$

It is easy to verify that the inverse of ψZ is given by sending (g, h) to ($g, a)$.

QED
II.4. Lemma. Let $Z_{-}: \Gamma \rightarrow \underline{A}$ be a functor which has a colimit C :

Then there is a function $\theta: D(C, f) \rightarrow \lim D\left(Z_{-}, f\right)$ which is one-to-one. PROOF. Define

$$
\theta(g, h)=\text { the family }\left(g \circ i_{a}, h_{\circ} G i_{a}\right) \text { for } a \text { in } \Gamma
$$

this clearly defines a function. To see that it is injective, suppose (g, h) and $\left(g^{\prime}, h^{\prime}\right)$ are members of $D(C, f)$ such that

$$
\left(g \circ i_{\alpha}, h_{\circ} G i_{\alpha}\right)=\left(g^{\circ} \circ i_{\alpha}, h_{\circ}^{\prime} G i_{\alpha}\right)
$$

for each α in Γ. Then since

$$
C=\operatorname{colim} Z_{-} \text {and } g \circ i_{\alpha}=g^{\prime} \circ i_{\alpha},
$$

it follows that $g=g^{\prime}$. Now

$$
\left(h-h^{\prime}\right)_{\circ} G \epsilon C=f_{\circ} G^{2} g+h_{\circ \epsilon} G C-f_{\circ} G^{2} g^{\prime}-h_{\circ}^{\prime} \in G C=\left(h-h^{\prime}\right)_{\circ} \epsilon G C
$$

so there exists a unique

$$
a: C \rightarrow \Pi \text { such that } a \circ \epsilon C=h-h^{\prime} .
$$

If $a=0$ then we will be done. But for each α in Γ,

$$
a \circ i_{\alpha} \circ \epsilon Z_{\alpha}=a \circ \epsilon C \circ G i_{\alpha}=h \circ G i_{\alpha}-h_{\circ}^{\prime} \circ G i_{\alpha}=0
$$

so $a \circ i_{a}=0$. Since $C=\operatorname{colim} Z_{-}, a=0$.
II.5. THEOREM. Suppose that \underline{A} is cocomplete and $G X \times \Pi$ has only a set of regular quotients (i.e. quotients which are coequalizers). Then, $D(-, f)$ is representable if and only if the function θ of II.4 is onto for all functors Z_{-}: that is, if and only if $D(-, f)$ preserves limits.

PROOF. Obviously if $D(-, f)$ is representable then it preserves limits. Conversely, it suffices to verify the solution set condition [5, V.6.3]. Let L be the class of all coequalizers of the form

$$
G^{2} Z \xrightarrow[(G g \circ \epsilon G Z, h \circ \epsilon G Z)]{(G g \circ G \epsilon Z, h \circ G \epsilon Z)} G X \times \Pi \xrightarrow{q} C
$$

for all Z in \underline{A}, and all (g, h) in $D(Z, f)$. Since L is a subclass of the set of all regular quotients of $G X \times \Pi$, it is a set. We proceed to show that L is a solution set for $D(-, f)$. Since $D(-, f)$ preserves limits, if ($g, h)$ is in $D(Z, f)$ then

$$
D(C, f) \longrightarrow D(G X \times \Pi, f) \longrightarrow D\left(G^{2} Z, f\right)
$$

is an equalizer. Now

$$
\left(\epsilon X \circ p_{1}, f \circ G p_{1}+\epsilon \Pi \circ G p_{2}\right)
$$

is in $D(G X \times \Pi, f)$ since f is a cocycle, and its two images in $D\left(G^{2} Z, f\right)$ are

$$
\left(\epsilon X \circ G g \circ G \epsilon Z, f \circ G^{2} g \circ G^{2} \varepsilon Z+\epsilon \Pi_{\circ} \circ h \circ G^{2} \epsilon Z\right)
$$

and

$$
\left(\epsilon X \circ G g \circ \epsilon G Z, f \circ G^{2} g \circ G \epsilon G Z+\epsilon \Pi \circ G h \circ G \epsilon G Z\right) .
$$

But these images are equal by the naturality of ϵ and the fact that (g, h) is in $D(Z, f)$. Hence there exists a unique $\left(g^{\prime}, h^{\prime}\right)$ in $D(C, f)$ such that:

$$
g^{\prime} \circ q=\epsilon X \circ p_{1} \text { and } h^{\prime} \circ G q=f \circ G p_{1}+\epsilon \Pi \circ G p_{2}
$$

Noticing that

$$
q \circ(G g, h) \circ \in G Z=q \circ(G g, h) \circ G \in Z,
$$

we find a unique

$$
k: Z \rightarrow C \text { such that } k \circ \in Z=q \circ(G g, h) .
$$

If

$$
g^{\prime} \circ k=g \text { and } h^{\prime} \circ G k=h,
$$

then the solution set condition will be verified. But we have

$$
\begin{aligned}
& D(\epsilon Z, f)\left(g^{\prime} \circ k, h^{\prime} \circ G k\right)=\left(g^{\prime} \circ k \circ \epsilon Z, h^{\prime} \circ G k \circ G \epsilon Z\right)= \\
& \quad=\left(g^{\prime} \circ q \circ(G g, h), h^{\prime} \circ G q \circ G(G g, h)\right)= \\
& \quad=\left(\epsilon X \circ p_{1} \circ(G g, h),\left(f \circ G p_{1}+\epsilon \Pi \circ G p_{2}\right) \circ G(G g, h)\right)= \\
& \quad=\left(\epsilon X \circ G g, f \circ G^{2} g+\epsilon \Pi \circ G h\right)=\left(g \circ \epsilon Z, f \circ G^{2} g+h \circ \epsilon G Z\right)= \\
& \quad=(g \circ \epsilon Z, h \circ G \epsilon Z)=D(\epsilon Z, f)(g, h),
\end{aligned}
$$

and $D(\epsilon Z, f)$ is one-to-one since

$$
D(Z, f) \longrightarrow D(G Z, f) \Longrightarrow D\left(G^{2} Z, f\right)
$$

is an equalizer.
II.6. THEOREM. In order that $D(-, f)$ be representable it is necessary and sufficient that the following «descent-type» condition (see [3,4]) be fulfilled: For the diagram

there should exist $G X \times \Pi \xrightarrow{q} Y \xrightarrow{p} X$ such that
i)

is a pullback and
ii) $q \circ\left(\epsilon G X \circ p_{1}, p_{2}\right)=q \circ\left(G \epsilon X_{\circ p_{1}}, f \circ p_{1}+p_{2}\right)$.

PROOF. Suppose that Y represents $D(-, f)$. Then by I. 6 there exists the structure of G-trivial Π-principal homogeneous object on Y, say

$$
(Y \xrightarrow{p} X, \rho: Y \times \Pi \rightarrow Y, s: G X \rightarrow Y)
$$

Let $q=\rho$ o($s \times \Pi): G X \times \Pi \rightarrow Y$. Condition ii follows from I. 4 and the last sentence of I.6. For condition i, recall that in any category

is a pullback. Applying this with $u=s$ and $C=\Pi$ and using I.2.i we see that each square in

is a pullback. Now the juxtaposition of two pullbacks is a pullback, $p \circ s=$ $=\epsilon X$ by I.2.ii, and $\rho \circ(s \times \Pi)=q$. Hence condition i has been verified.

Conversely assume conditions i and ii. Define $D(Z, f) \rightarrow \underline{A}(Z, Y)$ by sending (g, h) to $b: Z \rightarrow Y$, where b is the unique map such that

$$
b \circ \epsilon Z=q \circ(G g, h) .
$$

Such a morphism exists since

$$
\begin{aligned}
& q \circ(G g, h) \circ \epsilon G Z=q \circ\left(\epsilon G X \circ p_{1}, p_{2}\right) \circ\left(G^{2} g, h_{\circ \epsilon} G Z\right)= \\
& \quad=q \circ\left(G \epsilon X \circ p_{1}, f \circ p_{1}+p_{2}\right) \circ\left(G^{2} g, h \circ \epsilon G Z\right)= \\
& \quad=q \circ\left(G \epsilon X \circ G^{2} g, f \circ G^{2} g+h \circ \epsilon G Z\right)= \\
& \quad=q \circ(G g \circ G \epsilon Z, h \circ G \epsilon Z)=q \circ(G g, h) \circ G \epsilon Z
\end{aligned}
$$

Then $D(-, f) \rightarrow \underline{A}(-, Y)$ so defined is clearly a natural transformation. Given $a: Z \rightarrow Y$, consider

Since the outside diagram commutes and the inside is a pullback, there exists a unique

$$
k: G Z \rightarrow \Pi \text { such that } q \circ(G(p \circ a), k)=a \circ \in Z
$$

I claim that $(p \circ a, k)$ is in $D(Z, f)$, and this will be true provided

$$
(G(p \circ a), k) \circ G \epsilon Z=\left(G \epsilon X_{\circ} p_{1}, f \circ p_{1}+p_{2}\right) \circ\left(G^{2}(p \circ a), k \circ \epsilon G Z\right)
$$

These will be equal if their compositions with p_{1}, as well as q, are equal. The first components are obviously equal, and

$$
\begin{aligned}
& q \circ\left(G \epsilon X \circ p_{1}, f \circ p_{1}+p_{2}\right) \circ\left(G^{2}(p \circ a), k \circ \epsilon G Z\right)= \\
& =q \circ\left(\epsilon G X \circ p_{1}, p_{2}\right) \circ\left(G^{2}(p \circ a), k \circ \epsilon G Z\right)= \\
& =q \circ(G(p \circ a) \circ \epsilon G Z, k \circ \epsilon G Z)=q \circ(G(p \circ a), k) \circ \epsilon G Z= \\
& =a \circ \epsilon Z \circ \epsilon G Z=a \circ \epsilon Z \circ G \epsilon Z=q \circ(G(p \circ a), k) \circ G \epsilon Z .
\end{aligned}
$$

Hence we can map $\underline{A}(Z, Y) \rightarrow D(Z, f)$ by taking a to ($p \circ a, k$), where k is uniquely determined by the condition

$$
q \circ(G(p \circ a), k)=a \circ \epsilon Z
$$

We need to show, using the above notation, that

$$
(g, h)=((p \circ b), k) \text { and } a=b .
$$

For the first,

$$
p \circ b \circ \epsilon Z=p \circ q \circ(G g, h)=\epsilon X \circ p_{1} \circ(G g, h)=g \circ \epsilon Z
$$

so that $p \circ b=g$, and thus $k=h$ since

$$
q \circ(G(p \circ b), k)=b \circ \epsilon Z=q \circ(G g, h)=q \circ(G(p \circ b), h) .
$$

For the second,

$$
b \circ \epsilon Z=q \circ(G(p \circ a), h)=a \circ \epsilon Z \text { so } b=a
$$

QED
II.7. COROLLARY (Beck[1]). If $U: \underline{A} \rightarrow \underline{B}$ is tripleable (also called monadic in [5]) with left adjoint $F, G=F U$, and $U G^{n} X \times U \Pi$ exists for $0 \leqslant n \leqslant 2$, then $D(-, f)$ is represented by the coequalizer (which exists)

$$
G^{2} X \times \Pi \frac{\left(\epsilon G X \circ p_{1}, p_{2}\right)}{\left(G \epsilon X \circ p_{1}, f \circ p_{1}+p_{2}\right)} G X \times \Pi \xrightarrow{q} Y
$$

PROOF. We have the following U-split coequalizer diagram [5]:

where $\eta: \underline{B} \rightarrow U F$ is the unit for the adjunction. The only problem invol-
ved in the verification is that $f \circ F \eta U X=0$, but

$$
\begin{aligned}
& \quad f \circ F \eta U X=f \circ G \epsilon G X \circ G F \eta U X \circ F \eta U X= \\
& =f \circ G^{2} \epsilon X \circ G F \eta U X \circ F \eta U X+f \circ \epsilon G^{2} X \circ G F \eta U X \circ F \eta U X= \\
& =f \circ F \eta U X+f \circ F \eta U X \circ \epsilon G X \circ F \eta U X=f \circ F \eta U X+f \circ F \eta U X .
\end{aligned}
$$

Since U is tripleable, there exists $G X \times \Pi \xrightarrow{q} Y$ as asserted, and such that

$$
U q=\left(U_{\epsilon} X \circ U p_{1}, U f \circ \eta U G X \circ U p_{1}+U p_{2}\right)
$$

Since

$$
\begin{aligned}
& \epsilon X \circ p_{1} \circ\left(\epsilon G X \circ p_{1}, p_{2}\right)=\epsilon X \circ \epsilon G X \circ p_{1}= \\
& =\epsilon X \circ G \epsilon X \circ p_{1}=\epsilon X \circ p_{1} \circ\left(G \epsilon X \circ p_{1}, f \circ p_{1}+p_{2}\right)
\end{aligned}
$$

and q is a coequalizer, there exists a unique

$$
p: Y \rightarrow X \text { such that } p \circ q=\epsilon X \circ p_{1}
$$

By II. 6 we need only see that $p \circ q=\epsilon X \circ p_{1}$ is a pullback diagram. But since U creates limits [5], it suffices to prove that

$$
U_{\epsilon} X \circ U p_{1}=U p \circ U q=U p_{1} \circ\left(U \epsilon X \circ U p_{1}, U f \circ \eta U G X \circ U p_{1}+U p_{2}\right)
$$

is a pullback. This was first noticed by Duskin and is proved in [2].
QED
We will end with two examples in which II. 7 is not directly applicable but II. 6 is. Let \underline{A} be the category of torsion-free abelian groups and all homomorphisms. Let (G, ϵ, δ) be the free abelian group cotriple on \underline{A}. Then ϵ is the coequalizer of ϵG and $G \epsilon$ in \underline{A}. If $f: G^{2} X \rightarrow \Pi$ is a cocycle in \underline{A} then we can verify II .6 by using II. 7 indirectly. Consider the diagram of II .6 in the category of abelian groups. By II.7, $D(-, f)$ is represented by an abelian group Y; if Y is in \underline{A} then we will be done. But, by I.6,

$$
0 \rightarrow \Pi \rightarrow Y \rightarrow X \rightarrow 0
$$

is an exact sequence of abelian groups and hence Y is in \underline{A}.
An example in which the technique of the last paragraph is not available is that of «simplicially generated" spaces. Let G be the functor which
assigns to a topological space the geometric realization of its singular simplicial set. Then there exist ϵ, δ making G a cotriple. Let \underline{A} be the category of spaces X such that ϵX is the coequalizer of $\epsilon G X$ and $G \epsilon X$, and all continuous maps. Then (G, ϵ, δ) is a cotriple on A and it is not (known to be) the cotriple of any tripleable adjoint pair. If $f: G^{2} X \rightarrow \Pi$ is a cocycle and Π is discrete, then a space in \underline{A} representing $D(-, f)$ would be a kind of simplicially generated simplicial covering space of X.

REFERENCES.

1. J. BECK, Triples, Algebras and Cohomology, Dissertation, Columbia University, 1964-67.
2. J. DUSKIN, Simplicial mehtods and the interpretation of «triple» cohomology, Memoirs A.M.S. vol. 3, issue 2 , $\mathrm{n}^{\circ} 163,1975$.
3. J. GIRAUD, Méthode de la descente, Mémoires Soc. Math. France 2 (1964).
4. A. GROTHENDIECK, Techniques de descente et théorèmes d'existence en Géométrie algébrique, I, Séminaire Bourbaki 12, exposé no 190 (1959-60).
5. S. MAC LANE, Categories for the working mathematician, Graduate Texts in Math. 5, Springer, 1971.

Department of Mathematics
University of New Hampshire
DURHAM, N. H. 03824
U.S. A.

