CAHIERS DE TOPOLOGIE ET GÉOMÉTRIE DIFFÉRENTIELLE CATÉGORIQUES

VÁCLAV KOUBEK

On categories into which each concrete category can be embedded. II

Cahiers de topologie et géométrie différentielle catégoriques, tome 18, nº 3 (1977), p. 249-269

http://www.numdam.org/item?id=CTGDC_1977_18_3_249_0

© Andrée C. Ehresmann et les auteurs, 1977, tous droits réservés.

L'accès aux archives de la revue « Cahiers de topologie et géométrie différentielle catégoriques » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

ON CATEGORIES INTO WHICH EACH CONCRETE CATEGORY CAN BE EMBEDDED. II

by Václav KOUBEK

Given a contravariant functor F from sets to sets, the category S(F) has for objects pairs (X, S), with X a set and $S \subset FX$; morphisms are mappings $f: (X, S) \rightarrow (Y, T)$ such that $Ff(T) \subset S$. The paper characterizes those functors F for which S(F) is a universal category, i.e. every concrete category can be fully embedded into it. The characterization is very simple: F must be nearly faithful, i.e. there must be a cardinal α such that for arbitrary mappings $f, g: X \rightarrow Y$ we have: if $f \neq g$, then either $Ff \neq Fg$ or $card f(X) \leq \alpha$, $card f(Y) \leq \alpha$.

The paper continues the author's previous characterization of covariant functors F for which S(F) (defined analogously) is binding. There are striking similarities between the two cases, yet the main result here has no analogy in the covariant case.

I

CONVENTIONS. Set denotes the category of sets and mappings.

The word «functor» will denote a contravariant set functor.

Let e be a decomposition of a set X. Then the canonical mapping from X to X/e will be denoted by e, therefore the class of e containing x is denoted e(x).

If $f: X \to Y$ is a mapping, then Kerf is the canonical decomposition of f, i.e. Kerf = { $f^{-1}(y) | y \in Im f$ }.

The cardinal α is meant as the set of all ordinals with type less than α ; a^+ denotes the cardinal successor of α .

DEFINITION. A concrete category is called *universal* if every concrete category can be embedded into it.

PROOF. See [8].

NOTE. We recall the definition of the functor P^* :

 $P^{-}(X) = \{ Z \mid Z \subset X \},$ if $f: X \to Y$ then for every $Z \in P^{-}Y$, $P^{-}f(Z) = f^{-1}(Z)$.

DEFINITION. A full embedding Ψ from the concrete category (K, U) to the concrete category (L, V) is called *strong* if there exists a set functor F: Set \rightarrow Set such that the diagram

commutes.

DEFINITION. An object is rigid if it has no non-identical endomorphism.

Now we shall describe a «behaviour» of the functor F.

CONVENTION. Let F be a functor. Then for a cardinal α , F^{α} denotes the subfunctor of F such that

$$F^{a}Y = \bigcup_{c \text{ ard } Z \leq a} \bigcup_{f \in Z} Y \operatorname{lm} Ff,$$

where Z^{Y} is the set of all mappings from Y to Z.

DEFINITION [4]. A cardinal $\alpha > 1$ is an unattainable cardinal of a functor F if $F \alpha - F^{\alpha} \alpha \neq \emptyset$. Then put

$$F_a X = F^{a^+} X - F^a X.$$

The class of all unattainable cardinals of F is denoted by A_F .

THEOREM 1.2. Let X be an infinite set such that there exists $\alpha \in A_F$, with $\alpha \leq \operatorname{card} X$. Then $\operatorname{card} F X \geq \operatorname{card} 2^X$.

PROOF. See [4].

DEFINITION. Let $f, g: X \rightarrow Y$ be mappings onto. Then f, g are diverse if there exists $Z \subset X$ such that either

$$f(Z) = Y$$
 and $card g(Z) < card Y$

or

$$g(Z) = Y$$
 and $card f(Z) < card Y$.

A system \mathfrak{A} of mappings from X to Y is called *diverse* if arbitrary distinct mappings $f, g \in \mathfrak{A}$ are diverse.

PROPOSITION 1.3. If α is an unattainable cardinal of a functor F and if $f, g: X \rightarrow \alpha$ are diverse, then

$$Ff(F_a\alpha) \cap Fg(F_a\alpha) = \emptyset.$$

PROOF. See [4].

LEMMA 1.4. Let X be an infinite set. Then for every infinite cardinal α with $\alpha \leq \operatorname{card} X$ there exists a diverse system \mathfrak{A} of mappings from X to α such that $\operatorname{card} \mathfrak{A} = \operatorname{card} 2^X$.

PROOF. See [4].

DEFINITION. We say that $f: X \rightarrow Y$ is coarser than $g: X \rightarrow Z$ if there exists $h: Z \rightarrow Y$ such that $h \circ g = f$.

PROPOSITION 1.5. If $f: X \to Y$ then $lm F f = \bigcup lm F g$ where the union is taken over all $g: X \to \alpha$ coarser than f and $\alpha \in A_F$.

PROOF. See [7].

DEFINITION. Let F be a functor, $x \in FX$. Define

 $\mathcal{F}_{F}^{X}(x) = \{ e \mid e \text{ is a decomposition of } X, x \in Im F e \}.$

Further we shall write

 $\|\mathcal{F}_F^X(x)\| = \min\{ card Im e \mid e \in \mathcal{F}_F^X(x) \}.$

PROPOSITION 1.6. Let F be a functor; then $\alpha \in A_F$ iff there exists $x \in FX$ such that $|| \mathcal{F}_F^X(x) || = \alpha$ for card $X \ge \alpha$. Further $y \in F_\alpha Y$ iff $|| \mathcal{F}_F^Y(y) || = \alpha$. PROOF. Clearly $x \notin F^\alpha \alpha$. On the other hand $x \in Im Ff$, where $f: X \to Y$ is onto and card $Y = \alpha$; therefore $x \in F_\alpha X$ and $\alpha \in A_F$. The rest is evident. COROLLARY 1.7. If $|| \mathcal{F}_F^X(x) ||$ is finite, then there exists e with $\mathcal{F}_F^X(x) = \{e' \mid e \text{ is coarser than } e'\}.$ PROOF. If $e \neq e'$ and

card Im e' = card Im
$$e < \aleph_0$$
,

then e and e' are diverse and by Proposition 1.3 we get Corollary 1.7.

PROPOSITION 1.8. Let F be a functor, $f: X \rightarrow Y$. Then for every $y \in FY$ it holds

 $\mathcal{F}_F^X(Ff(y)) \supset \{e' \mid \text{ there exists } e \in \mathcal{F}_F^Y(y), e \circ f \text{ is coarser than } e' \}.$ PROOF is easy.

PROPOSITION 1.9. Let F be a functor, $y \in FY$. If for some $e \in \mathcal{F}_F^Y(y)$ and for some $f: X \to Y$, $e \circ f$ is onto, then

 $\mathcal{F}_F^X(Ff(y)) = \{ e' \mid \text{there exists } e \in \mathcal{F}_F^Y(Y), e \circ f \text{ is coarser than } e' \}.$ PROOF. There exists a mapping h such that $e \circ f \circ h = id$, then

 $Fe \circ Fh \circ Ff(y) = Fe \circ Fh \circ Ff \circ Fe(z) = Fe(z) = y$,

where $z \in F(Y/e)$ with Fe(z) = y. Now by Proposition 1.8 we get Proposition 1.9.

DEFINITION. Let F be a functor. For $x \in FX$ denote by e_x the finest decomposition which is coarser than each $e \in \mathcal{F}_F^X(x)$.

NOTE. If α is a finite cardinal and $x \in F_{\alpha}X$, then $e_x \in \mathcal{F}_F^X(x)$.

COROLLARY 1.10. Let F be a functor, α a finite cardinal. If, for some $f: X \rightarrow Y$ and for some $y \in F_{\alpha}Y$ we have $Ff(y) \in F_{\alpha}X$, then

$$e_{Ff(\gamma)} = Ker(e_{\gamma} \circ f).$$

PROOF is easy.

11

LEMMA 2.1. The object (6, V) is a rigid object of $S(P^{-})$, where

$$V = \{ \{0\}, \{1\}, \{2\}, \{3\}, \{4\}, \{5\}, \{0, 1\}, \{0, 2\}, \{0, 3\}, \{0, 4\}, \\ \{1, 2\}, \{1, 3\}, \{1, 5\}, \{2, 4\}, \{2, 3, 4, 5\}, \{1, 3, 4, 5\}, \\ \{1, 2, 4, 5\}, \{1, 2, 3, 5\}, \{0, 3, 4, 5\}, \{0, 2, 4, 5\}, \{0, 2, 3, 4\}, \\ \{0, 1, 3, 5\}, \{1, 2, 3, 4, 5\}, \{0, 2, 3, 4, 5\}, \{0, 1, 3, 4, 5\}, \\ \{0, 1, 2, 4, 5\}, \{0, 1, 2, 3, 5\}, \{0, 1, 2, 3, 4\} \}.$$

PROOF. Since $\emptyset \notin V$ and for every $i \notin 6$, $\{i\} \notin V$ we get, if $f: (6, V) \rightarrow (6, V)$ is a morphism of $S(P^-)$, then f is a bijection. Therefore for every $\{i, j\} \notin V$ we have

$$f^{-1}(\{i,j\}) = \{f^{-1}(i), f^{-1}(j)\} \in V.$$

Hence

 $card\{\{i, j\} \in V \mid j \in 6-\{i\}\} \leq card\{\{f^{-1}(i), j\} \in V \mid j \in 6-\{f^{-1}(i)\}\}$ for every $i \in 6$ and thus we get for every $i \in 6$,

card{ {i, j}
$$\in V \mid j \in 6 - {i}$$
} = card{ { $f^{-1}(i), j$ } $\in V \mid j \in 6 - {f^{-1}(i)}$ }.

Hence

$$f^{-1}(5) = 5, f^{-1}(2) = 2.$$

Now it is easy to verify that $f = id_6$.

CONVENTION. An object of S(F) will be called an *F*-space.

DEFINITION. Denote by $E(P^-)$ the full subcategory of $S(P^-)$ over those (X, \mathbb{W}) for which $Z \in \mathbb{W}$ implies $X - Z \in \mathbb{W}$ and $Z \neq \emptyset$.

PROPOSITION 2.2. There exists a strong embedding of $S(P^-)$ into $E(P^-)$.

PROOF. Let (X, \mathbb{W}) be a *P*⁻-space. Define $\Psi(X, \mathbb{W}) = (X \lor 6, \mathbb{W}_S)$, where :

$$W_{S} = \{ Z, X \lor 6 - Z \mid Z \in V, card Z < 3 \} \cup \\ \cup \{ \{0, 1, 2\} \cup Z, \{3, 4, 5\} \cup X - Z \mid Z \in W \} ; \}$$

for a given $f: (X_1, W_1) \rightarrow (X_2, W_2)$, $\Psi f = f \lor id_6$. Clearly Ψ is an embedding. We shall prove that it is also full. Let $f: \Psi(X_1, W_1) \rightarrow \Psi(X_2, W_2)$. First we prove $f(X_1) \subset X_2$. Assume the contrary, i.e. f(x) = i for some $x \in X_1$ and $i \in 6$. Then $f^{-1}(\{i\}) \in (W_1)_S$ and therefore either

$$f(\{0, 1, 2\}) = \{i\}, \text{ or } f(\{3, 4, 5\}) = \{i\},$$

or $f((X_1 \lor 6) - Z) = \{i\}$ for some $Z \in V$, card $Z < 3$.

Since $\emptyset \notin (W_1)_S$ and $\{i\} \notin (W_2)_S$ for every $i \notin 6$, we have $6 \subset Im f$ and therefore the last case is impossible. Further there exists

 $j \in 6$ such that $\{i, j\} \in (W_2)_S$

and so $f^{-1}(\{i, j\}) \in (W_1)_S$. Hence either $j \in f(X_1)$ or $f(X_1) = \{i\}$. In the former case we get again either

$$f(\{0,1,2\}) = \{j\}$$
 or $f(\{3,4,5\}) = \{j\}$

(we use the fact that $\{j\} \in (\mathbb{W}_2)_S$) and so $6 \subset f^{-1}(\{i, j\})$; this is a contradiction. In the latter case

$$f^{-1}(\{i, j\}) = (X_1 \lor 6) - Z$$
 for some $Z \in V$, card $Z < 3$

and therefore $6 \not\sqsubset Im f$ and it is again a contradiction. Hence

 $f(X_1) \in X_2$ and f(6) = 6.

By Lemma 2.1 we have $f/6 = id_6$ and $f/X_1: (X_1, W_1) \rightarrow (X_2, W_2)$ is a morphism of S(P). Thus Ψ is a strong embedding.

PROPOSITION 2.3. There exists a full subcategory \mathfrak{M} of $S(P^{-})$ such that:

1° if $(X, W) \in \mathbb{M}$ then $\emptyset \notin W$, $\emptyset \neq W$ and for every $x \in X$ there exists $Z \in W$ with $x \in Z$;

2° if $f, g: (X_1, W_1) \rightarrow (X_2, W_2)$ and $(X_1, W_1), (X_2, W_2) \in \mathbb{M}$, then there exists $Z \in W_2$ with $f^{-1}(Z) \neq g^{-1}(Z)$;

 \mathcal{P} there exists a strong embedding from $S(P^{\bullet})$ to \mathbb{M} .

PROOF. Define $\Phi: S(P^-) \rightarrow S(P^-)$ as follows: $\Phi(X, W) = (X \lor 6, W_D)$ with

 $W_{D} = V \cup \{ \{0, 1, 2\} \cup Z \mid Z \in W \} \cup \{ \{3, 4, 5\} \cup Z \mid Z \in X \};$

for a given $f: (X_1, W_1) \to (X_2, W_2)$ put $\Phi f = f \lor id_6$. Evidently Φ is an embedding. Now, we shall prove that, if

$$f \colon (X_1 \vee 6, (\mathbb{W}_1)_6) \to (X_2 \vee 6, (\mathbb{W}_2)_D),$$

then $f(X_1) \subset X_2$, $f(6) \subset 6$. For every $i \in 6$,

$$\{i\} \in (W_2)_D$$
 and $\emptyset \notin (W_1)_D$,

therefore $6 \subset Im f$. We assume that for some $x \in X_1$, $f(x) = i \in 6$. Then we have $f^{-1}(\{i\}) \in (W_1)_D$ and hence either

$$f(\{0, 1, 2\}) = \{i\}$$
 or $f(\{3, 4, 5\}) = \{i\}$.

Further there exists $j \in 6$ such that $\{i, j\} \in (\mathbb{W}_2)_D$, and therefore

$$f^{-1}(\{i,j\}) \in (W_1)_D$$
.

We get that $f^{-1}(\{j\}) \cap X_1 \neq \emptyset$ but then either

$$f(\{0, 1, 2\}) = \{j\}$$
 or $f(\{3, 4, 5\}) = \{j\}$

and hence $6 \in f^{-1}(\{i, j\})$ - a contradiction. Thus

$$f(X_1) \in X_2, f(6) \in 6.$$

By Lemma 2.1, $f/6 = id_6$ and therefore $f/X_1: (X_1, W_1) \rightarrow (X_2, W_2)$ is a morphism of $S(P^-)$. Put $\mathfrak{M} = \Phi(S(P^-))$. Evidently $\Phi: S(P^-) \rightarrow \mathfrak{M}$ is a strong embedding and \mathfrak{M} has the required properties.

NOTE. The set functor carrying Φ (or Ψ) is $I \lor C_6$ where I is the identity functor and C_6 is the constant functor to 6.

COROLLARY 2.4. There exists a full subcategory \mathcal{G} of $E(P^-)$ such that: 10 if $(X, W) \in \mathcal{G}$, then $W \neq \mathcal{O}$;

2° if $f, g: (X, W) \rightarrow (Y, S)$ and $(X, W), (Y, S) \in \mathcal{G}$, then there exists $Z \in S$ with $f^{-1}(Z) \neq g^{-1}(Z)$;

3° there exists a strong embedding from $S(P^-)$ to \mathfrak{G} .

PROOF follows from Propositions 2.2 and 2.3.

THEOREM 2.5. If $2 \in A_F$, then there exists a strong embedding from $S(P^-)$ to S(F).

PROOF. Via Proposition 2.2 it suffices to prove that there exists a strong embedding from $E(P^-)$ to S(F). Define

$$\Omega(X, W) = (X, W_F),$$

where

$$W_F = \{ x \in F_2 X \mid \text{ there exists } Z \in W, Z \in e_x \};$$

for a given $f: (X, W) \rightarrow (Y, S)$, define $\Omega f = f$. Clearly Ω is an embedding; let us prove that it is full. Let $f: (X, W_F) \rightarrow (Y, S_F)$ be a morphism of S(F). Then for every $x \in S_F$ it holds:

there exist Z_1 , $Z_2 \in S$ such that $\{Z_1, Z_2\} = e_x$

(see Corollary 1.7 and the definition of Ω). On the other hand for every Z in S there exists

 $x \in S_F$ such that $\{Z, Y-Z\} = e_x$.

Now by Corollary 1.10, we get that

$$\{f^{-1}(Z), X - f^{-1}(Z)\} = e_{Ff(x)}.$$

Thus $f^{-1}(Z) \in W$ and $f: (X, W) \to (Y, S)$ is a morphism of $S(P^-)$.

|||

CONSTRUCTION 3.1. Let F be a functor such that $\alpha_{\epsilon} A_{F}$, where $\alpha > 1$ is a finite cardinal. Then there exists an object (X, V) of S(F) such that:

- 1° card X = a + 4;
- $2^{\circ} V \subset F_{a}X;$

3° for every $x \in X$ there exist $y_1, y_2 \in V$ such that $\{x\} \in e_{y_1}, \{x\} \notin e_{y_2};$ 4° if $x \in V$, then $F(e_x)(F_a \alpha) \subset V$;

5° for $x \in X$ denote by

$$gr x = card \{ Z \mid card Z > 1, x \in Z, \text{ there exists } y \in V, Z \in e_v \},$$

then gr x > 1 with at most one exception;

 $6^{\circ}(X, V)$ is rigid;

7° if $a \ge 3$ then there exists $x \in X$ such that gr x = 1 and if for some $Z \subset X$, $x \in Z$, gr x = 1 and $Z \in e_{x}$ for some $y \in V$ then card Z < 3.

We shall construct these objects by induction in α . For $\alpha = 2$, the object exists by Lemma 2.1 and Theorem 2.5.

We assume that for a < n the construction is performed and $n \in A_F$. Let G be a functor with $n - l \in A_G$. Let (X', V') be a G-space fulfilling the conditions 1-7 for n - l. We assume that $a \notin X'$ and put $X = X' \cup \{a\}$. We choose an arbitrary decomposition \bar{e} of X in n classes such that

card e(a) = 2 and if grx = 1 for some $x \in X'$, then $x \in e(a)$.

Put

$$V = \bigcup Fe(F_aX/e) \cup Fe(F_aX/e)$$

where the union is taken over all e such that $\{a\} \in e$ and the restriction of e to X' is equal to e_x for some $x \in V'$. Let $f: (X, V) \to (X, V)$ be a morphism of S(F); then f is a bijection by Corollary 1.10 and Condition 3 for (X', V'). Further gra = 1 and for $x \in X - \{a\}$, grx > 1. Hence f(a) = a. Clearly $f/X': (X', V') \to (X', V')$ is a morphism of S(G) and hence $f = id_X$. The other required properties are easy to verify.

PROPOSITION 3.2. If $\alpha > 2$ is a finite cardinal and $\alpha \in A_F$, then there exists a F-space (X, V) and $x_0 \in X$ such that the following conditions hold:

1º (X, V) is rigid, $V \subset F_a X$;

2° for every $y_0, y_1 \in V$, card $e_{y_i}(E_{1-i}) \leq \alpha - 1$ for i = 0, 1, where E_i is the class of e_{y_i} containing x_0 ;

3° for every $x \in X$ there exist $y_1, y_2 \in V$ such that $\{x\} \in e_{y_1}, \{x\} \notin e_{y_2}$.

PROOF. Since a > 2 we can choose by Construction 3.1 the *F*-space (X, V) fulfilling Conditions 1-7. Therefore there exists $x \in X$ with gr x = 1. Put $x = x_0$. Clearly $((X, V), x_0)$ fulfills Conditions 1-3 from Proposition 3.2.

LEMMA 3.3. Let α be an infinite cardinal. Then for every set X such that card $X = \alpha$ and every subsets X_1, X_2, X_3 of X such that

$$X_1 \cap X_2 = X_2 \cap X_3 = \emptyset$$
, card $X_1 = \operatorname{card} X_2 = a$

and every mapping $f: X_2 \to X_3$ onto, there exists a diverse system \mathfrak{A} of mappings $g: X \to \alpha$ such that card $\mathfrak{A} = \operatorname{card} 2^X$ and every $g \in \mathfrak{A}$ fulfills:

1º for every $i \in \alpha$, $g^{-1}(\{i\}) \cap X_j \neq \emptyset$ for j = 1, 2;

2° there exists no non-constant mapping h coarser than g with

$$h(x) = h(f(x))$$
 for every $x \in X_2$.

PROOF. If there exists $Z \subset X_3$ such that

card
$$Z < \alpha$$
 and card $f^{-1}(Z) = \alpha$,

then put $Y = X_1 - Z$. By Lemma 1.4 there exists a diverse system \mathcal{B} of mappings from Y to α with $card \mathcal{B} = card 2^X$. Now, for every $h \in \mathcal{B}$ we choose $g_h: X \to \alpha$ such that $g_h/Y = h$, $card g_h(Z) = 1 = card g_h(X_2 - f^{-1}(Z))$ and,

for
$$i \in \alpha$$
, $g_h^{-1}(\{i\}) \cap f^{-1}(Z) \neq \emptyset$.

If there exists no $Z \subset X_3$ with this property, then we choose a decomposition $\{Z_1, Z_2\}$ of X_2 such that

$$card Z_1 = card Z_2 = card (X_1 - f(Z_1)) = \alpha$$

By Lemma 1.4 there exists a diverse system \mathcal{B} of mappings from Z_l to α with $card \mathcal{B} = card 2^X$. Now, for every $h \in \mathcal{B}$ we choose $g_h : X \to \alpha$ such that

$$g_h / Z_1 = h$$
, $card g_h (Z_2) = card g_h (f(Z_1)) = 1$

and for every $i \in a$,

$$g_h^{-1}(\{i\}) \cap f(Z_2) \neq \emptyset, \quad g_h^{-1}(\{i\}) \cap X_1 \neq \emptyset.$$

Then $\mathfrak{A} = \{ g_h \mid h \in \mathfrak{B} \}$ has the required properties.

CONDITION A. An F-space (X, V) fulfills the condition A if for arbitrary subsets X_1, X_2, X_3 of X such that

$$card X_1 = card X_2 = card X$$
 and $X_1 \cap X_2 = X_2 \cap X_3 = \emptyset$

and for arbitrary mapping $f: X_2 \rightarrow X_3$ onto there exists $y \in V$ such that

a) for every $e' \in \mathcal{F}_F^X(y)$ there exists $e \in \mathcal{F}_F^X(y)$ coarser than e', such that $e(x) \cap X_i \neq \emptyset$ for every $x \in X$ and i = 1, 2;

b) there exists $e \in \mathcal{F}_F^X(y)$ such that for every $e' \in \mathcal{F}_F^X(y)$ we have 1° $e' \cap^* e \in \mathcal{F}_F^X(y)$ and

2° a mapping h from X is constant whenever

$$h(x) = h(f(x))$$
 for every $x \in X_2$

and h is coarser than e ($e' \cap^* e$ denotes a co-intersection of e' and e). PROPOSITION 3.4. Let $\alpha \in A_F$ be an infinite cardinal such that there exists $x \in F_a^{\alpha}$ with non-trivial e_x . Then there exists an F-space (X, V) and a x_a of X such that:

- a) (X, V) is rigid;
- b) card $X = \alpha$, $V \subset F_{\alpha}X$;
- c) for every $a \in X$ there exists $y_a \in V$ such that $e_{y_a}(a) \neq e_{y_a}(x_0)$;
- d) (X, V) fulfills condition A.

PROOF. We choose a set X with card $X = \alpha$ and choose $x_0 \in X$. For every a we choose a bijection $f_a: X \to \alpha$ such that $e_x(f_a(\alpha)) \neq e_x(f_a(x_0))$. Then

$$e_{Ff_{a}(x)}(a) \neq e_{Ff_{a}(x)}(x_{0})$$
.

Put

$$\mathcal{B}_{o} = \{ F f_{a}(x) \mid a \in X - \{ x_{o} \} \}.$$

Now, we choose bijections

$$\begin{split} \Psi_1: \ card \ 2^X &\to \{ \ f: \ X \to X \mid f \neq id_X \}, \\ \Psi_2: \ card \ 2^X \to \{ \ (X_1, X_2, X_3, f) \mid \ card \ X_1 = card \ X_2 = \alpha, \\ & X_1 \cap X_2 = X_2 \cap X_3 = \emptyset, \ f: \ X_2 \to X_3 \ \text{ is onto } \}. \end{split}$$

For $i \in card 2^X$ denote

$$C_i = \{ y \in F_\alpha X \mid F(\Psi_1(i))(y) \neq y \}.$$

As an application of Lemma 1.4 we get that $card C_i = card 2^X$. Further for $\Psi_2(i) = (X_1, X_2, X_3, f)$ denote

$$\begin{split} D_i &= \{ \ y \in F_{\alpha} X \mid \text{ there exists } e \in \mathcal{F}_F^X(y) \text{ with} \\ & 1^\circ \text{ for every } x \in X, \ e(x) \cap X_j \neq \emptyset \text{ for } j = 1, 2, \\ & 2^\circ \text{ for every } e' \in \mathcal{F}_F^X(y), \ e' \cap^* e \in \mathcal{F}_F^X(y), \\ & 3^\circ \text{ there exists no non-constant mapping from } X \\ & \text{ coarser than } e, \text{ with } h(x) = h(f(x)) \text{ for every} \\ & x \in X_2 \}. \end{split}$$

If we construct the system \mathfrak{A} from Lemma 3.3 for $(X_1, X_2, X_3, f) = \Psi_2(i)$, then for every $g \in \mathfrak{A}$ we have $Fg(x) \in D_i$ and therefore $card D_i = card 2^X$. Now we shall construct, by induction on $i \in card 2^X$, sets \mathfrak{B}_i , \mathfrak{C}_i such that:

 $card \mathcal{C}_i < card 2^X, \quad \mathfrak{B}_i \subset \mathcal{C}_i \cap F_a X \text{ for every } i.$

Put $\mathcal{C}_0 = \mathcal{B}_0$. We assume that we have the sets $\mathcal{B}_i, \mathcal{C}_i$ for i < j. If j is a limit ordinal, put

$$\mathfrak{B}_{j} = \bigcup_{i < j} \mathfrak{B}_{i}, \quad \mathcal{C}_{j} = \bigcup_{i < j} \mathcal{C}_{i}.$$

If j = k + 1 then

- a) we choose $x_k^I \in C_k \mathcal{C}_k$ such that $F(\Psi_I(k))(x_k^I) \notin \mathcal{C}_k$,
- b) we choose $x_k^2 \in D_k (\mathcal{C}_k \cup \{x_k^1, F(\Psi_1(k))(x_k^1)\}).$

Put

$$\mathcal{B}_{j} = \mathcal{B}_{k} \cup \{x_{k}^{1}, x_{k}^{2}\}, \quad \mathcal{C}_{j} = \mathcal{C}_{k} \cup \{x_{k}^{1}, F(\Psi_{1}(k))(x_{k}^{1}), x_{k}^{2}\}.$$

Evidently

card
$$\mathcal{C}_j < card 2^X$$
 and $\mathfrak{B}_j \subset \mathcal{C}_j \cap F_a X$.

Put $V = \bigcup \mathcal{B}_j$ where the union is taken over all $j \in card2^X$. The *F*-space (X, V) has the required properties.

LEMMA 3.5. Let (X, V) be a rigid F-space. If $g_1: Y_1 \rightarrow X$, $g_2: Y_2 \rightarrow X$ are onto, then every mapping $h: Y_1 \rightarrow Y_2$ such that $Fh(Fg_2(V)) \subset Fg_1(V)$ fulfills $g_2 \circ h = g_1$.

PROOF. Assume the contrary, i.e. $g_2 \circ h \neq g_1$. Then there exists $f: X \to Y_1$ such that

$$g_1 \circ f = id_X$$
 but $g_2 \circ h \circ f \neq id_X$.

Further it is clear to verify that $g_2 \circ h \circ f$ is an F-morphism of (X, V) - a contradiction.

CONSTRUCTION 3.6. Let $\emptyset = ((X, V), x_0)$ be a couple where (X, V) is an *F*-space, card X > 1 and $x_0 \in X$. For every set *Y* and every $Z \subset Y$ define $g_Z: U \to X$ where $U = (Y \times (X - \{x_0\})) \vee \{x_0\}$ as follows

$$g_Z(x_0) = x_0, \quad g_Z(y, x) = x_0 \quad \text{if } y \in Y - Z, \quad x \in X - \{x_0\},$$

$$g_Z(y, x) = x \quad \text{if } y \in Z, \quad x \in X - \{x_0\}.$$

Define a functor $\Sigma_{(P)}: S(P) \rightarrow S(F):$

$$\Sigma_{\mathcal{O}}(Y, \mathbb{W}) = (U, \bigcup_{Z \in \mathbb{W}} F_{g_Z}(V)),$$

and for $f: (Y_1, W_1) \rightarrow (Y_2, W_2)$ put

$$\Sigma_{\mathcal{O}}f = (f \times id_{X-\{x_o\}}) \vee id_{\{x_o\}}.$$

Clearly Σ_{7} is faithful and if Σ_{7} is full, then Σ_{7} is a strong embedding.

NOTE. If Z_1 , Z_2 are distinct subsets of Y, then g_{Z_1} and g_{Z_2} are diverse.

LEMMA 3.7. Let $\mathcal{O} = ((X, V), x_0)$ and $Z \subset Y$. If $y \in V$ fulfills:

let $e \in \mathcal{F}_F^X(y)$ such that for every $e' \in \mathcal{F}_F^X(y)$, $e' \cap * e \in \mathcal{F}_F^X(y)$, then $Fg_Z(y)$ fulfills:

for every $e \in \mathcal{F}_F^U(Fg_Z(y))$, $e \cap *Ker(e \circ g_Z) \in \mathcal{F}_F^U(Fg_Z(y))$.

PROOF follows from Proposition 1.9.

LEMMA 3.8. Let n be a finite unattainable cardinal of F. Let an F-space (X, V) and $x_0 \in X$ fulfill the conditions 1-3 from Proposition 3.2. If

$$g: \Sigma \oslash Y_1, W_1) \to \Sigma \bigotimes (Y_2, W_2)$$

is an S(F)-morphism and $\emptyset \notin W_1$, then for every $Z_2 \notin W_2$, $Z_2 \neq \emptyset$, there exists $Z_1 \notin W_1$ such that $F(g_{Z_2} \circ g)(V) \subset Fg_{Z_1}(V)$.

PROOF. Assume the contrary, i.e. there exist y_0 , $y_1 \in Fg_{Z_0}(V)$ such that:

$$Fg(y_0) \in Fg_{Z_0}(V)$$
 and $Fg(y_1) \in Fg_{Z_1}(V)$ where $Z_0 \neq Z_1$.

We can assume that there exists $v \in Z_0 - Z_1$. Put $Fg(y_i) = z_i$ for i = 0, 1. Then

card
$$g_{Z_0}(\{v\} \times (X - \{x_0\})) > n - 1$$
 and $\{v\} \times (X - \{x_0\}) \subset g_{Z_1}(x_0)$.

By Corollary 1.10 we get that

card
$$e_{t_0}(g_{Z_2} \circ (\{v\} \times (X - \{x_0\}))) > n - 1$$

and

$$e_{t_1}(x_0) \supset g_{Z_2} \circ g(\{v\} \times (X - \{x_0\}))$$

where t_0 , $t_1 \in V$ such that $Fg_{Z_2}(t_i) = y_i$ for i = 0, 1; but this contradicts the Condition 2 from Proposition 3.2.

LEMMA 3.9. Let α be an infinite unattainable cardinal of F. Let (X, V)and $x_0 \in X$ fulfill the conditions a-d from Proposition 3.4. If

$$g: \Sigma_{\bigcup}(Y_1, W_1) \to \Sigma_{\bigcup}(Y_2, W_2)$$

is an S(F)-morphism and $\emptyset \notin W_1$, then for every $Z_2 \notin W_2$, $Z_2 \neq \emptyset$ there exists $Z_1 \notin W_1$ such that $F(g_{Z_2} \circ g)(V) \subset Fg_{Z_1}(V)$.

PROOF. Assume the contrary, i.e. there exist y_0 , $y_1 \in Fg_{Z_2}(V)$ such that:

$$F_g(\gamma_i) \in F_{g_i}(V)$$
 for $i = 0, 1$,

where $Z_0 \neq Z_1$. We can assume that $v \in Z_0 - Z_1$ and $w \in Z_1$. Put

$$U_{i} = (Y_{i} \times (X - \{x_{0}\})) \vee \{x_{0}\} \text{ for } i = 1, 2$$

By Proposition 1.8 and Lemma 3.7 there exists $e_i \in \mathcal{F}_F^{U_1}(Fg(y_i))$ such that e_i is coarser than

$$\operatorname{Kerg}_{Z_{2}} \circ g \cap^{*} \operatorname{Kerg}_{Z_{i}} \text{ for } i = 0, 1.$$

Therefore we get that

$$card(g_{Z_{2}} \circ g(\{v\} \times (X - \{x_{0}\})) - g_{Z_{2}} \circ g(\{w\} \times (X - \{x_{0}\}))) =$$

= card(g_{Z_{2}} \circ g(\{w\} \times (X - \{x_{0}\})) - g_{Z_{2}} \circ g(\{v\} \times (X - \{x_{0}\}))) = \alpha.

Put

$$\begin{split} X_{1} &= g_{Z_{2}} \circ g(\{v\} \times (X - \{x_{0}\})) - g_{Z_{2}} \circ g(\{w\} \times (X - \{x_{0}\})) \\ X_{2} &= g_{Z_{2}} \circ g(\{w\} \times (X - \{x_{0}\})) - g_{Z_{2}} \circ g(\{v\} \times (X - \{x_{0}\})), \\ X_{3} &= \{g_{Z_{2}} \circ g((v, x)) \mid g_{Z_{2}} \circ g((w, x)) \in X_{2}\}, \\ f(g_{Z_{2}} \circ g((w, x))) = g_{Z_{2}} \circ g((v, x)). \end{split}$$

Since $v \notin Z_1$ we have $X_3 \cap X_2 = \emptyset$. Clearly $X_1 \cap X_2 = \emptyset$ and f is onto. Therefore there exists $t \in V$ from Condition A for (X_1, X_2, X_3, f) . Denote:

$$y_3 = Fg_{Z_2}(t), \ z_3 = Fg(y_3), \ z_3 \in Fg_{Z_3}(V).$$

By a, Condition A we have $v, w \in Z_3$. Further there is $e_1 \in \mathcal{F}_F^{U_1}(z_3)$ coarser than $Kerg_{Z_3}$ and $Ker(e_0 \circ g_{Z_2} \circ g)$, where $e_0 \in \mathcal{F}_F^X(t)$ from b of Condition A. Hence there exists a mapping p such that $e_1 = p \circ e_0 \circ g_{Z_2} \circ g$. Since e_1 is coarser than $Kerg_{Z_3}$ we get that

$$p \circ e_0(x) = p \circ e_0(f(x))$$
 for every $x \in X_2$

- and thus $p \circ e_0$ is constant and so is e_1 . This contradicts

$$z_{3} \epsilon F g_{Z_{3}}(V) \subset F g_{Z_{3}}(F_{a}X) \subset F_{a}U_{1}.$$

THEOREM 3.10. Let $\alpha > 2$ be an unattainable cardinal of F. Then there exists a strong embedding from $S(P^-)$ to S(F) whenever there exists $x \in F_{\alpha}X$ such that e_x is non-trivial.

PROOF. Let (X, V) be an *F*-space and $x_0 \in X$ fulfilling the conditions 1-3 from Proposition 3.2 if α is finite, or the conditions a-d from Proposition 3.4 if α is infinite. We shall restrict the functor Σ_{\bigcup} to the category \mathbb{M} , where $\mathbb{O} = ((X, V), x_0)$. By Lemmas 3.8 and 3.9, if

$$g: \Sigma_{\bigcup}(Y_1, W_1) \to \Sigma_{\bigcup}(Y_2, W_2)$$

is an S(F)-morphism, then for every $Z_2 \in W_2$ there exists

$$Z_{1} \in W_{1}$$
 such that $F(g_{Z_{2}} \circ g)(V) \subset Fg_{Z_{1}}(V)$

15

and then by Lemma 3.5 $g_{Z_2} \circ g = g_{Z_1}$. Since W_2 is a cover of Y_2 , we get that

$$g(Y_1 \times \{a\}) \subset Y_2 \times \{a\}$$
 for every $a \in X - \{x_0\}$ and $g(x_0) = x_0$.

For every $a \in X - \{x_0\}$, define $g_a: Y_1 \to Y_2$ as follows:

$$g_a(y_1) = y_2$$
 iff $g((y_1, a)) = (y_2, a)$.

Then $g_a: (Y_1, W_1) \rightarrow (Y_2, W_2)$ is an $S(P^-)$ -morphism for every $a \in X - \{x_0\}$. Further for every $a, b \in X - \{x_0\}$ and every $Z \in W$,

$$g_a^{-1}(Z) = g_b^{-1}(Z).$$

Properties of \mathfrak{M} imply that $g_a = g_b$ for every $a, b \in X - \{x_0\}$, thus $\Sigma_{\mathcal{O}}$ is a strong embedding from \mathfrak{M} to S(F). By Proposition 2.3, we obtain the Theorem.

IV

DEFINITION [9]. We say that a colimit of a diagram $D: \mathfrak{D} \to \mathcal{K}$ is absolute if every covariant functor $F: \mathcal{K} \to \mathfrak{L}$ preserves it.

LEMMA 4.1. Let

$$f_i: A \rightarrow B_i, \quad g_i: B_i \rightarrow C, \quad i = 1, 2,$$

be morphisms of the category K and let

$$h_1: B_1 \rightarrow A, \quad h_2: C \rightarrow B_2$$

be morphisms of K such that

$$g_1 \circ f_1 = g_2 \circ f_2, \quad f_2 \circ h_1 = h_2 \circ g_1, \quad f_1 \circ h_1 = id_{B_1}, \quad g_2 \circ h_2 = id_C.$$

Then the push-out of $f_i: A \rightarrow B_i$, i = 1, 2, is absolute.

PROOF. See [10].

LEMMA 4.2. Let $f: X \rightarrow Y$, $g: X \rightarrow Z$ be mappings onto such that there exists exactly one $z \in Z$ with card $g^{-1}(z) > 1$. Then the push-out of f, g is absolute.

PROOF. Let $h_1: Y \to V$, $h_2: Z \to V$ be this push-out. Choose $k_1: Y \to X$

such that $f \circ k_1 = id_y$ and

$$k_1(y) \in g^{-1}(\{g(z)\})$$
 whenever $f^{-1}(\{y\}) \cap g^{-1}(\{g(z)\}) \neq \emptyset$.

Further we choose $k_2: V \rightarrow Z$ such that

$$h_2 \circ k_2 = id_V$$
 and $k_2 \circ h_2 \circ g(z) = g(z)$

and

$$k_2(v) = g \circ k_1(h_1^{-1}(v)) \text{ for } v \in V - \{h_2 g(z)\}$$
.

It is easy to verify that the definition of k_2 is correct and $g \circ k_1 = k_2 \circ h_1$. Now, Lemma 4.2 follows from Lemma 4.1.

DEFINITION. A decomposition e is called *finite* if every class of e is finite and e has only a finite number of non-singleton classes.

COROLLARY 4.3. Let F be a functor, $x \in FX$. If $e_x = \{X\}$, then every finite decomposition is an element of $\mathcal{F}_F^X(x)$.

PROOF. If e is a finite decomposition, then e is a co-intersection of decompositions e_i , i = 1, 2, ..., n such that every e_i has only one non-singleton class. If $e_i \in \mathcal{F}_F^X(x)$ then by induction we get from Lemma 4.2 that $e \in \mathcal{F}_F^X(x)$. Further every decomposition e_i is a co-intersection of

$$e_i^j, \quad j = 1, 2, \dots, m,$$

where every decomposition e_i^j has only one non-singleton class and every class of e_i^j has at most two points. Now, by induction we get from Lemma 4.2 that

$$e_i \in \mathcal{F}_F^X(x)$$
 whenever every $e_i^j \in \mathcal{F}_F^X(x)$.

Since $e_x = \{X\}$, it is easy to verify by Lemma 4.2 that every $e_i^j \in \mathcal{F}_F^X(x)$.

We recall the definition of the union and the co-union.

DEFINITION. Let $f: Y \to X$, $g: Z \to X$ be monomorphisms. The monomorphism $h: V \to X$ is called a *union* of f, g (we shall write $f \cup g = h$) if there exist

$$f_1: Y \rightarrow V, g_1: Z \rightarrow V$$
 such that $h \circ f_1 = f, h \circ g_1 = g$

and for every $h': V' \rightarrow X$ for which there exist

$$f_2: Y \rightarrow V', g_2: Z \rightarrow V'$$
 such that $h' \circ f_2 = f, h' \circ g_2 = g$

there exists

$$h_1: V \rightarrow V'$$
 with $h = h' \circ h_1$.

The dual notion is a co-union (we shall write $h = f \cup^* g$ if h is a co-union of f, g).

The covariant set functor F preserves finite unions if for arbitrary oneto-one mappings $f: Y \to X$, $g: Z \to X$ we have

$$Ff \cup Fg = F(f \cup g).$$

F preserves unions with a finite set if for arbitrary one-to-one mappings

 $f: X \rightarrow Y, g: Z \rightarrow Y$ with Z finite,

we have $F f \cup F g = F(f \cup g)$.

The contravariant set functor F dualizes finite co-unions if for arbitrary mappings $f: X \rightarrow Y$, $g: X \rightarrow Z$ onto, we have

$$Ff \cup Fg = F(f \cup *g);$$

F dualizes co-unions with a finite decomposition if for arbitrary mappings $f: X \rightarrow Y, g: X \rightarrow Z$ onto, where Kerg is a finite decomposition, we have

$$Ff \cup Fg = F(f \cup *g).$$

DEFINITION. A set functor F (covariant or contravariant) is said to be *nearly faithful* if there exists a cardinal α such that, for arbitrary mappings $f \neq g: X \rightarrow Y$, Ff = Fg implies that

$$cardf(X) < \alpha$$
 and $cardg(X) < \alpha$.

MAIN THEOREM 4.4. Let F be a contravariant set functor. Then S(F) is a universal category if and only if F is nearly faithful.

To prove the Main Theorem we shall first prove a detailed characterization Theorem analogous to the covariant case (see below). Notice that the (covariant) identity functor I is faithful but S(I) is far from universal.

First we recall that a permutation with only one 2-cycle is called a transposition.

THEOREM 4.5. For a contravariant functor F the following conditions are

- 1º S(F) is universal;
- 2° there exists a strong embedding from $S(P^{-})$ to S(F);
- 3° S(F) has more than card $2^{F\emptyset}$ + card 2^{F1} non-isomorphic rigid spaces;
- 4° there exists a rigid F-space (X, V) with card X > 1;
- 5° F does not dualize co-unions with finite decomposition;
- 6° there exists a set X and $x \in FX$ such that e_x is non-trivial;
- 7° there exists a set X and a transposition

$$t: X \rightarrow X$$
 such that $Ft \neq F id_X$;

8° there exists a cardinal α such that for every set X with card $X \ge \alpha$ and every transposition $t: X \rightarrow X$ it holds $Ft \neq F$ id_X.

PROOF. We recall that $6 \Longrightarrow 2$ follows from Theorems 2.5 and 3.10. The implication $2 \Longrightarrow 1$ follows from Theorem 1.1. The implications

 $1 \Rightarrow 3 \Rightarrow 4$

are evident. Further $5 \Longrightarrow 6$ follows from Corollary 4.3 and Proposition 1.5. The implication $8 \Longrightarrow 7$ is obvious and so is

non
$$8 \Longrightarrow$$
 non 4 - thus $4 \Longrightarrow 8$.

Therefore the theorem will be proved as soon as we show that

 $7 \Longrightarrow 6$ and $6 \Longrightarrow 5$.

 $7 \implies 6$. Let $t: X \rightarrow X$ be a transposition such that $Ft \neq F \ id_X$, therefore there exists $x \in FX$ such that $Ft(x) \neq x$. Denote a, b distinct points of X such that

$$t(a) = b, t(b) = a.$$

If $e_x = \{X\}$, then there exists $e \in \mathcal{F}_F^X(x)$ with $e(a) = \{a, b\}$ and $e(y) = \{y\}$ for $y \in X - \{a, b\}$.

Then $e = e \circ t$ and thus $F t \circ F e = F e$ - hence F t(x) = x, because x is in Im F e - a contradiction.

 $6 \implies 5$. Let $x \in FX$ such that e_x is non-trivial. By Proposition 1.9 we can suppose that there exists $a \in X$ such that $\{a\} \notin e_x$. We choose $b \in X$ such

that $e_x(a) \neq e_x(b)$. Let

 $e_1 = \{X - \{a\}, \{a\}\}, e_2 = \{\{a, b\}\} \cup \{\{x\} \mid x \in X - \{a, b\}\}.$

We have that $x \notin Im Fe_1 \cup Im Fe_2$. On the other hand e_2 is a finite decomposition and $e_1 \cup e_2 = id_X$.

PROOF OF MAIN THEOREM. If F is nearly faithful, then F fulfills the condition 8 of Theorem 4.5 and thus S(F) is universal. If S(F) is universal, then F fulfills the condition 7 of Theorem 4.5 and by [5] it is nearly faithful.

We recall the analogous results on covariant set functors. Here, instead of universality, those F are characterized for which S(F) is binding. (This means that the category of graphs is fully embeddable in S(F) and, assuming the non-existence of too many non-measurable cardinals, it is the same as universality, see [3].) Let us remark that via Theorem 4.5, S(F)is universal iff it is binding, for contravariant F.

For a covariant set functor F, denote for $x \in FX$,

 $\mathcal{F}_F^X(x) = \{ Z \subset X \mid x \in Im Fi, i: Z \to X \text{ is the inclusion} \}.$

It is well-known (see [11]) that either $\mathcal{F}_F^X(x)$ is a filter or

$$\mathcal{F}_{F}^{X}(x) \cup \{\emptyset\} = \exp Z = \{Z \mid Z \in X\}.$$

THEOREM 4.6. For a covariant set functor F the following conditions are equivalent:

1º S(F) is binding;

2° there exists a strong embedding from the category of graphs to S(F);

 3° S(F) has more than

$$card 2^{F \not O} + (card 2^{F I} . card 2^{2^{F I}})$$

non-isomorphic rigid spaces;

4° there exists a rigid F-space (X, V) such that card $X > card 2^{F1}$;

5° F does not preserve unions with a finite set;

6° there exists a set X and $x \in FX$ such that $\mathcal{F}_F^X(x)$ is not an ultrafilter and $\bigcap Z \neq \emptyset$ where the intersection is taken over all $Z \in \mathcal{F}_F^X(x)$;

7° there exists a set X, a transposition $t: X \to X$ and a mapping $p: X \to X$

such that p(y) = y iff $t(y) \neq y$ and there exists $x \in FX$ with

 $Ft(x) \neq x \neq Fp(x);$

8° there exists a cardinal α such that for every set X, card $X > \alpha$ and every transposition $t: X \rightarrow X$ and every mapping $p: X \rightarrow X$ such that p(y) = yiff $t(y) \neq y$, there exists $x \in FX$ with $Ft(x) \neq x$, $Fp(x) \neq x$.

COROLLARY 4.7. In the finite set theory, S(F) is a universal category if and only if F is a non-constant functor, i.e. S(F) is universal iff F does not dualize co-unions.

Again, the situation for covariant functors was described in [6].

THEOREM 4.8. In the finite set theory, S(F) is a universal category if and only if F is not naturally equivalent to $(I \times C_M) \vee C_N$ for some M, N (we recall that C_M is the constant functor to M and I is the identity functor), i.e. S(F) is universal iff F does not preserve unions.

EXAMPLE 4.9 (A non-constant functor which is not nearly faithful). Denote by β the usual set functor, assigning to a set X the set βX of all ultrafilters on X, and to a mapping f the mapping βf which sends an ultrafilter T to the ultrafilter with base

 $\{f(Z) \mid Z \in \mathcal{T}\}.$

Let β be the factor-functor of β with \mathcal{T} , $\mathfrak{G} \in \beta X$ merged iff either $\mathcal{T} = \mathfrak{G}$ or \mathcal{T} and \mathfrak{G} are fixed (i.e. $\cap Z \neq \emptyset$, where the intersection is taken over all $Z \in \mathcal{T}$). Then, clearly, β merges transpositions and so does the (non-constant) functor $F = P^- \circ \beta$.

REFERENCES.

- 1. N. BOURBAKI, Théorie des Ensembles, Livre I, Hermann, Paris.
- 2. Z. HEDRLIN, A. PULTR, On categorical embeddings of topological structures into algebraic, Comment. Math. Univ. Carolinae 7 (1966), 377-400.
- 3. Z. HEDRLIN, Extension of structures and full embeddings of categories, Actes Congrès Intern. Math. 1970, Tome I, 319-322.
- 4. V. KOUBEK, Set functors II, contravariant case, Comment. Math. Univ. Carolinae 14 (1973), 47-59.
- 5. V. KOUBEK, J. REITERMAN, Factor categories of the category of sets: description and concreteness, J. Pure Appl. Algebra 4 (1974), 71-77.
- 6. V. KOUBEK, On categories into which each concrete category can be embedded, Cahiers Topo. et Géo. Diff. XVII-1 (1976), 33-57.
- 7. V.KOUBEK, P.PTÁK, On limits in the generalized algebraic categories, contravariant case, To appear.
- 8. L. KUČERA, Úplná vnoření struktur (Czech), Thesis, Prague, 1973.
- 9. S. MACLANE, Categories for the working mathematician. Springer, 1971.
- V. TRNKOVÁ, When the product-preserving functors preserve limits, Comment. Math. Univ. Carolinae 11 (1970), 365-378.
- 11. V. TRNKOVÁ, Some properties of set functors, Comment. Math. Univ. Carolinae 10 (1969), 323-352.

Faculty of Mathematics and Physics Charles University PRAGUE TCHECOSLOVAQUIE