CAHIERS DE TOPOLOGIE ET GÉOMÉTRIE DIFFÉRENTIELLE CATÉGORIQUES

MITCHELL WAND Free, iteratively closed categories of complete lattices

Cahiers de topologie et géométrie différentielle catégoriques, tome 16, nº 4 (1975), p. 415-424

http://www.numdam.org/item?id=CTGDC_1975__16_4_415_0

© Andrée C. Ehresmann et les auteurs, 1975, tous droits réservés.

L'accès aux archives de la revue « Cahiers de topologie et géométrie différentielle catégoriques » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

FREE, ITERATIVELY CLOSED CATEGORIES OF COMPLETE LATTICES

by Mitchell WAND

Let CL denote the cartesian closed category of complete lattices, with morphisms continuous over directed chains. It is well-known [5] that there is a morphism $Y \in CL(M^M, M)$ whose underlying map takes each continuous function $f \in CL(M, M)$ to the least $x \in M$ such that f(x) = x. Let T be an algebraic theory and $A: T \rightarrow CL$ a faithful product-preserving functor. We say that A is *iteratively closed* iff for each $t \in T(n+m, m)$ there exists a (unique) $\mu(t) \in T(n, m)$ such that $A(\mu(t)) = Y.At$ (where «^» denotes exponentiation). The existence of iteratively closed A is also wellknown, and these structures are important for formal language theory and other theoretical areas in computer science [8,6]. Our object in this Note is to construct free iteratively closed algebras.

1. Definitions and notations.

We will regard a theory T as a category whose set of objects is ω and in which the object n is the *n*-fold product of the object 1. Theories form a category Th when equipped with product-preserving functors as morphisms.

We denote by RS («ranked sets») the category (Sets, ω) of maps $r: \Omega \to \omega$ and rank-preserving maps $b: \Omega \to \Omega'$. If $r: \Omega \to \omega$ is a ranked set, we use Ω_n to denote $r^{-1}(n)$. There is a forgetful functor $V: Tb \to RS$ sending T to $r: \Omega \to \omega$ where $\Omega_n = T(n, 1)$. As is well-known, V has a left adjoint, the free-theory functor.

Let μTh denote the category whose objects are iteratively-closed faithful product-preserving functors, and with morphisms from $A: T \rightarrow CL$ to $A': T' \rightarrow CL$ precisely those morphisms $b: T \rightarrow T'$ such that

 $h(\mu(t)) = \mu(h(t))$ for each morphism $t \in T$.

Let V also denote the forgetful functor $V: \mu Tb \rightarrow RS$. Our main result is

that V has a left adjoint.

Since A is faithful, we can enrich T over the category of posets by setting

 $t \leq t'$ in T(n,m) iff $At \leq At'$ in the lattice $[An \rightarrow Am]$. If $t \in T(k+n,n)$ then Y. \widehat{At} is given as follows:

Let
$$t_0 = \perp \in T(k, n)$$
, let $t_{p+1} = t \cdot (1, t_p)$; then $Y \cdot A t = \bigcup A t_p$.

PROPOSITION 1.1. If A is iteration-closed, then $\mu(t) = \bigcup t_{h}$.

PROOF. If A is iteration-closed, $\perp \in T(k, n)$, so the t_p are well-defined. $A(\mu(t)) = \bigcup A(t_p)$, by definition. So $A(\mu(t)) \ge A t_p$ for each p, whence $\mu(t) \ge t_p$. Assume that for all p, $u \ge t_p$. Then

$$A u \ge A t_h$$
 and $A u \ge \bigcup A(t_h)$.

So

$$A u \ge A(\mu(t))$$
, and $u \ge \mu(t)$.

So $\mu(t)$ is a least upper bound for $\{t_p\}$.

2. Lattice-theoretic preliminaries.

In constructing the free theory over Ω the most important step is finding the smallest set X such that

$$X \cong \coprod \{ X^{r(s)} \mid s \in \Omega \}.$$

In that case, the solution was the set of finite Ω -trees.

In our case, we seek a lattice L such that

$$L \stackrel{\sim}{=} \coprod \{ L^{r(s)} \mid s \in \Omega \}.$$

In general, we may obtain solutions to such fixed-point equations as a series [4,2], but in this case we can obtain a tractable representation as a lattice of (possibly infinite) trees. We restate the theorem here for precision and completeness. Recall that for any set S, we denote by S^* the (underlying set of the) free monoid generated by S; we denote the identity of S^* by e.

THEOREM 2.1 [3]. Let $r: \Omega \to \omega$ be a ranked set, and let D_{Ω} denote the lattice $\coprod \{s \mid s \in \Omega\}$. Let $L_{\Omega} = L$ be the set of functions $t: \omega^* \to D_{\Omega}$ sat-

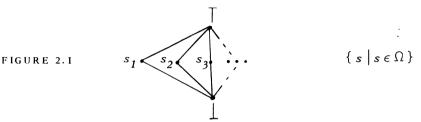
is fying the following conditions:

(Ranking) If t(w) = s and r(s) = n, then $t(w_j) = \perp$ for all $j \ge n$; (Truncation) If $t(w) \in \{ \mid , \uparrow \}$, then $t(w_x) = t(w)$ for all $x \in \omega^*$.

Let $t \leq t'$ iff $t(w) \leq t'(w)$ for all w. Then L is a complete lattice and

$$L_{\Omega} \cong \coprod \{ L_{\Omega}^{r(s)} \mid s \in \Omega \}.$$

PROOF. Figure 2.1 illustrates the lattice D_{Ω} . To see that L is a complete



lattice, let $\{ t_{\alpha} \mid \alpha \in I \} \subseteq L_{\Omega}$. Define t(w) by induction :

(i)
$$t(e) = \bigcup \{ t_{a}(e) \mid a \in I \},$$

(ii)
 $t(wn) = \begin{cases} \prod_{i=1}^{n} \text{ if } t(w) = \prod_{i=1}^{n} \text{ (ii-a)} \\ \prod_{i=1}^{n} \text{ if } t(w) = \prod_{i=1}^{n} \text{ (ii-b)} \\ \bigcup \{ t_{a}(wn) \mid a \in I \} \text{ otherwise} \text{ (ii-c)} \end{cases}$

We claim t is the least upper bound in L of the t_a .

First of all, $t \in L$; clauses (ii-a) and (ii-b) force t to satisfy the truncation axiom, and it is easy to verify that the ranking axiom holds also: if $t(w) = s \in \Omega_n$, then it must be that $t_a(w) \leq s$ for every α , and hence:

$$t_a(w \ j) = \prod \text{ for } j \ge n$$

For each α , $t_{\alpha} \leq t$, by an easy induction on w. To show t is the least upper bound, assume that

$$t_a \leqslant u$$
 for all α

Then $t(c) \leq u(c)$. Assume $t(w) \leq u(w)$. If $t(w) = \top$, then $u(w) = \top$, hence $\top = t(wn) \leq u(wn) = \top$.

If $t(w) = \bot$, then $t(wn) = \bot \leq u(wn)$. Else

$$t(wn) = \bigcup \{ t_{\alpha}(wn) \mid \alpha \in I \} \leq u(wn).$$

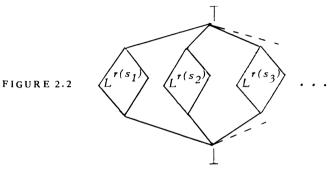
So $t = \bigcup t_a$.

Last, we must show

$$L \cong \amalg \{ L^{r(s)} \mid s \in \Omega \}.$$

The lattice on the right-hand side consists of the following components:

- (i) a bottom |, (ii) a top \top ,
- (iii) for each $s \in \Omega$, a copy of $L^{r(s)}$. (See figure 2.2)



Define a map $I: L \to \coprod L^{r(s)}$ as follows:

(i) if $t(e) = \bot$, $I(t) = \bot$,

(ii) if
$$t(e) = \top$$
, $I(t) = \top$,

(iii) if $t(e) = s \in \Omega$ and r(s) = n, $l(t) = (t_1, \dots, t_n)$ in the s-th component of $\coprod L^{r(s)}$, where $t_i(w) = t(iw)$.

This is clearly a bijection and I is clearly continuous over directed chains. 🔳

 L_{Ω} is in fact an initial object in an appropriate category of solutions to [2]

$$D \stackrel{\simeq}{=} \amalg \{ D^{r(s)} \mid s \in \Omega \}.$$

We view t as defining a countable labelled tree, truncated at nodes labelled or \vec{l} . We say t is finite iff $\{w \mid t(w) \in \Omega\}$ is finite. We use $E(\Omega)$ to denote the underlying set of L_{Ω} .

 L_{Ω} is a subposet of $D_{\Omega}^{\omega^*}$ but not, in general, a sublattice. However, we have :

LEMMA 2.2. Let $u_0 \leq u_1 \leq \dots$ be an increasing chain in L_Ω . Then

$$(\cup u_i)(w) \stackrel{\cdots}{\longrightarrow} \cup u_i(w)$$
.

4

PROOF. $(\cup u_i)(e) = \cup u_i(e)$; we calculate $(\cup u_i)(wn)$ from the definition. If $(\cup u_i)(w) = \top$, then $(\cup u_i)(wn) = \top$. But

$$(\cup u_i)(w) = \bigcup u_i(w) = \top$$

implies that $u_j(w) = \top$ for some j. Hence

$$u_i(wn) = \top$$
 as well, and $\cup u_i(wn) = \top$

Similarly, if $(\bigcup u_i)(w) = \bot$, then $u_i(w) = \bot$ for all *i*, and $u_i(wn) = \bot$ for all *i*. So

$$(\cup u_i)(wn) = \bot = \cup u_i(wn). \quad \blacksquare$$

COROLLARY. Let $\{u_i\}$ be an increasing chain as before. If $s \in \Omega$,

$$(\cup u_i)^{-1}(s) = \cup u_i^{-1}(s).$$

Furthermore, if $u_i^{-1}(\top) = \emptyset$, then $(\cup u_i)^{-1}(\top) = \emptyset$.

If $r: \Omega \rightarrow \omega$ is a ranked set, let $\Omega + X$ denote the ranked set

$$r' = \langle r, X \to \{ 0 \} \hookrightarrow \omega \rangle : \Omega \amalg X \to \omega ,$$

that is, the ranked set consisting of Ω with the members of X adjoined as new 0-ary elements (r'(X) = 0). We will write the new elements of $\Omega + k$ ($k = \{0, 1, ..., k-1\}$) as $x_1, ..., x_k$.

Consider the theory TE_{O} constructed as follows:

$$TE_{\Omega}(k, 1) = E(\Omega + k), TE_{\Omega}(k, n) = [E(\Omega + k)]^{n},$$

with the following composition rule:

If $t \in TE_{\Omega}(n, 1)$ and $\langle u_1, \dots, u_n \rangle \in TE_{\Omega}(k, n)$, then

$$t < u_1, \dots, u_n > (w) = \begin{pmatrix} u_i(v) & \text{if } w = zv & \text{and } t(z) = x_i \\ t(w) & \text{otherwise.} \end{pmatrix}$$

Note that since $r(x_i) = 0$, $t(zw') = \bot$ for all $w' \neq e$, and hence z is unique if it exists.

LEMMA 2.3. Let $v = t \le u_1, \dots, u_n \ge in TE_{\Omega}(k, 1)$. Then for $s \in \Omega$

$$v^{-1}(s) = t^{-1}(s) \cup \bigcup_{i=1}^{n} t^{-1}(x_i) u_i^{-1}(s),$$
$$v^{-1}(x_j) = \bigcup_{i=1}^{n} t^{-1}(x_i) u_i^{-1}(x_j).$$

Let $AE_{\Omega}: TE_{\Omega} \rightarrow CL$ be the product-preserving functor given by : $AE_{\Omega}(1) = L_{\Omega}$ and $AE_{\Omega}(1): (u_1, \dots, u_n) \mapsto t \le u_1, \dots, u_n \ge .$

All of our theories will be subtheories of TE_{Ω} and our algebras will be constructed as composites

$$T \longrightarrow TE_{\Omega} \xrightarrow{AE_{\Omega}} CL$$

We will usually delete the AE_{Ω} and write $A: T \rightarrow TE_{\Omega} \rightarrow CL$.

Now, $TE_{\Omega}(k,n)$ has a lattice structure imposed upon it by $L_{\Omega+k}^{n}$. Thus AE_{Ω} , acting on $TE_{\Omega}(k,n)$, is a function whose domain and codomain are both underlying sets of lattices. In fact, AE_{Ω} is (the underlying map of) a morphism of lattices:

LEMMA 2.4. For any k, n,

$$AE_{\Omega}: L^{n}_{\Omega + k} \longrightarrow [L^{k}_{\Omega} \longrightarrow L^{n}_{\Omega}]$$

is a continuous morphism of lattices.

PROOF. It will clearly suffice to show the case n = 1. So let $u_0 \le u_1 \le ...$ be a chain in $L_{\Omega + k}$. We want to show that for any $t_1, ..., t_k \in L_{\Omega}$,

$$(\cup u_i) . < t_1, \dots, t_k > = (\cup u_i . < t_1, \dots, t_k >).$$

We refer to these two objects as F and G, and we must show that, for all $w \in \omega^*$, F(w) = G(w). We can calculate F(w) from the definition as follows:

$$(\cup u_i) < t_1, \dots, t_k > (w) = \begin{pmatrix} t_j(v) & \text{if } (\exists z)! (\cup u_i)(z) = x_j & w = z v \end{pmatrix}$$

$$\begin{pmatrix} u_i(w) & \text{otherwise.} \end{pmatrix}$$

If for some z and j, $(\bigcup u_i)(z) = x_j$, then for every i, $u_i(z) = \bot$ or x_j . If $u_i(z) = x_j$, then $u_i \le t_1, \ldots, t_k \ge t_j(v)$. If $u_i(z) = \bot$ and if α is a proper initial segment of z, then $u_i(\alpha) \le (\bigcup u_i)(\alpha) \in \Omega$. Hence for no α and no j is $u_i(\alpha) = x_j$. So $u_i \le t_1, \ldots, t_k \ge u_i(w)$, which is \bot by the truncation rule. So $G(w) = t_i(v) = F(w)$.

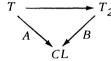
Now assume that for no j is there a z such that $(\bigcup u_i)(z) = x_j$. Then $G(w) = \bigcup \{ u_i(w) \mid \sim (\exists z)(\exists j) [u_i(z) = x_j & w = zv] \}$ $\bigcup \{ t_i(v) \mid (\exists z) [w = zv & u_i(z) = x_j] \}.$ Since the u_i form a nondecreasing chain and for every j and initial segment z of w, $\bigcup u_i(z) \neq x_j$, if the second set is nonempty there must be some i such that $u_i(z) > x_j$. Hence $u_i(z) = \top$. So $u_i(w) = \top$. Hence

$$G(w) = \bigcup u_i(w) = F(w). \quad \blacksquare$$

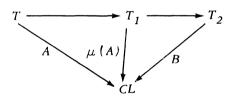
3. Main Theorems.

The first theorem asserts that iteration-closures exist.

THEOREM 3.1. If $A: T \to CL$ is a product-preserving functor, there exists an object $\mu(A): T_1 \to CL$ of μTh and a Th-morphism $T \to T_1$ such that, if $B: T_2 \to CL$ is any other object of μTh satisfying



then T_1 is a subtheory of T_2 and



Furthermore, if A is faithful, so is $T \rightarrow T_1$.

PROOF. $T_1(n,k)$ will be a subset of CL(An, Ak), given inductively as follows:

$$T_{(0)}(n,k) = AT(n,k),$$

$$T_{(i+1)}(n,k) = AT(n,k) \cup \{tt' \mid t \in T_{(i)}(m,k), t' \in T_{(i)}(n,m)\}$$

$$\cup \{ < t_1, \dots, t_k > | t_j \in T_{(i)}(m,1) \}$$

$$\cup \{ Y, \hat{t} \mid t \in T_{(i)}(n+k,k) \}.$$

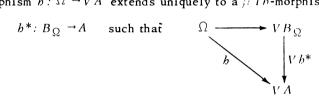
Then $T_I(n,k) = \bigcup T_{(i)}(n,k)$ clearly has the required properties. LEMMA. For any $A: T \to CL$ the constant function \perp is a morphism of $\mu(A)$. PROOF. $\perp = \mu(id_1)$.

Let T_{Ω} be the free theory generated by Ω . There is an obvious inclusion $T_{\Omega} \rightarrow TE_{\Omega}$, since T_{Ω} consists precisely of finite trees in which

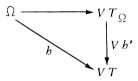
 \perp and \top do not appear, except for \perp 's introduced by truncation. This observation enables us to reach our main theorem.

THEOREM 3.2. The forgetful functor $V : \mu Th \rightarrow RS$ has a left adjoint.

PROOF. The object function is calculated as follows: Given $\Omega \in RS$, construct $T_{\Omega} \rightarrow TE_{\Omega} \rightarrow CL$. Then the desired object is the closure of this functor. Call this object $B_{\Omega}: TB_{\Omega} \rightarrow CL$. We must then show that for any $A \in \mu Tb$ any RS-morphism $b: \Omega \rightarrow VA$ extends uniquely to a μTb -morphism



Let $A: T \rightarrow CL$ be any object of μTh and $b: \Omega \rightarrow VA = VT$ be an RS-morphism. Hence h extends uniquely to a Th-morphism h' satisfying:



Now for $t \in TB_{\Omega}(n, k)$ let

$$b^{*}(t) = \bigcup \{ b^{t} t_{i}(\bot) \mid t_{i} \in T_{\Omega}(p, k) \in \{ \exists u \in B_{\Omega}(n, p) \} [t = t_{i} \cdot u] \};$$

 b^* is easily shown to be a *Th*-morphism, and continuous on the (enriched) morphism sets. To show b^* preserves iteration-closure, let $t \in TB_{\Omega}(k, n)$. Recalling Proposition 1.1, set

$$t_0 = \perp$$
, $t_{p+1} = t.(1, t_p)$

and then $\mu(t) = \bigcup t_p$. However, we then have

$$b^{*}(t_{0}) = \perp$$
, $b^{*}(t_{p+1}) = b^{*}(t) \cdot (1, b^{*}(t_{p}))$

and

$$b^{*}(\mu(t)) = b^{*}(\cup t_{p}) = \cup b^{*}(t_{p}) = \mu(b^{*}(t))$$

Furthermore, by the proof of Theorem 3.1, h^* is clearly unique.

4. Characterization of $T B_{\Omega}$.

Our last result is a characterization of TB_{Ω} . Again, let S* denote

the free monoid generated by S. We say $G \subseteq S^*$ is recognizable iff there exists a finite monoid M, a monoid homomorphism $Q: S^* \to M$ and a subset $F \subseteq M$ such that $G = Q^{-1}(F)$. We say $t \in L_{\Omega}$ is rational iff:

(i)
$$\{s \in \Omega \mid t^{-1}(s) \neq \emptyset\}$$
 is finite,

(ii)
$$t^{-1}(|) = \emptyset$$
,

(iii)
$$(\forall s \in \Omega)(t^{-1}(s))$$
 is a recognizable subset of ω^*).

 TB_{Ω} may now be characterized as follows:

THEOREM 4.1. TB_{Ω} is the subtheory of TE_{Ω} consisting of the rational trees.

The proof is a redious but comparatively straightforward exercise in automata theory, relying heavily on Lemma 2.3. Since quite similar results have appeared elsewhere [8,7,1], we will forego reproducing the proof here.

While this characterization of the iteration-closure of

$$T_{\Omega} \longrightarrow TE_{\Omega} \longrightarrow CL$$

was known, its freeness was not. One may then apply the triangular identities to find identities in μTb . These, in turn, yield a number of interesting results, primarily in the area of formal languages [8,7] and the semantics of programming languages.

References.

- 1. BEKIC H., Definable operations in general algebras and the Theory of Automata and Flowcharts, *I.B.M. Vienna*, 1969.
- 2. REYNOLDS J.C., Notes on a lattice-theoretical approach to the Theory of Computation, Dept. of Systems & Info. Sc., Syracuse University, 1972.
- 3. SCOTT D., The lattice of flow diagrams, Oxford U. Comp. Lab., Rep. PRG-3, 1970.
- 4. SCOTT D., Data types as lattices, Lecture Notes, Amsterdam, 19,2.
- 5. TARSKI A., A lattice-theoretical fixpoint theorem and its applications, *Pacific J.* of Math. 5 (1955), 285-309.
- 6. WAGNER E.G., An algebraic theory of recursive definitions and recursive languages, Proc. 3^d ACM Symp. Tb. Comp. (1971), 12-23.
- 7. WAND M., A concrete approach to abstract recursive definitions, Automata, Languages & Programming (M. Nivat ed.), North-Holland, 1973, 331-341.
- WAND M., Mathematical foundations of Formal Language Theory. Project M.AC TR-108, M.I.T., Cambridge, Mass. 1973.

Computer Science Department Indiana University BLOOMINGTON, In. 47401 U.S.A.