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ON CATEGORIES INTO WHICH EACH CONCRETE CATEGORY

CAN BE EMBEDDED. II

by Václav KOUBEK

CAHIERS DE TOPOLOGIE

ET GEOMETRIE DIFFERENTIELLE

Vol. XVIII-3 (1977)

Given a contravariant functor F from sets to sets, the category S ( F )
has for objects pairs (X, S) , with X a set and S C F X ; morphisms are map-

pings f: (X, S)-&#x3E; (Y, T) such that F f ( T ) C S . The paper characterizes

those functors F for which S ( F ) is a universal category, i. e. every con-

crete category can be fully embedded into it. The characterization is very

simple : F must be nearly faithful, i. e. there must be a cardinal a such that

for arbitrary mappings f , g : X -&#x3E; Y we have: if f # g, then either F f # F g
or card f ( X )  a, card f ( Y )  a..

The paper continues the author’s previous characterization of cova-

riant functors F for which S ( F ) (defined analogously) is binding. There are

striking similarities between the two cases, yet the main re sult here has no

analogy in the covariant case.

CONVENTIONS. Set denotes the category of sets and mappings.
The word (c functors will denote a contravariant set functor.

Let e be a decomposition of a set X . Then the canonical mapping from

X to X / e will be denoted by e , therefore the class of e containing x is

denoted e ( x ) .
If f : X - Y is a mapping, then Ker f is the canonical decomposition of

f, i.e. K er f = {f-1(Y) |E Im f.
The cardinal cx is meant as the set of all ordinals with type less than

a ; a + denotes the cardinal successor of a .

DEFINITION. A concrete category is called universal if every concrete cat-

egory can be embedded into it.
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THEOREM 1.1. The category S(P-) is universal.

PROOF. See [8].

NOTE. We recall the definition of the functor P- : 

if f: X - Y then for every ,

DEFINITION. A full embedding T from the concrete category ( K , U ) to the

concrete category ( L , V ) is called strong if there exists a set functor F :

Set -&#x3E; Set such that the diagram

commutes.

DE FINITION. An object is rigid if it has no non-identical endomorphism.

Now we shall describe a (c behaviour » of the functor F .

CONVENTION. Let F be a functor. Then for a cardinal a. , Fa denotes the

subfunctor of F such that

where Z Y is the set of all mappings from Y to Z .

DEFINITION [4]. A cardinal a &#x3E; 1 is an unattainable cardinal of a functor

F if F a - Faa #O. Then put

The class of all unattainable cardinals of F is denoted by AF. 

THEOREM 1.2. Let X be an infinite set such that there exists a l AF ’ with
a  card X . Then card F X&#x3E; card 2 X .

PROOF. See [4] .

DEFINITION. Let f, g: X - Y be mappings onto. Then f, g are diverse if

there exists Z C X such that either
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and

or

and

A system 8 of mappings from X to Y is called diverse if arbitrary distinct

mappings f, g E S are diverse. 

PROPOSITION 1.3. I f a is an unattainable cardinal of a functor F and if

f, g : X -&#x3E; a are divers e, then

P ROO F. See [4].

LEMMA 1.4. Let X be an infinite set. Then for every infinite cardinal a with
a  card X there exists a diverse system Q of mappings from X to a such

th at card card 2 X .

PROOF. See [4].

DEFINITION. We say that f : X - Y is coarser than g : X -&#x3E; Z if there exists

h:Z -&#x3E; Y such that h o g = f .

PROPOSITION 1.5. lf f: X- Y then Im F f = u Im F g where the union is

taken over all g : X -&#x3E; a coarser than f and a E AF .
P ROOF . See [7].

DEFINITION. Let F be a functor, x c F X . Define .

is a decomposition of

Further we shall write

P ROP OSITION 1.6. L et F be a functor’; then af AF iff there exists x f F X

such that ||FXF(x)|| - a for card X ’a. Further y E Fa Y iff ||FY(y)|| = a.
PROOF. Clearly x i F2a . On the other hand x c Im F f , where f : X -&#x3E; Y is

onto and card Y = a ; therefore x c F a X and a f AF . The rest is evident.

COROLL ARY 1.7. I f II FXF (x ) n is finite, then there exists e with

F ( x ) = I e’ I e is coars er than e’ 1.
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PROOF. If e # e’ and

then e and e’ are diverse and by Proposition 1.3 we get Corollary 1.7.

PROPOSITION 1.8. Let F be a functor, f : X -&#x3E; Y. Then for every ye F Y

it holds

yx ( F f (y)) ) I e’| there exists e c FYF (y), e o f is coarser than e"

PROOF is easy.

P ROP OSITION 1. 9. Let F be a functor, y c F Y . 1 f for some -e c FYF (y) and

for some f: X -+ Y, ;of is onto, then

FXF ( F f ( y)) = { e’ I there exists e c FyF ( Y ), e o f is coarser than e’}.

PROOF. There exists a mapping h such that -eo f oh = id , then

where z E F (Y/-e) with F -e ( z) = y. Now by Proposition 1.8 we get Pro-

position 1.9.

DEFINITION. Let F be a functor. For x E F X denote by ex the finest de-

composition which is coarser than each ec FXF (x).
NOTE. If a is a finite cardinal and x E FaX , then ex E FXF(x).
COROLLARY 1. l0 . Let F be a functor, a a finite cardinal. 1 f, for some

f:X-&#x3E; Y and for some y E FaY we have F f ( y )E FaX , then

P ROOF is easy.

II

L EMMA 2.1. The object (6, V ) is a rigid object o f S(P’ ), where
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P ROO F . Since OEV and for every i E 6 , {i} E V we get, if f : ( 6, V)-+ ( 6, V)
is a morphism of S ( P’ ) , then f is a bijection. Therefore for every {i,j} I f V
we have .

Hence

for every i E 6 and thus we get for every i c 6 ,

Hence

Now it is easy to verify that f = id6 .

CONVENTION. An object of S(F) will be called an F-space.
DEFINITION. Denote by E ( P- ) the full subcategory of S ( P- ) over those

(X, W) for which Z c W implies X- Z E If and Z#O.

PROPOSITION 2.2. There exists a strong embedding o f S(P- ) into E(P-).

P ROOF. Let (X,W) be a P--space. Define Y (X, W) = ( X V 6, WS), where :

for a given f: (X1, W1),(X2,W2), Yf = f V id6 . Clearly Y is an embed-
ding. Ve shall prove that it is also full. Let f: T (X1, W1 ) -&#x3E; T (X2, W2).
First we prove f (X1) C X2 . Assume the contrary, i. e. f (x) = i for some

x c X I and i c 6 . Then f- 1 (1 i}) E (W,)S and therefore either
or

or for some

Since O E (W1) S and {i} £ (W2)S for every i E 6 , we have 6 C Im f and there-
fore the last case is impossible. Further there exists

such that

and so . Hence either or In th e 

former case we get again either
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or

(we use the fact that { j} E (W2)S) and so 6 C f-1({ i,j}); this is a con-

tradiction. In the latter case

for some

and therefore 6 t Im f and it is again a contradiction. Hence

and

By Lemma 2.1 we have fl 6 = id6 and f / X I : (X1, W1 ) -&#x3E; (X2) W2)is a mor-
phism of S (P-). Thus T is a strong embedding.

PROPOSITION 2.3. There exists a full subcategory )R of S(P- ) such that :
then and for every x E X there exists

with

and th en

there exists with

’41 there exists a strong embedding from S(P- ) to m.

PROOF. Define 03A6 : S(P-)-&#x3E; S(P-) as follows : 03A6(X, W) = (X V 6, WD) with

for a given f : ( X1, W1 ) -&#x3E; ( X2 ,W2) put O f= f V id6 . Evidently 03A6 is an

embedding. Now, we shall prove that, if

then f (X1)C X2, f (6)C 6. For every L E 6,
and

therefore 6 C Im f . We assume that for some x c X1 , f (x) = i E 6 . Then we
have f-1 ({ i} ) E ( RW1 )D and hence either

or

Further there exists j f 6 such that { i , j} E (W2)D ’ and therefore

’We, get that f-l ({ j }) n x1:# 0 but then either
or
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and hence 6 C f -1 ({ i , j } ) - a contradiction. Thus

By Lemma 2.1, f / 6 = id6 and therefore f / X1 : ( X1 , W ) - ( X 2 ,X2 ) is a

morphism of S(P-) . Put m O (S (P-)) . Evidently O : S(P-)--&#x3E; m is a strong

embedding and m has the required properties.

NOTE. The set functor carrying (D ( or ’If ) is IV C6 where I is the identity
functor and C6 is the constant functor to 6 .

COROLLARY 2.4. There exists a full subcategory J of E(P-) such that:
then

an d ( then there exists

with

3D there exists a strong embedding from S(P- ) to I.
P ROOF follows from Propositions 2.2 and 2.3.

THEOREM 2.5. If 2 f A F9 then there exists a strong embedding from S(P-)
to S(F).

PROOF. Via Proposition 2.2 it suffices to prove that there exists a strong

embedding from E(P-) to S(F). D efine

where

there exists

for a given define is an embedding;
let us prove that it is full. Let be a morphism of S(F ).
Then for every x f SF it holds :

there exist such that

( see Corollary 1.7 and the definition ofQ ). On the other hand for every Z

in S there exists

such that

Now by Corollary 1.10, we get that
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Thus f-1 (z ) E Wand f: (X, W) - (Y, S) is a morphism of S (p. ).

CONSTRUCTION 3.1. Let F be a functor such that ae AF , where a&#x3E; 1 is

a finite cardinal. Then there exists an object (X, V) of S(F) such that:

3° for every x c X there exist Y1’ y2 E V such that I x e ey , {x}ey ;
4° if x E V , then F(ex)(Faa) C V ;
5° for x c X denote by

gr x = card { Z | card Z &#x3E; 1, x E Z , there exists y c V, Z c e y
then grx &#x3E; 1 with at most one exception ;

6° (X, V) is rigid;
7° if a &#x3E; 3 then there exists x E X such that gr x = 1 and if for some

Z C X, X £ Z grx = 1 and Z E ey for some y E V then card Z  3.

We shall construct these objects by induction in a . For a = 2 , the

object exists by Lemma 2.1 and Theorem 2.5 .

We assume that for a n the construction is performed and n c AF .
Let G be a functor with n-1 c AG . Let (X’, V’) be a G-space fulfilling the
conditions 1- 7 for n - 1 . We assume that aE X’ and put X = X’ulal. We
choose an arbitrary decomposition e of X in n classes such that

card e(a) = 2 and if grx = 1 for some x E X’ , then x E e(a) .

Put

where the union is taken over all e such that a j f e and the restriction of

e to X’ is equal to ex for some XfV’. Let f:(X,V)-+(X,V) be a mor-

phism of S( F ) ; then f is a bijection by Corollary 1.10 and Condition 3 for

( X’, V’ ) . Further gr a = 1 and for x E X - { a} , gr x &#x3E; 1 . Hence f ( a ) = a .
Clearly f /X’: (X’, V’) - (X’, V’) is a morphism of S(G) and hence f = idX. *
The other required properties are easy to verify.
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P ROPOSITION 3.2. If a &#x3E; 2 is a finite cardinal and a E AF , then there ex-
ists a F-space (X, V) and xo c X such that the following conditions hold:

10 (X, V) is rigid, V C Fax;
20 for every y 0, y 1 c V , card ey. ( E1- i )  a - 1 for i = ,0, 1, where Ei

is the class o f ey i containing Xo ;
30 for every x c X there exist yl, y2 c V such that t x }E ey1’ lxite Y2

P ROOF . Since a&#x3E;2 we can choose by Construction 3.1 the F-spac e (X, V )

fulfilling Conditions 1- 7. Therefore there exists x E X with grx = 1 . Put

x = xo . Clearly ((X, V), xo ) fulfills Conditions 1- 3 from Proposition 3.2.

LEMMA 3.3. Let a be an infinite cardinal. Then for every set X such that
card X = a and every subsets Xl’ X 2, X 3 of X such that

and every mapping f: X2 -+ X3 onto, there exists a diverse system (i o f map-
pings g: X--&#x3E; oc such that card d = card 2X and every g c (i ful fills :

10 for every i fa, g-1 (I i Un X j 1= ø for j = 1, 2 ;
20 there exists no non-constant mapping h coarser than g with

for every

PROOF. If there exists Z C X3 such that

and

then put Y = X1- Z . By Lemma 1.4 there exists a diverse system 93 of map-

pings from Y to ac with card 93 = card 2X . Now, for every h E 93 we choose

gh; X -a such that ghl Y = h, card gh(Z) = 1 - card gh(X2- f-1 (Z )) and,

for

If there exists no Z C X 3 with this property, then we choose a decomposi-
tion {Z1, Z2} of X2 such that

By Lemma 1.4 there exists a diverse system $3 of mappings from Z 1 to a

with card S3 = card 2 X . Now, for every he $ we choose gh : X - a such that
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and for every

Then has the required properties.

CONDIT ION A. An F-space ( X, V) fulfills the condition A if for arbitrary
subsets X1 X 2 X 3 of X such that

and

and for arbitrary mapping f : X 2 --&#x3E; X3 onto there exists y E v such that

a) for every e’ E F(y) there exists e E FxF ( y) coarser than e’, such

th at e(x )m X; # Q f or every x E X and =1,2;
b) there exists e E FFx( y) such that for every e’ E F ( y) we have

1° e’n*e E F f x (y) and

2° a mapping h from X is constant whenever

for every

and h is coarser than e ( e’n* e denotes a co-intersection of e’ and e ).

P ROPOSITION 3.4. L et a c AF be an infinite cardinal such that there exists
x c Faa with non-trivial ex . Then there exists an F-space (X, V) and a

Xo of X such that :

a) (X, V) is rigid ;
b) card X = a , V C FaX ;
c) for every a c X there exists Ya C V such that ey a (a)# eya (x0,
d) ( X , V) fulfills condition A .

PROOF. We choose a set X with card X = a and choose xo c X . For every
a we choose a bijection fa : X - a such that ex ( fa (a ) ) # ex ( fa ( xo)) . Then

Put

Now, we choose bijections
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is onto I .

For i c card 2X denote

As an application of Lemma 1.4 we get that card C. = card 2 X. Further for
denote

there exists e f FF ( y ) with
10 forevery xE X, e(x)n X j #O for J=1,2,
20 for every e’ f Fx ( y), e n*e EFH yA
30 there exists no non-constant mapping from X

coarser than e , with h (x ) = h ( f (x )) for every

xEX2}. 
If we construct the system (i from Lemma 3.3 for ( XI X2 , X 3, f ) = tp 2 ( i ) ,
then for every g E (i we have F g(x) E D, t and therefore cacrd Di - cczrd 2X.
Now we shall construct, by induction on i c ccxrd 2 X , sets Bi e. such that :

f or every i .

Put . We assume that we have the sets If j is a

limit ordinal, put

If j - k + 1 then

a) we choose such that , 

b) we choose

Put

Evidently

and

Put V = uBj . where the union is taken over all j E card 2X . The F-space
( X, V ) has the required properties.
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L EMMA 3.5. Let (X, V) be a rigid F-space. If gl : Yl’-+ X, g2 : Y2 -+ X are
onto, then every mapping h: Y1 ---&#x3E; Y2 such that Fh(Fg2( V))C Fg1( V )
ful fill s g2 o h = gl . O

PROOF. Assume the contrary, i. e. g20h 1: g 1. Then there exists f: X - Y1
such that

but

Further it is clear to verify that g2 o ho f is an F-morphism of ( X, V) - a

contradiction.

CONSTRUCTION 3.6. Let 0 * ((X, V),x0) be a couple where (X, V) is

an F-space, cand X &#x3E; 7 and xo E X . For every set Y and every Z C Y define

gZ : U -&#x3E; X where U = (Y X(X-{x0 } 1)) V{ x0. as follows

if

if

Define a functor EO: S( p. ).... S(F) :

and for f: (Y1, W1)* (Y2’ If 2) put

Clearly EO is faithful and if EO is full, then EO is a strong embeddins.

NOTE.IF ZI, Z2 are distinct subsets of Y , then g Z 1 and g Z 2 are diverse.

LEMMA 3.7. Let O = ((X, V ), x, ) and Z C Y. I f y c V fulfills :
let e E FFX ( y) such that for every e’fj=:ryJ, e’n * e E FxF ( y),

then F gZ ( y ) ful fills :
for every -e fF(FgZ (y)), en* n ker(eo gZ ) E FFU(FgZ (y))·

P ROOF follows from Proposition 1.9.

L EMMA 3.8. L et n be a finite unattainable cardinal of F . Let an F-space
( X , V) and xo E X fulfill the conditions 1- 3 from Proposition 3.2. I f
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is an S(F)-morphism arad O WI , then for every Z2 c W2, Z2 # O, there
exists Z1 E W1 such that F(gZ 2 og)( V) C FgZ 1 (V).
PROOF. A ssume the contrary, i. e. there exist yo, y 1 E FgZ2( V ) such that :

Fg(y0)E FgZ 0(V) and Fg(y1)E FgZ 1 (V) where Z0 #Z1. 
’We can assume that there exists v c Z0- Z1 . Put Fg(yi ) - zi for i = 0, 1.

Then

and

By Corollary 1.10 we get that

and

where top t1 E V such that F g Z 2 ( ti ) = yi for i = 0, 1 ; but this contradicts
the Condition 2 from Proposition 3.2.

L E MM A 3.9. L et a be an infinite unattainable cardinal of F. Let (X, V)
and Xo c X fulfill the conditions a- d from Proposition 3.4. If

is an S ( F)-morphism and 0 1 WI’ then for every Z 2 E W2’ Z2 # O there
exis ts Z 1 E WI such that F(gz 2 og)(V)CFgz 1(V ) .
PROOF. Assume the contrary, i. e. there exist y0 , yl f FgZ2 (V ) such that:

for

where Z 0 :,A Z1 . We can assume that v c Zo - Z, and WE Z, . Put

for

By Proposition 1.8 and Lemma 3.7 there exists eiE fF1 ( Fg( yi )) such that
ei is coarser than 

for

Therefore we get that
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Put

Since v Z1 we have X3 n X2 =O . Clearly X 1 n X 2 = O and f is onto.

Therefore there exists t c V from Condition A for ( X 1, X2 , X3 , f ) . Denote :

By a , Condition A we have v, w E Z3 . Further there is e1 E fF1 (z3) coar-
ser than Kerg Z 3 

and Ker( e0 ogZ o g) , where eo c fFX( t) from b of Con-

dition A. Hence there exists a mapping p such that e1= p o eo ogZ2 og .
Since e1 is coarser than Ker gZ .7 we get that 

e1=po e0 gz 2og.

f or every

- and thus p o e 0 is constant and so is e , . This contradicts

THEOREM 3. l0. Let a&#x3E; 2 be an unattainable cardinal o f F. Then there ex-

ists a strong embedding from S( P-) to S( F ) whenever there exists x6 Fa X
such that ex is non-trivial.

PROOF. Let (X, V) be an F-space and x0 c X fulfilling the conditions 1-

3 from Proposition 3.2 if a is finite, or the conditions a - d from Proposi-
tion 3.4 if a is infinite. We shall restrict the functor EO to the category

19, where 0 = (( X , V ), xo ) . By Lemmas 3.8 and 3 .9, if

is an S ( F ) -morphism, then for every Z2 c W2 there exists
such that
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and then by Lemma 3.5 gZ2og = gZ . Since W2*is a cover of Y2 , we get
that

for every and

For every a c X-1 xo I , define ga : Y1--&#x3E; Y2 as f ol low s :

iff

Then ga : (Y1’ W1 )--+ (Y2’ W2 ) is an S(P-)-rnorphism for every a c X - { xo }.
Further for every a, b c X-{ x} and every Z E ll’ 

Properties of IR imply that ga = gb for every a, b E X -{ x0} , thus EO is

a strong embedding from ? to S ( F ) . By Proposition 2.3, we obtain the The-

orem.

IY

DEFINITION [9]. We say that a colimit of a diagram D:D--+ K is absolute

if every covariant functor F: K -+ S preserves it.

LEMMA 4.1. Let 

be morphisms o f the category K and let

be morphisms of K such that

Then the push-out of fi : A --+ Bi , i = 1, 2, is absolute.

PROOF. See [10].

L EMMA 4.2. Let f: X - Y, g: X --+ Z be mappings onto such that there ex-

ists exactly one z c Z with cardi 1 (z ) &#x3E; 1. Then the push-out of f, g is
absolute.

P ROO F. Let h I: Y ---+ V, h 2: Z -+ V be this push-out. Choose k 1 : Y--&#x3E; X
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such that f o k 1 = idy and
whenever

Further we choose k 2 : V -* Z such that

and

and

for

It is easy to verify that the definition of k2 is correct and go k 1 = k2 oh 1 ’ 
Now, Lemma 4.2 follows from Lemma 4.1.

DEFINITION. A decomposition e is called finite if every class of e is finite

and e has only a finite number of non-singleton classes.

COROLLARY 4.3. Let F be a functor, x E F X . I f ex = {X} then every fi-
nite decomposition is an element o f fFX( x ).
PROOF. If e is a finite decomposition, then e is a co-intersection of de-

compositions ei, i = 1, 2, ... , n such that every ei has only one non-sin-

gleton class. If e i E fFX( x then by induction we get from Lemma 4.2 that

e E fF (x) . Further every decomposition e. is a co-intersection of

where every decomposition ei has only one non-singleton class and every
class of eji has at most two points. Now, by induction we get from Lemma

4.2 that

whenever every

Since ex = {X} , it is easy to verify by Le’mma 4.2 that every

We recall the definition of the union and the co-union.

DEFINITION. Let f : Y ---&#x3E;X, g: Z - X be monomorphisms. The monomorphism
h : V --&#x3E; X is called a union of f , g (we shall write f U g = h ) if there exist

such that

and for every h’: V’ -. X for which there exist

such that
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there exists

The dual notion is a co-union (we shall write lt = f U* g if h is a co-union

of f, g ).
The covariant set functor F preserves finite unions if for arbitrary one-

to-one mappings f: Y - X, g: Z - X we have

F preserves unions with a finite set if for arbitrary one-to-one mappings

with Z finite,

we have F fU Fg = F( f Ug).
The contravariant set functor F dualizes finite co-unions if for arbitrary

mappings f: X - Y, g : X - Z onto, we have

F dualizes co-unions with a finite decomposition if for arbitrary mappings

f: X - Y, g : X - Z onto, where Ker g is a finite decomposition, we have

DEFINITION. A set functor F (covariant or contravariant) is said to be near-

ly faithful if there exists a cardinal a such that, for arbitrary mappings f#
g : X --&#x3E; Y , F f = F g implies that

and i

MAIN THEOREM 4.4. Let F be a contravariant set functor. Then S(F) is
a universal category if and onl y if F is nearly faithful.

To prove the Main Theorem we shall first prove a detailed characte-

rization Theorem analogous to the covariant case ( see below). Notice that

the ( covariant ) identity functor I is faithful but S(1) is far from universal .

First we recall that a permutation with only one 2-cycle is called a

transposition.

THEOREM 4.5. For a contravariant functor F the following conditions are
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equival ent :
10 S ( F ) is universal ;
2Ð there exists a strong embedding from S ( P- ) to S ( F ) ;

3D S(F) has more than card 2FØ + card 2F1 non-isomorphic rigid spaces;
40 there exists a rigid F-space (X, V ) with card X &#x3E; 1 ;
5D F does not dualize co-unions with finite decomposition;
60 there exists a set X and x c F X such that ex is non-trivial ;
70 there exists a set X and a transposition

t:X-X such that F t F F id X ;
80 there exists a cardinal a such that for every set X with card X &#x3E; a

and every transposition t : X --&#x3E; X it holds F t ,t: F idX . 
PROOF. We recall that 6=&#x3E; 2 follows from Theorems 2.5 and 3.10. The

implication 2 =&#x3E; 1 follows from Theorem 1.1. Th e implications

are evident. Further 5 =&#x3E; 6 follows from Corollary 4.3 and Proposition 1.5.

The implication 8 =&#x3E; 7 is obvious and so is

Therefore the theorem will be proved as soon as we show that

7 =&#x3E; 6. Let t: X - X be a transposition such that F t p6 F idX , therefore
there exists x E F X such that F t (x) #x . D enote a, b distinct points of

X such that

If ex = {X } , then there exists e E fF (x) with e(a) ={a,b} and

for

Then e = eo t and thus F to F e - F e - hence F t(x) = x , because x is

in lm F e - a contradiction.

6 =&#x3E; 5 . Let x E F X such that ex is non-trivial. By Proposition 1.9 we can

suppose that there exists a c X such that {a} ex . We choose b c X such
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that . Let

Te have that x Im F el Ulm F e2 . On the other hand e2 is a finite decom-

position and e1 u* e2 = idX .

PROOF OF MAIN THEOREM. If F is nearly faithful, then F fulfills the con-

dition 8 of Theorem 4.5 and thus S( F ) is universal. If S ( F ) is universal,

then F fulfills the condition 7 of Theorem 4.5 and by [5] it is nearly faithful.

Te recall the analogous results on covariant set functors. Here, in-

stead of universality, those F are characterized for which S( F) is binding.
(This means that the category of graphs is fully embeddable in S( F ) and,

assuming the non-existence of too many non-measurable cardinals, it is the

same as universality, see [3] .) Let us remark that via Theorem 4.5, S( F)
is universal iff it is binding, for contravariant F .

For a covariant set functor F , denote for x E F X ,

is the inclusion I .

It is well-known ( see [11] ) that either FFX (x) is a filter or

THEOREM 4.6. For a covariant set functor F the following conditions are

equivalent :
10 S(F) is binding;
20 there exists a strong embedding from the category of graphs to S( F );
30 S ( F ) has more th.an 

non-isomorphic rigid spaces ;
40 there exists a rigid F-space (X, V) such that card X &#x3E; card 2F 1 ; 
50 F does not preserve unions with a finite s et ;
60 there exists a set X and x E F X such that FF ( x) is not an ultra-

filter and n Z # O where the intersection is taken over all Z c FF ( x) ;
70 there exists a set X , a transposition t: X--&#x3E; X and a mapping p : X --&#x3E; X
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such that p ( y ) = y i f f t( y)# y and there exists x E F X with

80 there exists a cardinal a such that for every set X , card X &#x3E; a and

every transposition t : X - X and every mapping p : X - X such that p ( y ) = y

iff t(y) # y, there exists x c F X with F t ( x) 1= x, Fp(x) # x.

COROLLARY 4.7. In the finite set theory, S(F) is a universal category if
and only if F is a non-constant functor, i. e. S( F ) is universal iff F does
not dualiz e co-unions.

. 
Again, the situation for covariant functors was described in [6].

THEOREM 4.8. In the finite set theory, S(F ) is a universal category if and

only i f F is not naturally equivalent to (I X CM)V CN for some M, N (we
recall that Cm is the constant functor to M and I is the identity functor ),
i. e. S ( F ) is universal iff F does not preserve unions.

EXAMPL E 4.9 (A non-constant functor which is not nearly faithful). Denote

by Q the usual set functor, assigning to a set X the set B X of all ultrafil-
ters on X , and to a mapping f the mapping B f which sends an ultrafilter T
to the ultrafilter with base

Let 8 be the factor-functor of j8 with j,g c B X merged iff either J= g or
5 and g are fixed ( i, e. m Z #O , where the intersection is taken over all

Z E 5 ). Then, clearly, f3 merges transpositions and so does the ( non-cons-

tant ) functor F = P- o A -
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