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CAHIERS DE TOPOLOGIE Vol. XVIII-3 (1977)
ET GEOMETRIE DIFFERENTIELLE

ON CATEGORIES INTO WHICH EACH CONCRETE CATEGORY
CAN BE EMBEDDED. II

by Véclav KOUBEK

Given a contravariant functor F from sets to sets, the category S(F )
has for objects pairs (X, S), with X a set and S C FX ; morphisms are map-
pings f:(X,S)>(Y,T) such that Ff(T)CS. The paper characterizes
those functors F for which S(F) is a universal category, i.e. every con-
crete category can be fully embedded into it. The characterization is very
simple : F must be nearly faithful, i.e. there must be a cardinal a such that
for arbitrary mappings f, g: X > Y we have: if f #g, then either Ff# Fg
or cardf(X)<a, cardf(Y)< a.

The paper continues the author's previous characterization of cova-
riant functors F for which S( F) (defined analogously) is binding. There are
striking similarities between the two cases, yet the main result here has no

analogy in the covariant case.

CONVENTIONS. Set denotes the category of sets and mappings.

The word «functor» will denote a contravariant set functor.

Let e be a decomposition of a set X . Then the canonical mapping from
X to X/ e will be denoted by e, therefore the class of e containing x is
denoted e(x ).

If f: X-» Y is a mapping, then Kerf is the canonical decomposition of
frie Kerf={f1(y)|yelmnf}.

The cardinal @ is meant as the set of all ordinals with type less than

a ; at denotes the cardinal successor of a .

DEFINITION. A concrete category is called universal if every concrete cat-

egory can be embedded into it.

2%9



2 V. KOUBEK

THEOREM 1.1. The category S(P") is universal.

PROOF. See [8].

NOTE. We recall the definition of the functor P~ :
P(X)={Z|ZcX},
if f: X> Y then forevery Z¢ P°Y, P'f(Z)=f'I(Z).

DEFINITION. A full embedding ¥ from the concrete category (K, U) to the
concrete category (L, V) is called strong if there exists a set functor F:

Set » Set such that the diagram

K b4 L

1

Set F Set

commutes.
DEFINITION. An object is rigid if it has no non-identical endomorphism.
Now we shall describe a «behaviour » of the functor F .

CONVENTION. Let F be a functor. Then for a cardinal a, F® denotes the

subfunctor of F such that

F%Y = ImFf,
cardUZ<a.erZY mEf

where ZY is the set of all mappings from Y to Z .

DEFINITION [4]. A cardinal a > 1 is an unattainable cardinal of a functor
F if Fa-F% # . Then put

+
FX=F* X-F°X.
The class of all unattainable cardinals of F is denoted by Ap.

THEOREM 1.2. Let X be aninfinite setsuch that there exists a € Ap , with
a< cardX. Then card FX > card2” .

PROOF. See [4].

DEFINITION. Let f,g: X+ Y be mappings onto. Then f, g are diverse if
there exists Z C X such that either
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ON CATEGORIES INTO WHICH... 3

f(Z)=Y and cardg(Z)<cardY

or

g(Z)=Y and cardf(Z)< cardY.
A system (@ of mappings from X to Y is called diverse if arbitrary distinct

mappings f, ge @ are diverse.

PROPOSITION 1.3. If a is an unattainable cardinal of a functor F and if

f»g: X > a are diverse, then
Ff(Fyaa)nFg(Fa)=0.
PROOF. See [4].

LEMMA 1.4. Let X be an infinite set. Then for every infinite cardinal a with

a < card X there exists a diverse system (& of mappings from X to a such
that card@ = card 2% .

PROOF. See [4].
DEFINITION. We say that f: X > Y is coarser than g: X > Z if there exists
h:Z - Y suchthat hog =f.

PROPOSITION 1.5.If f: X> Y then ImFf= ulmFg where the union is

taken over all g: X > a coarser than f and a ¢ A .

PROOF. See [7].

DEFINITION. Let F be a functor, x ¢ F X . Define
T%(x)={ e| e is a decomposition of X, xe ImFe}.
Further we shall write
I ?%(x) | =min{ cardime | ee?%(x)}.
PROPOSITION 1.6. Let F be a functor; then ae Ap iff there exists xeF X
such that || ?)F((x) | =a forcardX >a. Further ye F Y iff | ?;(y)" =a.

PROOF. Clearly x{ F*a . On the other hand x ¢ In Ff, where f: X > Y is

onto and cardY = a ; therefore x¢ F X and ae Ap . The rest is evident.
COROLLARY L7.1f | g}lg(x)ll is finite, then there exists e with

?%(x)={ e'| e is coarser than e'}.
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4 V. KOUBEK

PROOF. If e #e' and
cardime' = cardIme < R,
then e and e’ are diverse and by Proposition 1.3 we get Corollary 1.7.
PROPOSITION 1.8. Let F be a functor, f: X+ Y. Then for every yeFY
it holds
3§(Ff(y)) O{ e’| there exists ee ?{-(y), eof is coarser than e'}.
PROOF is easy.
PROPOSITION 1.9. Let F be a functor, ye FY. If for some & ¢ ?%(y) and
for some f: X Y, eof is onto, then '
?’;{Ff(y)) ={ e'| there exists ee¢ g%(l’), eof is coarser than e'}.
PROOF. There exists a mapping b such that eofok = id, then
FeoFhoFf(y)=FeoFhoFfoFe(z)=Fe(z)=y,
where ze¢ F(Y/e) with Fe(z)=1y. Now by Proposition 1.8 we get Pro-
position 1.9.
DEFINITION. Let F be a functor. For x ¢ F X denote by e, the finest de-
composition which is coarser than each ee¢ 3"% (x).
NOTE. If a is a finite cardinal and x ¢ F X, then e, ¢ .‘P,—,‘-(x).
COROLLARY 1.10. Let F be a functor, o a finite cardinal. If, for some
f: X» Y and for some ye F Y we have Ff(y)e F X, then
erf(y)= Ker(eyo f).
PROOF is easy.

o
LEMMA 2.1. The object (6, V) is a rigid object of S(P~ ), where
v={{o},{1},{2},{3},{4},1{5},10,1},1{0,2},1{0,3},10,4},
{1,2};{1’3}’{195}’{2,4};{2,3,4’5},{1,3’4s5¥s
{1,2,4,5},11,2,3,5},10,3,4,5},10,2,4,5},10, 2, 3,4},

{0’1’3’5}’{1,2’3,435}9{0:2’3’4’5},{0’1’3’435}’
{091’2)4’5},{0’1,273’5}’{0s1,2’3,4} }
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ON CATEGORIES INTO WHICH... 5

PROOF. Since @tV and for every i ¢6, {i}e V we get, if f:(6,V)+(6,V)
is a morphism of S( P~ ), then f is a bijection. Therefore for every {i,j}e V

we have .
Fra 3 =), Fletev.
Hence
card{ {i,j eV |je6-1i} V< cardd {f1(i),j eV |je6-{f1(i)}}
for every i e 6 and thus we get for every i € 6,
cardt i, e V| je6-1i}} = cardt {f (i), jYeV]je6-Lf1(i)}}.
Hence
ries)=s, fl(2)=2.
Now it is easy to verify that f = id,.
CONVENTION. An object of S(F ) will be called an F-space.
DEFINITION. Denote by E( P ) the full subcategory of S(P") over those
(X,W) for which Ze W implies X-Z e W and Z # 9.
PROPOSITION 2.2. There exists a strong embedding of S(P”) into E(P~).
PROOF. Let (X, W) be a P"-space. Define ¥( X, W) =(XV6,Ws), where:
Ws={Z,XV6-Z| ZeV, cardZ< 3}y
vuifo,1,230Z,1{3,4,50X-Z | ZeW},

for a given f: (X;,W;)>(Xy,W,), ¥f=fVid;. Clearly ¥ is an embed-
ding. We shall prove that it is also full. Let f-¥(X,, W, )-¥(X,,¥,).
First we prove f(XI)CXz. Assume the contrary, i.e. f(x) =i for some
%¢X; and ie 6. Then f'l({i})e(WI)s and therefore either
flo,1,2}) =1}, o f(13,4,5})=ti},
or f((X;V6)-Z)=1i} for some ZeV, cardZ < 3.
Since O (W; )5 and {ile (W,)g for every i e 6, we have 6 C Im f and there-

fore the last case is impossible. Further there exists
j € 6 such that {i,jle (W2)S

and so f1({i,j})e(W;)g. Hence either je f(X;) or f(X;)={i}.In the -
former case we get again either
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6 V. KOUBEK

frto,1,2y)=4j} o f(13,4,5})=1{j}
(we use the fact that {jle(W,)s) and so.6Cf']({i,j}) ; this is a con-

tradiction. In the latter case
['1({i,j})=(X1V6)-Z for some Ze¢V, cardZ< 3
and therefore 6 £ Im f and it is again a contradiction. Hence
f(X;)CXy and f(6)=6.
By Lemma 2.1 we have f/ 6 =id, and f/ X;:(X;,W;)>(X,,W,)is a mor-
phism of S( P~ ). Thus ¥ is a strong embedding.

PROPOSITION 2.3. There exists a full subcategory W of S(P~) such that:

Io if (X,W)e then D} W, O#W and for every x¢ X there exists
ZeW with xeZ ;

2 if fg: (X, Wy)-(Xy,W,) and (X, W), (Xy, Wy )eM, then
there exists Z ¢ Wy with fI(Z);&g'I(Z);

P there exists a strong embedding from S(P~) to M.
PROOF. Define ®: S(P")» S(P") as follows: ®( X, W)=(XV6,Wp) with

Vp = vulio,1,2Y0Z | ZeWiuil3,4,50Z | Z CX};
for a given f:(X;,W,)>(X,,W,) put ®f = fVid,. Evidently ® is an
embedding. Now, we shall prove that, if
f" (X1V6’(W1)6)')(X2v69(W2)D)’
then f(XI)CXz, f(6)C6. For every i€ 6,
{iYe(Wy)p and QF(W;)p,

therefore 6 CImf. We assume that for some x¢ X;, f(x)=ie 6. Then we
have f'I({i})e (W;)p and hence either

fr10,1,2Y)=ti} o f(13,4,5})="ti}.
Further there exists je 6 such that {i,j}e (W, )p, and therefore
i, i) ewy)p.
We, get that f’I({j})nXI # © but then either
frio,1,2})={j} or f(13,4,5})=1{j}
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ON CATEGORIES INTO WHICH ... 7

and hence 6 C f’I({ i,j}) - a contradiction. Thus

f(X,)C Xy, f(6)C6.
By Lemma 2.1, f/6 = id6 and therefore f/X;:(X;,W;)~ (Xy, WZ) is a
morphism of S(P"). Put M =& (S(P")). Evidently ®: S(P" )~ M is a strong
embedding and M has the required properties.

NOTE. The set functor carrying ® (or ¥ )is IV C, where [ is the identity
functor and C; is the constant functor to 6 .
COROLLARY 2.4. There exists a full subcategory § of E(P") such that:
o if (X,W)e§, then W# D ;
2 if f,g:(X,W)-(Y,S) and (X,W),(Y,S)ed, then there exists
ZeSwith fF1(Z)tg1(Z); ‘
3 there exists a strong embedding from S(P" ) to §.

PROOF follows from Propositions 2.2 and 2.3.

THEOREM 2.5. If 2¢ A, then there exists a strong embedding from S(P")
to S(F).

PROOF. Via Proposition 2.2 it suffices to prove that there exists a strong
embedding from E(P" ) to S{F ). Define
QX W)=(X,Wg),

where

Vg ={xe FzX‘ there exists Ze W, Zee,} ;
for a given f: (X, W)~ (Y,S), define Qf =f. Clearly Q is an embedding;
let us prove that it is full. Let f:(X,Wp)» (Y, S;) be a morphism of S( F ).
Then for every xe Sp it holds :

there exist Z;, Z, ¢ S such that {ZI,Zzi =e,
(see Corollary 1.7 and the definition of ( ). On the other hand for every Z

in S there exists

%€ Sp such that {Z,Y-Z}=e, .
Now by Corollary 1.10, we get that

Ulz), X-fHZ)Y = ep ).
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8 V. KOUBEK
Thus f"1(Z)eW and f:(X,¥)-(Y,S) is a morphism of S(P~).

CONSTRUCTION 3.1. Let F be a functor such that ae AF , where a> 1 is
a finite cardinal. Then there exists an object (X, V) of S(F) such that:

1° card X = a+4 ;

20 VCF X

30 for every x ¢ X there exist ¥;,¥y,¢ V such that {x} e ey {x} #eyz;

40 if xeV, then F(e,)(F,a)CV;

5¢ for x¢ X denote by

grx =card{Z | cardZ >1, x¢ Z, there exists ye V, Z¢ e, i,

then grx > 1 with at most one exception ;
6° (X,V) isrigid;
7° if a3z 3 then there exists x¢ X such that grx =1 and if for some
ZCcX,xeZ, gra=1and Ze¢ e, for some y e V then cardZ < 3.
We shall construct these objects by induction in @ . For a =2, the

object exists by Lemma 2.1 and Theorem 2.5.

We assume that for a<n the construction is performed and ne Ay .
Let G be a functor with n-I¢ A; . Let (X', V') be a G-space fulfilling the
conditions 1-7 for n-1. We assume that a X’ and put X = X'u{al}. We

choose an arbitrary decomposition e of X in n classes such that
carde(a) =2 and if grx = 1 for some x¢ X', then xee(a).
Put
V= Fe(F,X/e)uFe(F X/¢)

where the union is taken over all e such that { a} ¢ e and the restriction of
e to X' is equal to e, for some x¢ V'. Let f:(X,V)>(X,V) be a mor-
phism of S(F ) ; then f is a bijection by Corollary 1.10 and Condition 3 for
(X',V'). Further gra =1 and for x¢ X-{a}, grx> 1. Hence f(a)=a.
Clearly f/X':(X',V')> (X', V') is a morphism of S(G) and hence f=idy.

The other required properties are easy to verify.
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ON CATEGORIES INTO WHICH... 9

PROPOSITION 3.2. If a> 2 is a finite cardinal and a € Ap, then there ex-
ists a F-space (X,V) and x% ¢ X such that the following conditions hold :
I (X,V)isrigid, VCF_X;
2 for every y vy eV, cardeyi(El_i)g a-1 for i =0,1, where E;

is the class of ey containing x, ;
i

¥ for every xe X there exist y;,y,e V such that {x} e e71 s {xHeyz.

PROOF. Since a> 2 we can choose by Construction 3.1 the F-space (X, V)
fulfilling Conditions 1-7. Therefore there exists x¢ X with grx = 1. Put
x =%, . Clearly ((X,V), n, ) fulfills Conditions 1- 3 from Proposition 3.2.

LEMMA 3.3. Let a be an infinite cardinal. Then for every set X such that
card X = a and every subsets X;, Xy, X5 of X such that
XinXy=X,nX3=0, cardX; = cardX, = a

and every mapping f: Xy > X5 onto, there exists a diverse system @ of map-
pings g: X+ o such that card@ = card 2% and every ge @ fulfills:

Io for every iea , g'l({i})ﬂXi EO forj=1,2;

20 there exists no non-constant mapping h coarser than g with

h(x)=h(f(x)) for every xe X, .

PROOF. If there exists Z C X3 such that

cardZ < a and card[’I(Z)=a,
then put ¥ = X;-Z . By Lemma 1.4 there exists a diverse system B of map-
pings from Y to a with cardB = card 2X . Now, for every h e B we choose
g: X »a such that g,/ Y=hn, cardg,(Z)=1= cardgh(Xz-f'I(Z)) and,
forie a, gh‘l({i})nf'l(Z);ﬁﬂ.

If there exists no Z C X3 with this property, then we choose a decomposi-
tion {ZI, Z2§ of X, such that

cardZ, = cardZ, = card(X1~f(ZI)) =a.

By Lemma 1.4 there exists a diverse system B of mappings from Z; toa

with card® = card 2%. Now, for every h e B we choose g X» a such that
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10 V. KOUBEK

g/ Z; =h, cordgy(Z,)=cardg,(f(Z;))=1
and for every ie @,

& (1N [(Z) 2 9, g7 (1il)nX £ 0.
Then @ ={g, | he B} has the required properties.

CONDITION A. An F-space (X, V) fulfills the condition A if for arbitrary
subsets XI’ X2’ X3 of X such that

cardX1=cardX2=cardX and X10X2=X20X3 =0

and for arbitrary mapping f: X,> X, onto there exists y ¢ V' such that
a) for every e'e 3’;()') there exists e ¢ ff}Ff(y) coarser than e’, such
that e(x)NX; # O for every xe X and i = 1,2 ;
b) there exists e ¢ 5;‘:()') such that for every e’e 3%(}/) we have
1° e’n*ec ?ﬁ(y) and
2° a mapping kb from X is constant whenever

h(x)=h(f(x)) for every xeX2

and kb is coarser than e (e'n* e denotes a co-intersection of e’ and e).

PROPOSITION 3.4. Let a ¢ Ap be an infinite cardinal such that there exists
xe Foa with non-trivial e, . Then there exists an F-space (X,V ) and a
% of X such that:

a) (X, V) isrigid;

b) cardX =a, VCF_X;

c) for every ae X there exists y, e V such that eya(a) # eya(x,, );

d) (X, V) fulfills condition A.

PROOF. We choose a set X with card X = a and choose x, ¢ X. For every
a we choose a bijection f,: X»> a such that ¢ (f (a))# e, (f,(%,)). Then

eFfa (,‘)(‘1)7é eFfa (x)(xo ).
Put
Bo ={ Ffy(x)] acX-1z 1],

Now, we choose bijections
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ON CATEGORIES INTO WHICH ... 11

Wyccard2X o (f: Xo X | fidyd,
¥y:card2X 5 {(X,,X,, X,,f)| cardX, =cardX, =a,
X NXy=X,nX; =0, f: X,» X, isonto}.
For i ¢ card 2% denote
C,=tyeF, X|F(¥,(i))(y)#y}.
As an application of Lemma 1.4 we get that cardC; = card 2 X, Further for
Wo(i)=(X;, Xy, X;,f) denote
D,={ye F X| there exists ee¢ ff;,{(y) with
1o forevery xe X, e(x)NXj# @ for j=1,2,
2° for every e'¢ ?%(y), e'n*ee ?’;(y),
3° there exists no non-constant mapping from X

coarser than e, with A{x)=h(f(x)) for every
xe€ XZ}.

If we construct the system (I from Lemma 3.3 for ( X7, Xy, X3, f)=¥y(i),
then for every ge @ we have Fg(x)e Di and therefore cardDi = card 2X,

Now we shall construct, by induction on i ¢ card 2 X, sets 53;" @i such that:
card€i< card 2%, fBiC @iﬂ F_X for every i .

Put @0 = %0 . We assume that we have the sets fBi, @l. for i<j.Ifj is a

limit ordinal, put

Ifj=k+1 then
a) we choose x} ¢ C-C, such that F(¥; (k) )(x} )t C,,
b) we choose x2¢ D, -(C ulxl, F(¥,(k))(x})}).
Put
.(Bj =$ku§x,1c,x,2‘}, @i = eku{ x,IC,F(‘I’I(k))(xi), xkzi.
Evidently
card€; < card 2% and B.CC.NF X.

Put V = Ufﬁ]- where the union is taken over all jecard2X. The F-space

( X, V) has the required properties.
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12 V. KOUBEK

LEMMA 3.5. Let (X, V) be arigid F-space. If g;: Y; > X, g,: ¥, > X are
onto, then every mapping h:Y, » Y, such that Fh(Fgo(V))CFg)(V)
fulfills gyoh =g;.

PROOF. Assume the contrary, i.e. g,oh # g ;. Then there exists f: X» ¥,

such that
g10f=idx but g2oh0ff idX'
Further it is clear to verify that gyo ko f is an F-morphism of (X, V) - a

contradiction.

CONSTRUCTION 3.6. Let O=((X,V),x, ) be a couple where (X, V) is
an F-space, card X > 1 and x, ¢ X . For every set Y and every Z C Y define
8z7: U~ X where U=(YX(X-{x,}1))Vix,} as follows

8z(% )=%, gz(¥,%)=% if yeY-Z, zeX-lnl,
gz(y,%)=x if yeZ, xeX-{x}.
Define a functor £gy: S(P")» S(F) :
S0, W)= (U, U Fez(V)),
and for f: (Y, W,)»(Y,,W,) put
Sf =(fxidy._, )V idy, -
Clearly 3y is faithful and if 27y is full, then £y is a strong embedding.
NOTE.If Z,;, Z, are distinct subsets of Y, then 8z, and gz, e diverse.
LEMMA 3.7.Let O =((X,V),%, ) and ZCY.If ye V fulfills:
let ec FX(y) such that for every e'e FX(y), e'n*ec Fh(y),

then Fgy(y) fulfills:
for every ee ?g(FgZ (y)), en*Ker(ecgy)e ?g(ng (y)).

PROOF follows from Proposition 1.9.

LEMMA 3.8. Let n be a finite unattainable cardinal of F. Let an F-space
(X,V) and %, € X fulfill the conditions 1- 3 from Proposition 3.2. If

g: XY, W) 2Y,,W,)
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ON CATEGORIES INTO WHICH ... 13

is an S(F }morphism and Q¢ W, , then for every Z2 € W2 s Z2 £ O, there
exists Z e W, such that F(‘gzzo g)V)c FgZI(V).
PROOF. Assume the contrary, i.e. there exist Yor Y1 € ng (V) such that:
’ 2
Fg(yo)e FgZO(V) and Fg(yl)c FgZI(V) where ZO#ZI.
We can assume that there exists ve Zo-ZI . Put Fg(y,) =z, fori=0,1I.

Then
cardgzo({vb((X-{xo }))>n-1 and {vix(X-{x,1})C gzl(xo ).

By Corollary 1.10 we get that
carde g o({v}x X-{x })) >n-1
‘0( 22 ( 0 )

and
etl(x,, )D gzzo gllolx(X-{x, 1))

where ¢, t; ¢ V such that ngz(ti) =y, for i = 0,1 ; but this contradicts
the Condition 2 from Proposition 3.2.
LEMMA 3.9. Let a be an infinite unattainable cardinal of F. Let (X, V)
and x, € X fulfill the conditions a-d from Proposition 3.4. If

g:ZO(YI,WI)» EO(Yz,W )
is an S(F }morphism and O} Wl , then for every Z,e W,, Z2 # O there
exists ZIc WI such that F(522° g)V)c FgZI(V).
PROOF. Assume the contrary, i.e. there exist y,, ¥ ¢ ngz( V) such that:

Fg(y;)e ngi”/) for i =0,1,

where Z, # Z ;. We can assume that ve ZO -Z, and we Z; . Put
U =(Y,x(X-{x }))Vixt for i=1,2.
U
By Proposition 1.8 and Lemma 3.7 there exists ¢; € ?FI (Fg(y;)) such that
e; is coarser than

Ker N* Ker for i =0,1.
822°8 Szi
Therefore we get that
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14 . V. KOUBEK

card(gzzog({ vixX(X-{x1))- gzzog({w}X(X-[x,, 1)) =

=card(gz2og({w}><(X-lxoU)-gzzos(fle(X-{xoU))=a-
Put

X, =gz2°g({v}x(X-{xo i))-gzzog(ile(X-{x,,}))

X, = 8z2,° gliwix(X-{x}))- g2, givix(X-{x1)),

X, =lgz08((v:x)) | g7,08((w,x))e Xy},

f(gzz° gl(w,x)))= 8z,° gl(v,x) ).
Since v} Z, we have X,nX,=@. Clearly X;nX,= and [ is onto.
Therefore there exists te ¥ from Condition A for (X,,X,, X, , f). Denote:

v3=Feg (t) z3=Fely;), z3ngzst)-

U
By a, Condition A we have v,we Z3 . Further there is e; € FFI (z4) coar-
ser than Kergz3 and Ker(eoo gzzo g), where e ¢ ?%(t) from b of Con-
dition A. Hence there exists a mapping p such that e, = po egogz2o g -

Since e

; is coarser than Kerg23 we get that

poeo(x) =poeo(f(x)) for every xe X2

- and thus po €, is constant and so is €;- This contradicts

z, ‘ng3(V)Cnga(FaX)CFaUI'

THEOREM 3.10. Let a > 2 be an unattainable cardinal of F. Then there ex-
ists a strong embedding from S(P") to S(F) whenever there exists x¢ F X

such that €, is non-trivial.

PROOF. Let (X, V) be an F-space and x, ¢ X fulfilling the conditions 1-
3 from Proposition 3.2 if a is finite, or the conditions a-d from Proposi-
tion 3.4 if a is infinite. We shall restrict the functor E@ to the category
M, where O=((X,V),% ). By Lemmas 3.8 and 3.9, if

g:2n(Y,, W, )» (Y, ,W,)
is an S(F )-morphism, then for every Z, ¢ W, there exists

Z;e W, such that F(gzzo g)(V)C ngI(V)
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and then by Lemma 3.5 gz2° g= gZI. Since W2 is a cover of Y2 , we get
that

g(YIX{a})C Y3 x{a}l for every ae X-{x,} and g(x )=1x .
For every ae X-{x }, define g_: ¥, » ¥, as follows:
8,() =y, iff g((y;,a))=(y,y,a).
Then g :(Y,, W, )+ (Y,,W,) is an S(P" )-morphism for every ae X-{x,}.
Further for every a, be X-{x} and every ZeW ,
g (Z)=8y"1(Z).
Properties of M imply that g, = g, for every a, be X-{x, }, thus 2y is
a strong embedding from M to S(F ). By Proposition 2.3, we obtain the The-

orem.

v

DEFINITION [9]. We say that a colimit of a diagram D: Ds X is absolute
if every covariant functor F: K » £ preserves it.
LEMMA 4.1. Let

fi: A-> Bi’ 8;: Bi-> C,i=12,
be morphisms of the category K and let

hI:BI»A, h2:C»B2
be morphisms of K such that

8 ofI = g,0 fz, fzo h, =h2o 81> froh; = idBI, gohy, =id.

Then the push-out of fl A- Bi’ i =1, 2, is absolute.
PROOF. See [10].

LEMMA 4.2. Let f: X> Y, g: X+ Z be mappings onto such that there ex-
ists exactly one zeZ with cardg !(z)> 1. Then the push-out of f, g is

absolute.

PROOF. Let hI: Y>V, hy:Z>V be this push-out. Choose kyp:Y->X

263



16 V. KOUBEK

such that fok, =id, and
ki(y)egl(lg(z)}) whenever f1(ly})ng I(lg(z)})£D.
Further we choose k PY V » Z such that
hyok, =id, and kyohyog(z)=g(z)
and
ky(v)=gok;(h; (v)) for veV-{hyg(z)} .

It is easy to verify that the definition of k, is correct and gok ;=kyoh, .

Now, Lemma 4.2 follows from Lemma 4.1.

DEFINITION. A decomposition e is called finite if every class of e is finite

and e has only a finite number of non-singleton classes.

COROLLARY 4.3. Let F be a functor, xe FX. If e, ={ X}, then every fi-

nite decomposition is an element of ff;;-((x)

PROOF. If e is a finite decomposition, then e is a co-intersection of de-
compositions e;, i =1,2,....n such that every e; has only one non-sin-
gleton class. If ¢; € ?;.{(x) then by induction we get from Lemma 4.2 that

ec %(x) Further every decomposition e; is a co-intersection of
e{., ji=1,2,...,m,

where every decomposition eé has only one non-singleton class and every
class of e{. has at most two points. Now, by induction we get from Lemma
4.2 that

€€ 3"'% (x) whenever every eé € ff’;(x)

Since e, = { X}, it is easy to verify by Lemma 4.2 that every e{: € 3"%(:\:)

We recall the definition of the union and the co-union.

DEFINITION. Let f: Y > X, g: Z » X be monomorphisms. The monomorphism

h:V-» X is called a union of f, g (we shall write fUg =k ) if there exist
f1: Y-V, g;:Z+V suchthat hof, =f, hog; =¢g
and for every h’: V' X for which there exist

f2: Y-v, gZ:Z-» V' such that h'o fo=f h'logy=¢g
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there exists
hI.‘ V" V' With h =h'°hl'

The dual notion is a co-union (we shall write b = fU* g if h is a co-union

of f,g)
The covariant set functor F preserves finite unions if for arbitrary one-

to-one mappings f: Y > X, g: Z > X we have
FfuFg=F(fug).
F preserves unions with a finite set if for arbitrary one-to-one mappings
f:X->Y, g:Z-Y with Z finite,
we have FfuFg=F(fug).

The contravariant set functor F dualizes finite co-unions if for arbitrary

mappings f: X»> Y, g: X+ Z onto, we have
FfuFg=F(fu*g);
F dualizes co-unions with a finite decomposition if for arbitrary mappings
f: X->Y, g: X> Z onto, where Kerg is a finite decomposition, we have
FfuFg=F(fu*g).
DEFINITION. A set functor F (covariant or contravariant ) is said to be near

ly faithful if there exists a cardinal a such that, for arbitrary mappings f#
g:X-»Y, Ff=Fg implies that

cardf(X)< a and cardg(X)< a.

MAIN THEOREM 4.4. Let F be a contravariant set functor. Then S(F) is
a universal category if and only if F is nearly faithful.

To prove the Main Theorem we shall first prove a detailed characte-
rization Theorem analogous to the covariant case (see below). Notice that

the (covariant) identity functor / is faithful but S{/) is far from universal.

First we recall that a permutation with only one 2-cycle is called a

transposition.

THEOREM 4.5. For a contravariant functor F the following conditions are
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18 V. KOUBEK

equivalent :
Io S(F ) is universal;
2 there exists a strong embedding from S(P") to S(F);
» S(F) has more than card2F 9+ card 2F1 non-isomorphic rigid spaces;
4 there exists a rigid F-space (X, V) with card X> 1 ;
50 F does not dualize co-unions with finite decomposition;
6° there exists a set X and x¢ F X such that e, is non-trivial;
7 there exists a set X and a transposition

t: X+ X suchthat Ft#Fidy;

8 there exists a cardinal a such that for every set X with cardX 2 a
and every transposition t: X » X it holds Ft # F idy .

PROOF. We recall that 6 = 2 follows from Theorems 2.5 and 3.10. The

implication 2 = 1 follows from Theorem 1.1. The implications
1=> 3 =>4
are evident. Further 5 = 6 follows from Corollary 4.3 and Proposition 1.5.
The implication 8 => 7 is obvious and so is
non 8 = non4 -thus 4 = 8.
Therefore the theorem will be proved as soon as we show that
7= 6 and 6 = 5.

7=> 6. Let t: X> X be a transposition such that Ft # F idy ,therefore
there exists x e FX such that Ft(x)# x. Denote a, b distinct points of
X such that

t(a)=b, t(b)=a.
If exz{X} , then there exists e ¢ ?g(x) with e(a) ={a, b} and
e(y)={y} for ye X-{a,b}.
Then e =eot and thus FtoFe =Fe - hence Ft(x)=x, because x is
in InFe - a contradiction.
6 = 5. Let x¢ FX such that e, is non-trivial. By Proposition 1.9 we can

suppose that there exists ae¢ X such that {a}} e, . We choose be X such
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ON CATEGORIES INTO WHICH ... 19

that e, (a) # e, (b). Let
e; ={X-la},{al}, e, ={la,b}}uilx}|xe X-{a,b}}.

We have that x{ InFe;Ulm Fe,. On the other hand e, is a finite decom-

position and e; U* e, = idy .

PROOF OF MAIN THEOREM. If F is nearly faithful, then F fulfills the con-
dition 8 of Theorem 4.5 and thus S( F) is universal. If S( F) is universal,
then F fulfills the condition 7 of Theorem 4.5 and by [5] it is nearly faithful.

We recall the analogous results on covariant set functors. Here, in-
stead of universality, those F are characterized for which S{ F) is binding.
(This means that the category of graphs is fully embeddable in S{F) and,
assuming the non-existence of too many non-measurable cardinals, it is the
same as universality, see [3] .) Let us remark that via Theorem 4.5, S(F)

is universal iff it is binding, for contravariant F .
For a covariant set functor F, denote for x¢ F X,
?;,-‘(x) ={ZCX|xelmFi, i:Z~> X is the inclusion}.
It is well-known ( see [11] ) that either ff%(x) is a filter or

FE(x)olpy =epZ ={Z|ZCX}.

THEOREM 4.6. For a covariant set functor F the following conditions are
equivalent :
I S(F ) is binding;
20 there exists a strong embedding from the category of graphs to S(F );
¥ S(F) has more than

F1
card 2F 9 + (card2F 1 card2? ")
non-isomorphic rigid spaces ;
40 there exists arigid F-space (X, V) such that card X > card 2F 1 ;
5° F does not preserve unions with a finite set;
6° there exists a set X and xe¢ FX such that ff%(x) is not an ultra-

filter and NZ # O where the intersection is taken over all Z ¢ fg(x) ;
70 there exists a set X, a transposition t: X > X and a mapping p: X » X
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20 V. KOUBEK

such that p(y)=y iff t(y) #y and there exists xe F X with
Fe(x)#%# Fp(x);

8 there exists a cardinal o such that for every set X, card X >a and

every transposition t: X » X and every mapping p: X > X such that p(y )=y
iff t(y) £y, there exists xe FX with Ft(x)#x, Fp(x)#x.

COROLLARY 4.7. In the finite set theory, S(F ) is a universal category if
and only if F is a non-constant functor, i.e. S(F ) is universal iff F does

not dualize co-unions.

Again, the situation for covariant functors was described in [6].

THEOREM 4.8. In the finite set theory, S(F ) is a universal category if and
only if F is not naturally equivalent to (IXCM)VCN for some M, N (we
recall that C is the constant functor to M and I is the identity functor ),

i.e. S(F) is universal iff F does not preserve unions.

EXAMPLE 4.9 (A non-constant functor which is not nearly faithful ). Denote
by B the usual set functor, assigning to a set X the set 8 X of all ultrafil-
ters on X, and to a mapping [ the mapping 8f which sends an ultrafilter J

to the ultrafilter with base

{f(Z)| Ze J3.
Let /-3 be the factor-functor of 8 with J, G ¢ B8X merged iff either T=G§ or
9 and Q are fixed (i.e.NZ # @, where the intersection is taken over all

Z ¢J ). Then, clearly, 8 merges transpositions and so does the (non-cons-

tant) functor F = P"o 8.
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