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NATURAL ANADESES AND CATADES ES *

by Dominique BOURN

CAHIERS DE TOPOLOGIE

ET GEOMETRIE DIFFERENTIELLE

Vol. XI V-4

« ...zitti, e guardanda il rumore

che fa l’acqua a passare nel salca di fu,,a. 11

C. Pavese (La Cena Triste)

Firstly, we wished to find simple conditions on a 2-category to

make possible the «Kleisli and the Eilenberg-Moore constructions» asso-

ciated to a triple, as in the case of the 2-category 31 of natural transfor-

mations. It appeared that the study of two kinds of morphisms between

2-functors allowed an easier access to this question. The first kind, which

is called here a catadesis, was first defined by Gray in [8] , but already
used in some cases by Mac Lane («crossed homomorphism» [10]) and Eh-
resmann (« homomorphismes croises » in [6]); this suggests that the notion
could be useful in Homological Algebra. The second kind, which is a dual

possibility of generalization, is called an anadesis. (I changed Gray’s ter-

minology because I needed two symmetric names.)

In the first part, we obtain some results about commutations of the

new kinds of limits associated to anadeses and catadeses, and about com-

patibilities of the 2-functors with these limits. In the second part, we stu-

dy some interesting examples of that sort of limits : product of two cate-

gories, tensor and cotensor of an object e of a 2-category by a category
(whence an application to the theory, due to Gray, of representable 2-ca-

tegories ), Kleisli and Eilenberg-Moore constructions (whence an applica-
tion to the theory of triples ) . In the third part, we give conditions for e-

xistence of limits. In the fourth part, a generalization of catadeses leads

to the definition of a tensor product for catadeses ( foretold by Gray in

[8] ) and for anadeses. In the fifth part, we discuss the problem of Kan

extensions in this theory. Finally, applications are given to the study of

* Conf6rence donnee au Colloque d’Amiens.
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structures defined as algebras in this setting.
This paper develops a thesis ( These de 3e cycle, Paris, 1973

[4] ). The Amiens Colloquium gave me the opportunity to know that Pro-
fessor Gray was going to publish an important volume on the same subject
in the Lecture Notes. After taking note of it, I must point out that, if some

results of my paper are analogous to some of his work ( tensor product),
other ones are original ( commutation of limits) and the methods and

the proofs that I use are always different, and so may be of some interest.

My terminology is different ( and Gray also does not adopt the terminology
of his previous paper [8  ), and it would have been too difficult to change
it, since my paper was already written. In order to facilitate the transcrip-

tion, I add the following «lexicons. 

LEXICON
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0. Notations.

If C’ is a category, Co is the set of its objects, a. and B. its

domain and codomain mappings, and C° * the «opposite category».
We denote by lll the « category of sets» ( and mappings), relative

to a universe It, by if the « category of categories» ( and functors ) , by

p the forgetful functor from if to ? which associates to a category

C’ the set of its morphisms.

There are several ways to describe 2-categories. We shall mention

two of them :

- the way of structured categories [7J : a 2-category C is a PF-struc-
tured category (i.e. a double category) ( C’ , CDD), in which Co C C0DD ,

- the way of V-categories [A] ; a 2-category C is a F-category, i.e. a

set Co [= Cå] equipped, for each pair ( e’, e ) of objects of Co , with a

category C (e’, e)DD which describes the « hom» between e and e’ ,

satisfying the known conditions.

Most often, we shall use the first point of view but we do not ne-

glect the second one.

If C = (C. , CDD) is a 2-category, we denote by Co the set of ob-

jects of C’ , by Corn the set of 1-morphisms of C ( which defines a sub-

category of C’ ) ; the other elements of C (i.e. the morphisms of Crn)
are called 2-morphisms ( or 2-cells ) . In the same way, if F is a 2-functor

from C to the 2-category C’ C", C’DD), we denote by F 0 M the functor
from C om to C’oDD, restriction of F . To C are associated the two «oppo-

site 2-categories » :

and

The 2-category M =(M,MDD ) is the 2-category of natural trans-

formations associated to the cartesian closed category F.
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1. Definitions and first results.

Let C and C’ be two 2-categories, F and F’ two 2-functors from

C toward C’.

D E F I N ITI O N 1 . By a catadesis from F toward F’ , we mean a triple t =

( F’, T , F ) , where T is a mapping from C m toward C’ , satisfying the

following conditions :

a) ’r (e) is a 1-morphism from F( e ) toward F’ ( e ) for each object
e of C .

b) T (f) is a 2-morphism from F’ ( f ) . T( e ) toward T(e’) . F (f) for

each 1-m orph i s m f f rom e to e’.

c) Compatibility with lateral composition (DD): if n is a 2-cell from

f toward f’, then: T(f’) DD F’ (n). T(e) = T(e’). F(n) DD T(f).

d) Compatibility with the main composition ( . ) : if (f,f) is a pair of

composable 1-morphisms, then :

We can define a partial composition on the set of natural catade-
ses between 2-functors from C to C’ : if t = (F",T,F’) is another cata-

desis, then t.t = (F",T.T,F) , where

T.T(e) = T(e) . T(e), for each obj ect e of C , 

T.T(f)=T(e’).T(f) DD T(f).T(e)
for each 1-morphism f from e toward e’ ; indeed, for each 2-cell n from

f to f’ , we obtain:
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(condition (c) for catadeses).

We would prove the condition (d) for catadeses in the same way.

Let t = (F’,T,F) and t’=(F,T’,F) be two natural catadeses.

DEFINITION 2. A 2-natural catadesis f rom T toward T’ is defined as a

triple d = (t’,d,t) , where 8 is a mapping from Co to C’ satisfying the

conditions:

a ) d (e) is a 2-cell from T (e) toward T’ ( e ) for each object e of C ,

b) If f is a 1-morphism from e to e’ , then

If d’ = (t", d’ ,t’) is another 2-natural catadesis, we define a ’1.-

natural catadesis d’DD d =(t",d’DD d,t), where

for each obj ect e of C .

Indeed, for each 1-morphism f from e to e’ , we have

We would prove by analogous computations that

where for each object
e of C,

wh ere for each object
e of C,

are 2-natural catadeses and that

by definition .

Therefore, the set of 2-natural catadeses between 2-functors from C to C’

has the structure of a 2-category; we denote it by M(C’, C ) .

R E M A R K. Let t = (F’,T,F) be a catadesis. Let G and G’ be 2-functors
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from C’ to C" and s = (G’ ,o-,G) a catadesis between them. Let us re-

mark that the composition of G by t ( we shall note it by G t ) is also a

catadesis, as well as s F’ . But the two catadeses s F’ . G t and G’ t . s F

are not equal. There is a 2-catadesis between them, we shall denote it by

s t , by analogy with 2-categories.

Let ACC’ be the diagonal 2-functor from C’ to’Ú C’, C).

DEFINITION 3. We define a catalimit functor as a right adjoint to the

functor [ ACC’] o DD and a 2-catalamit functor as a 2-right adjoint to 62’.C

Clearly a 2-catalimit is a catalimit.

E X A M P L E . If C’=j(, the 2-catalimit of a 2-functor F is the category

M ( M, C) [F,A MC (1)] DD ( where 1 is a terminal obj ect of n).

DE FINITION 4. We define a cocatalimit functor as a lef t adjoint to the

functor [DCC] o DD, a 2-cocatalimit f unctor as a 2-left adj oint to 62’.
EXAMPLES. 1° If C’=j( and if Coo is discrete, a 2-functor F from C

to 31 is nothing else than a functor from C’ to ? ( i.e. an « espece de

morphismes» [61 ) and the 2-cocatalimit of F is the crossed-product ca-

tegory P ( F ) associated to that « espece de morph ismes» [6]. (It has

already been mentioned by Gray [ 81 .)
Let us recall that the objects of P ( F ) are the pairs ( e, u ) where

e is an object of C’ and u E F ( e )o ; its morphisms are defined as the

( z , f , u ) , where f i s a morphism of C from e to e’ , where u c F ( e ) o and

zEF(e’), the domain of z being F ( f ) ( u ) . The composition is given

by :

if and only if the domain of f’ is the codomain of f and the codomain of

z i s u’ .

2° More generally, if COD is not discrete, let us consider the

following category Q ( F ) : its obj ects are the pairs (e , u) , in which

u E F (e) o ; its morphisms are the pairs ( n , u ) where u E F (a.(n)) o ;
the composition is given by :
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if and only if a: (n’)=B.(n) and F(B DDn) (u) =u’.
We have the two following functors from Q (F) to P (Fo DD) :

- the first one, Q1 (F) is defined by :

- the second one, Q2 (F), is defined by :

The 2-cocatalimit of F is the codomain of the cokernel of Q1 (F) and

Q2(F).
Let F and F’ be two 2-functors from C to C’.

DEFINITION 5. A natural anadesis from F to F’ will be defined as a

triple r = ( F’ , p , F ), where p is a mapping defined on C m, to C’,

satisfying :

a) p (e) is a 1-morphism from F ( e ) toward F’ (e) for each obj ect
e of C.

b ) p (f) is a 2-morphism from p(e’) . F(f) toward F’ (f) . p (e) for

each 1-morphism f from e to e’ .

c ) compatibility with the lateral composition : if n is a 2-cell from f
to f’ , then

d ) Compatibility with the main composition : if ( f , f ) is a pair of com-

posable 1-morphisms, then :

REMARK. The 2-functor F from C toward C’ determines a 2-functor F*

between the «opposite» C* and C* . So a natural anadesis r determines

a natural catadesis r* from F* to F* .
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DEFINITION 6. We define a 2-natural anadesis from r toward r’ as a

triple g = (r’,y,r), where y is a mapping from C’o to C’ , satisfying the

conditions :

a) y (e) is a 2-cell from p (e) toward p’(e), for each object e

of C.

b) If f is a 1-morphism from e to e’ , then

R E M A R K . A 2-natural anadesis from r toward r’ determines a 2-natural

catadesis from r* to r*.

In other words, we can define a structure of a 2-category denoted

by )I( C’, C ) , on the set of 2-natural anadeses, by the isomorphism:

We have another diagonal functor ACC’ between C’ and M (C’,C) .

DEFINITION 7. We define an analimit functor as a right adjoint to the

functor [ACC’]o DD and a 2-analimit functor as a 2-right adjoint to 62’.
EXAMPLE. If C’=M, the 2-analimit of a 2-functor F is the category

M(M,C) [F,ACM (1)]DD.c [F,AMC(1)]DD. 
DE FINITION 8. We define a coanalimit functor as a left adjoint to the

functor [ 62’ ] m and a 2-coanalimit functor as a 2-left adjoint to DCC’.
E X A MP L E . We can deduce the 2-coanalimit of a 2-functor F , when C’ = h , 
from the construction of the 2-cocatalimit and from the isomorphism :

Let C, C’ and C" be three 2-categories.

PROPOSITION 1. There is an isomorphism between the 2-category

M(M(C,C"), C’) and the 2-category 1l( 1l( C , C’ ) , C" ) .

PROOF. It is not difficult but rather tedious. The whole proof is given
in [4]. Let us say only that, if F is a 2-functor from C’ to 11( C C" ),

the 2-functor F from C" toward M(C,C’), associated to F by this

isomorphism, is given by:
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for each obj ect s of C",

for each 1-morphism g of C",

for each 2-cell r of C" ;

if t = ( F’ , T, F) is a 1-morphism of M(M(C, C" ), C’ ) , the 1-morphism
t = ( F’ , T, F) of M(M(C, C’ ), C" ) , is defined by :

for each obj ect s of C",

for each 1-morphism 9 of C’’;

if d=(t’, 8, t) is a 2-morphism of M(M(C , C"), C’), the 2-morphism
d=(t’, "8, t) of M (M (C, C’), C"), is defined by:

, for each obj ect s of C" .

R E M A R K . Let 2 be the 2-category (2’,2DD) where 2’ is the usual cate-

gory 2 and 2 the discrete category over 2. If we consider the isomor-

phism : M(M(C’, C)2)o-M(M(C’, we assert that the set of
natural catadeses between 2-functors from C to C’ is isomorphic to the

set of 2-functors from C toward M(C’,2) ( we call it the 2-category o f

anacylinders o f C’ ) . Likewise, if we consider the isomorphism : 

we assert that the set of natural anadeses between 2-functors from C to

C’ is isomorphic to the set of 2-functors from C toward M(C’,2) (we
call it the 2-category of catacylinders of C’ ) .

Clearly, for each 2-category C , we can define two 2-endofunctors

M(-, C) and M (-,C) on n. Theref ore, for each adj oint pair (p,q) of

2-functors, there are two new pairs of adjoint 2-functors:

and

PRO POSITION 2. The 2-left-adjoints preserve coanalimits and cocatali-

mits, 2-coanalimits and 2-cocatalimits. The 2-right-adjoints preserve ana-

limits and catalimits, 2-analimits and 2-catalimits.

PROO F. For instance, let us show that a 2-right adjoint preserves the

2-catalimits. Let F be a 2-functor from C to C’, and e its 2-catalimit.

Let p be a 2-right adjoint ( q being its 2-left adjoint ) from C’ to C".

We have successively, for each object e’ of C" :
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( since e is a 2-catalimit of F ),

(because p and q are adj oints ) .
The compatibility with catalimits is given by the restriction to

the objects of these isomorphisms of categories.

PRO P OSITION 3 . The two following diagrams commute :

PROOF. It arises from the construction of the isomorphism of the proposi-
tion 1 .
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APPLICATION: Construction o f limits.

Let F be a 2-functor from C’ to M(C, CII).
If for each object e of C" , the 2-functor F(e) ( see Prop. 1 )has a 2-ana-

limit ( for instance ) , we can construct a 2-functor from C" toward C ,

which is obviously a free costructure of F for the 2-functor M(ACC’ C"),
and therefore a 2-analimit of F by Proposition 3 . In particular, if the 2-

right adjoint anlC’ of 6C exists, the 2-analimit of F is the 2-func-

tor F . anlC’C. 

COROLLARY. Anal imits and catal imi ts, 2-anal imits and 2-catalimits
commute. The same holds for the analogous colimits. 
PROOF. It follows clearly from the consideration of the following dia g ram :
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2. Applications and examples.

a ) Representable and corepresentable 2-categories
A 2-category C is said representable [9], when, for each object

e of C’ , there is a 2-cell d(e) so that for each 2-cell n going from e’

toward e there exists a unique 1-morphism I n I satisfying : n = d (e). |n|.

In other words, C is representable if there is a catalimit of A2C (e)
( or an analimit of DC (e)) for each obj ect e of C . If we denote by

[C,2] the full sub-2-category of n ( C , 2) which has the 2-functors

A2C (e) for objects and by [6] the factorization o f A2C through [C,2],
the 2-category C is representable if and only if [A]o DD admits a right

adjoint D0DD.
Let us remark that [C,2] is equally the full sub-2-category

of M(C,2) which has the 2-functors A2C (e) for objects and that [6]
is the factorization of A2C through [ C, 2 ] .

Then a 2-category is said strongly representable [9] if for each

object e of C , the 2-functor DC (e) has a 2-catalimit ( or what is the

same : the 2-functor A2C (e) has a 2-analimit). Therefore C is strongly
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representable if and only if [A] has a 2-right adjoint D.

Let us call A the 2-functor D. [6] . According to the corollary

proposition 3, the 2-functor A is both the 2-catalimit of the 2-functor

A2M 
C, C) 

(idC) and the 2-analimit of the 2-functor 2 C , C) ’c, C) M(C, C) 
(idC).

P R O P O S IT I O N 4. I f C is strongl y re presentabl e , so are M(C, C’ ) and

n ( C , C’ ) (four any 2-cat ego ty C’).

PROOF. Let us show that property for 11( C, C’ ) . We must find a 2-anali-
mit of A2M C, C’) [F] , for each 2-functor F from C’ to C .

M( C, C’ )
According to proposition 3 , the 2-functor associated to it by the isomor-

phism M(M(C,2), C’)=M(M(C, C’),2) is 6c. F and according to the
application of page 11, its 2-analimit is D.[6].F = A.F. 

R E M A R K (Due to J. Penon). Any kind of limit is the same kind of a 2-

limit, when it is preserved by [A] . There is no difficulty to prove this
remark and it will greatly simplify our computations. Let us begin by:

PROPOSITION 5. When C is strongly representable, cocatalimits and

coanalimits are 2-cocatalimits and 2-coanalimits.

PROOF. [6] has a 2-right adjoint and 2-left-adjoints preserve any kind

of a colimit ( prop. 2 ) .
A 2-category is corepresentable [9] when [A]oDD has a left ad-

joint and strongly corepresentable when has a 2-left adjoint. Ob-

viously we have the opposite results :

PROPOSITION 6. If C is strongl y corepresentabl e, so are n(C, C’) and

71( C, C’ ) for any 2-category C’.

PROPOSITION 7. When C is strongly corepresent able, catalimits and ana-

limits are 2-catalimits and 2-analimits.

R E M A R K . Gray [9] defined strongly representable 2-categories as tho-

se 2-categories C in which the cotensor Cot ( e , 2 ) of any object e with

the category 2 ’ exists, and strongly corepresentable 2-categories as

those 2-categories in which the tensor of any object e with 2. exists.
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Therefore Cot ( e , 2 ) can be defined as a 2-catalimit and e X 2 as

a 2-cocatalimit. Then if D is a category, it is clear that Cot ( e, D ) is

the 2-catalimit of 4l$ ( e ) (or a 2-analimit of ADC (e)), while the tensor

e X D is the 2-cocatalimit of ADC (e) (or the 2-coanalimit of ADC (e)) .
In particular, if C = M and if e is a category D’, M(D’,D) is

a 2-catalimit and D X D’ is a 2-cocatalimit. We shall show later that a

light adaptation of this remark will allow us to define a tensor product
associated to anadeses and catadeses.

b ) Triples (monads).

Let C be a 2-category.
A triple in C on an object e of C (the underlying object of the

triple ) is defined by the data (t, À, fL) where t E C ( e , e ) om, where
and u are two 2-morphisms from e to t , from t2 to t respectively,
satisfying :

and

The simplicial 2-category S is the 2-category which has only one

object ( the empty set denoted by 0 ), integers (with usual addition ) for

1-morphism s, non-decreasing mappings between integers for 2-morphisms
(with usual composition ) .

Any 2-cell of S is generated by two families of 2-cells :
- increasing injections d i n from n toward n+1 which do not take the

value i ,

- non-decreasing surjections 0-1 n from n -t- 1 toward n which take twice

the value i .

It is well known that the notion of a triple in C is equivalent to

tha t of a 2-functor from S to C :

If (t, À, f-L) is a triple on e in C , the associated 2-functor t is

defined by :

If t is a 2-funct or from S to C, (t (1) , t (d00) , t ( o- 01) ) is a triple
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in C on t(0).

Henceforth we shall identify t and ( t , X, u ) .
There are two 2-categories associated to triples in C :

- The first one (denoted by TripC in [11]) has its 1-morphisms of the

form T = ( t’ ,(f,v), t) , where t and t’ are triples in C , f E C ( e’, e)o DD
(if t (0) = e and t’(0) = e’) , v being a 2-cell between t’. f and f . t sa-

tisfying :
’ 

and

The 2-morphisms are of the form ( T’, 7T, T) where T’ = (t’, (f’ v’), t) and

T are 1-morphisms of TripC .0 and where 7T is a 2-cell of C from f to

f’ satisfying:

- The second one ( denoted by TripC in [11]) having its 1-morphisms
of the form T=(t’,(v,f),t) where fEC(e’,e)o DD,v being a 2-cell from
f . t to t’.t satisfying:

and

The 2-morphisms of Trip being of the form (T’, ?T,T), where T and

!’ = ( t’, ( v’, f’ ), t) are 1-morphisms of TripC and where 7T is a 2-cell

from f to f’ satisfying:

PR O PO SITIO N 8 . The 2-category TripC is isomorphic to nee,S) and
the 2-category Trip C is isomorphic to )!(C, S) .

PROOF. We would prove by induction that the catadesis associated to

T=(t’,(f,v),t) is given by:

and

The 2-catadesis associated to (T’,IT,T) is given by d (0) = 7T.
This leads to the following definitions :

DEFINITION 9. We shall call Kleisli preobjects of a triple t in C the

coanalimits of the 2-functor t from S to C and Kleisli objects o f t the

2-coanalimits of t.
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DEFINITION 10 . We shall call E-M (Eilenberg-Moore) preobjects of t

the catalimits of the 2-functor t and E-M objects of t its 2-catalimits.

R E MA R K. The 2-cocatalimit and the 2-analimit of t always exist: they
are its underlying object.

E X A M P L E S. 1° The identity 2-functor of S determines a triple on S (de-

noted by [0] ). The object 0 is at the same time a Kleisli preobject and

an E-M preobject of [0] .
2° It is shown in [111 that the Kleisli construction in 31 is a 2-left

adjoint to the inclusion h - Trip , and the Eilenberg-Moore construction in

rc is a 2-right adjoint to the inclusion M -&#x3E; TripM. Therefore the Kleisli

category and the category of algebras associated to a triple in JI are Kleis-

li objects and E-M objects.
3° It is shown in [3] that Kleisli and E-M objects exist in the

2-category np = (np , nr) of p-structured natural transformations, when

p is a «good» forgetful functor with pullbacks, from a category H’ towards

the category m of sets.

4° If t is a triple in M(c,c’), its Kleisli preobject can be cons-

tructed by the corollary of proposition 3 ; the same is true for the E-M

object associated to a triple in n (c, C’) .
5° This remark allows to classify some triples associated to a

«distributive law» [2]. Indeed, a distributive law (t’,d,t) may be con-

sidered as a triple t on t’ in TripM ( and therefore as a triple t’ on t

in 0rc (proposition 1 ) ) . It determines the triples KlM. t and AlgM0t’
( = t’ in [2]). The triple KlM.t is a Kleisli object of ? and Alg . t’
an E-M object of t .

In [2] , a triple t’ . t is associated to ( t’ , d, t ). It is easy to show
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that this construction is general and 2-functorial between )I (M( C , S ) , S )
and M(C, S), and also between M(M.(C, S), S) and (C,S),. This t’ .t

has not a universal simple property ( it is neither the Kleisli obj ect of i

nor the E-M object of t’). But we have the following result : e’ is an E-M

object of t’. t if and only if e’ is a 2-free structure of t’ for ASM(C,S) ASC, 
and e" is a Kleisli object of t’. t if and only if e" is a 2-free structure

of t for ASM-&#x3E;(C.S) .ASC
PR OPO SITION 9 . 1 f a triple t=(t, À.,j.L) in C has an E-M preobject eA ,
then there is a factorization of t through eA and any adjoint pair defining
t has a factorization through the pair given by the factorization of t .

(But this is not an adjoint pair.)

PROOF. Let us denote by (t, pA.. YA , ASC ( eA ) ) the 1-morphism proj ec-
tion. Then the pair (t, u) determines a 1-morphism (t, t , p AS ( e ) ),
whence a 1-morphism gA between e an d eA satisfying :

id est:

and

Let ( p , g ) be an adjoint pair defining t, let w be the 2-cell natu-

ralisation from g . p toward e’ ( if e’ is the domain of p ) . The pair

(P, P. v ) determines a 1-morphism ( t, p , p . v, ASC (e’) ), whence a 1-mor-
phism p’ so that

id est :

and

Besides :

wh ich gives : p’.g = gA ( 2 ) .
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PROPOSITION 10. If t has an E-M object, the pair (PA gA ) is an ad-

joint pair ( we shall denote by vA the naturalisation , from gA . pA , to

eA ) . 1 f ( p , g ) is an adjoint pair de fining t then : p’ . v = vA , p’ .
PROOF. The 2-cell yA from t.pA = pA . gA . pA toward PA determines a

2-morphism from

to

since :

Therefore there is a unique 2-cell vA from gA . PA toward eA satisfying
So

and

therefore vA , 9A m gA L = gA . Then ( pA , gA ) is an adjoint pair.
At last if (p, q) is an adj oint pair defining t , we get:

and

Obviously we have opposite results. Proposition 10 and its opposite

give back the well known result in n.

3. Exi stence of ( co ) -cata- ( ana ) I imits. 

Let us recall two results on representable categories. Let C be

a representable 2-category and 8(e) the 2-cell from d ( e ) to d’ ( e ) de-

fining 6 e. If n and n’ are 2-cells from e toward e’ and k a 1-mor-

phism,

th en :
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n.k=n’.k =&#x3E; d (e). |n|.k=d(e). |n’|.k =&#x3E; I nl.k= |n’|.k.
Therefore, if C is representable and if Co DD admits kernels of pairs we

can speak of the kernel of two 2-cells.

It is proved in [9] that, if C is representable, there exist comma

objects. In particular the comma object of a 1-morphism f from e toward

e’ and its codomain e’ is given by the pullback of f and d( e’ ) , while

the comma object of e’ and f is given by the pullback of d’( e’ ) and f.

P RO P OSITION 11. I f C is a representable 2-category and i f COO admits

limits, the 2-category C admits catalimits and analimits.(*)

PROOF. Let G be a 2-functor from a 2-category D to C. If f is a 1-mor-

phism of D from e toward e’ , we will denote by a ( f ) the comma object
of G ( f ) and G ( e’ ) , by a ( f ) and b ( f ) its projections toward G ( e ) and

G ( e’ ) and by c (f) the 2-cell from G (f) . a (f) to b ( f ) . If n is a 2-cell

from f toward f’ , the 2-cell c (f’) DD p G (n) . a(f’) determines a unique

1-m orphi sm (denoted by a (n)) from a(f’) to a (f) , such that

In fact, this construction defines a functor a from D (e’,e) DD* toward
CoDD .Co

Let D be the following category: Do = Do J (Do X Do) ; for each

pair ( e’ , e ) , there is only one morphism ( e , e’ , e ) from ( e’ , e ) toward

e and only one ( e’ , e’ , e ) from ( e’ . e ) toward e’ . Therefore there is no

composition except between objects and morphisms. We can define a func-

tor d from D’ to n (an « espèce de morphismes) [6] ), by: D’ (e) =I

for each obj ect e of D,D’(e’,e) = D(e’,e) DD* , and D (e ,e’, e) being
the unique functor from D ( e’ , e ) 00* to I .

Let P (d ) be the 2-cocatalimit (  produit croisé) category) of d.

We are going to define a functor d from P ( d ) to Cooo by :

(*) This result is given in [9] for functors toward C whose domain is a usual ca-

tegory.
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Let a’ be the limit of d and h the natural transformation from a’ to d .

We observe now that, , for each pair (f,f) of composable 1-mor-

phisms of D ( f going from e’ toward e" , f from e to e’ ), we have:

so that the 2-cells and

are composable. Let k (f,f) be the kernel of :

Let u be the pullback of all these k (f,f) ( through r (f,f)) , and

j = k (f,f) . r(f,f) .,We assert that u is the catalimit of G , the catadesis

from ADC(u) to G being defined by:

Indeed:

and

Let (G,T’,ADC (v)) be a catadesis. For each 1-morphism f of D

from e toward e’ there is a unique 1-morphism h’ (f) in C such that:

For each 2-cell n from f to f’ :
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Whence a (n).h’(f’) = h’.(f). So, if we write b’ (e) = T’ (e), the mapping
h’ defines a natural transformation from v to d. Whence a unique 1-

morphism t’ such that:

Then, for each pair ( f , f ) of composable 1-morphisms of D :
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and there exists a unique 1-morphism so that

and therefore a 1-morphism such that Clearly we

have :

and

Let t be another 1-morphism satisfying

and

We get t = t , since

and

and

and these last equalities are satisfied. n

We would prove the existence of analimits in the same way by ta-

king the comma object of G ( e’ ) and G ( f ) instead of the comma object
of G(f) and G(e’).

REMARK. In [41, it is shown that the condition «CoDD has pullbacks of

two morphisms» is sufficient for the existence of limits when the domain

of G is the simplicial 2-category S .

COROLLARY. A 2- f unctor F from C to C’ preserves catalimits and ana-

limits when F preserves the representations and F m preserves limits.

Let ic be the inclusion functor between Cooo and C.

PROPOSITION 12. 1 f C is strongly representable, if C om admits limits,

if ic preserves these limits, the 2-category C admits 2-analimits and

2-catal imits.

PROOF. If C is strongly representable, [A] preserves the representa-

tion ; since iC = [A] oDD, the functor [A] o" preserves limits and there-

fore [6] preserves catalimits and analimits. Thus every catalimit (or

analimit) is a 2-catalimit (or a 2-analimit) . (See remark page 11.).
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Obviously we have the opposite results :

PROPOSITION 13. 1 f C is a corepresentable 2-category and if COO has

colimits, C admits cocatalimits and coanalimits.

PROPOSITION 14. 1 f C is strongly corepresentable, if Corn has colimits

and if iC preserves colimits, C admits 2-cocatalimits and 2-coanalimits.

4. Tensor product.
Let 2-Cat be the 2-category whose objects are the 2-categories,

1-morphisms the 2-functors, 2-morphisms the 2-natural transformations

( i.e. the V-natural transformations where V=F, since 2-categories are

F-categories). The 2-category 2-Cat is 2-cartesian closed. We shall call

3-category a 2-Cat-category. It is given by ( C , C’ , COO), where the pairs

(C,C’), (C., Crn) and (C, Crn) are 2-categories; the first law is the

concatenation, the second law is defined by - and the third by M.

In this section, F and F’ will be 3-functors from a 3-category
C toward 2-Cat ( considered as a 3-category).

D E F IN I TIO N 1 . We say that t = ( F’ , T, F ) is a catanatural catadesis

from F to F’ if

1° t- (e) i s a 2-functor from F ( e ) to F’ ( e ) for each obj ect e of C ,

2° T(f) is a natural catadesis from F’ (f) . t(e) to T(e’). F(f), for

each 1-morphism f from e to e’,

3° T ( n ) is a 2-catadesis from T( e’ ) F ( n ) . T( f) to T(f’). F ( n ) ’T( e ) ,

ror each 2-morphism n of C from f to f’ ,

;atisfying :
1° for each 3-morphism q from n to n’ :

2° for each pair (g,f) of composable 1-morphisms of C:

3° for each pair ( n’, n ) of composable 2-morphisms of C :
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4° for each pair (m , f), where m is a 2-morphism from g to g’ :

5° for each pair ( g , n ) : 

D E F I N I T I O N 12 . Let t and t’ be catanatural catadeses from F to F’ .

Then, d = ( t’ , 8, t ) is a 2-catanatural catadesis from t to t’ if :

1° d( e ) is a catadesis from T ( e ) to T’ (e), for each obj ect e of C,

2° d(f) a 2-catadesis from T’(f). F’(f)8(e) to 8(e’ )F(f). T (f)
for each 1-morphism f of C from e to e’ , satisfying for each 2-morphism
n from f to f ’ :

We compose two 2-catanatural catadeses as follows:

if and only if t’ = t’, where

D E F IN ITION 13. We say that (d’,y,d) is a 2-catanatural 2-catadesis if

d = (t’,d,t) and d’ = ( t’, 8’ , t) are two 2-catanatural catadeses and if

y(e) is a 2-catadesis from 8( e ) to 8’( e ) for each object e of C, satis-

fying :

We compose two 2-catanatural catadeses as follows:

if and only if d’=d’, where

for each obj ect e of C.

Then we can define :
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if and only if d and d are composable, where

for each obj ect e of C ;

if and only if d’ and d are composable, where:

for each object e of C.

Finally, we prove that

In this way, we equip the set of 2-catanatural catadeses from F to F’
=

with the structure of a 2-category, denoted by M(2-Cat ,C)[F’,F] .
We can define in the «opposite» way M(2-C at, C) [F’,F].

D E F I N I T I O N 14. A 3-strong catalimit of a 3- f unctor F from C to 2-Cat

is defined as a 2-category F such that, for each 2-category A ,

A

( we denote by A the 3-functor from C to 2-Cat constant on A ) .

PROPOSITION 15 . F admits a 3-strong catalimit F.
=&#x3E; 

PROOF. F is the 2-category MC(2-Cat , C) [ F,1].

EXAMPLE. If C is given by the 2-simplicial category S (the third law

being discrete), a 3-functor from C to 2-Cat is a 2-triple (2-monad).
The objects of the 3-strong catalimit are exactly what Burroni called 2-

algebras over this 2-triple [5] .

DEFINITION 15 . A 3-strong cocatalimit of a 3-functor F from C to 2-

Cat is defined as a 2-category F such that:

for each 2-category A .

P R O P OS IT IO N 16 . F admits a 3-strong cocatalimit.

PROOF. In general, it is more difficult to prove the existence of colimits

than that of limits. It is the same here.

First by adapting the proposition 5 to the remark of the proposition
1 it is sufficient to prove that
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Then we apply twice a slight adaptation of the proof of the proposition
13 . For that we use the following two facts :

- If F and F’ are two 2-functors from C to C’ and if t = ( F’, T, F )

is a catadesis, there is a 2-functor G such that G t is a 2-funct or, and G

has an obvious universal property: this is true, since 2-Cat admits quasi-

quotients [6] .
- If H and H’ are two 2-functors with the same domain, there is

a dual notion of a comma object, relative to catadeses. Indeed, we shall

see later (remark, proposition 17 ) that it is sufficient to prove that, for

each 2-category A , there exists a 3-strong cocatalimit for the 3-functor

from the 3-category 2 (where the two last laws are discrete) constant on

A . And this is not difficult to construct.

We shall denote by A ® B the 3-strong cocatalimit of the 3-functor

from the 2-category A ( considered as a 3-category whose third law is

discrete) constant on B .

Therefore we have for each 2-category C : 

But it is obvious that

Whence

PROPOSITION 17. There is a tensor product in 2-Cat such that :

Of course, this isomorphism is natural in C .

R E M A R K. The restriction to the obj ects of

shows us that a catadesis between 2-functors from B to C is a 2-functor

from 2 @ B to C.
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PROPOSITION 18. This tensor product has a unit and is associative.

PROOF. It is clear that 1CA=A=A ®1. Moreover, for each 2-category

D,

These isomorphisms being natural in D , we have

P ROP OSITION 18. A*®B*=(B ®A)*.

PROOF. A* @ B* being a 3-strong cocatalimit it is sufficient ( see Pro-

position 16) to show that, for each 2-category C, we have:

Indeed:

PROPOSITION 20.

PROOF. We have :

There are proj ections from A ® B to B and to A . The projection

PB from A ® B to B is given by the 2-functor from A to n( B , B ) cons-
tant on idB, and the proj ection PA from A 0 B to A by the 2-functor

-

ABA from A to M(A, B ).
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P R O P O SITIO N 21 . The following diagrams commute :

Furthermore it is clear that

commutes.

Then We get the following diagram; from it, we deduce all the usual

consequences about calculus of limits and commutation between them.
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4. 2-cata ( ana ) - Kan -(co) - extensions.

In a natural way, limits lead to the study of Kan extensions.

Let F be a 2-functor from A to B .

DE FINITION 16. We define a cata-Kan-extension functor for each 2-cate-
-

gory C as a right adjoint to 71(C, F)oDD and a 2-cata-Kan-extension func-
-

tor as a 2-right adjoint to n ( C , F ). A cata-Kan-coextension funct or will
-

be a left adjoint to n ( C, F) oDD and a 2-cata-Kan-coextension functor a
-

2-left adjoint to 71(C, F).

D E F IN I TI O N 17. We define an ana-Kan-extension functor as a right adj-
-&#x3E;

joint to M(C,F)oDD and a 2-ana-Kan-extension functor as a 2-right ad-
-&#x3E;

joint to .(C,F). An ana-Kan-coextension functor will be a left adjoint
-&#x3E;

to C, F) 000 and a 2-ana-Kan-coextension functor a 2-left adjoint to
-&#x3E;

((C, F).
Even if C=R, the cata (ana) -Kan-(co) -extensions of a 2-func-

tor may not exist. For instance if we consider F:1-&#x3E;2, where F ( 0 ) = 0 ,
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there is no cata-Kan-coextension. But:

has a 2-left adjoint given by the Yoneda lemma. Therefore, we shall call

2-weak cata-Kan-extension functor along F a 2-right adjoint of :
-

and 2-weak cata-Kan-coextension functor a 2-left adjoint of the same 2-

functor.

PROPOSITION 22. 1 f C admits catalimits, C admits weak cata-Kan-ex-

tensions,- if C admits 2-catalimits, it admits 2-weak cata-Kan-extensions.

PROOF. It is sufficient to study the usual proof of existence of usual

Kan extensions. This proof proceeds as follows, where A , B , C are ordi-

nary categories.
To the functor F from A to B are associated a functor [F, -]

from B* to 71 and a natural transformation from [ F, - ] to the functor A

from B* constant on A . The functor [F,-] is the following one :

- for each object e of B , the category [F,e] is the comma object
of F and ê (where ê is the functor from 1 to B defining e ) ,

- for each morphism f of B then [F,f] is the factorization generated
by f .

The natural transformation p is given by the naturalization p (e) of the

comma object [F, e ] . Furthermore, we have:

If C admits limits, there is a functor L from M(M, B*) [C, [F,-] ]
to 11 ( C, B ) so that L(T)[e] = lim T ( e ) for any natural transformation

’r from [F,-] to C . Then L is a right adj oint to 1Tp. )I(C, F ) .
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We give a similar proof for the proposition 22 : we define a 2-func-

tor [[ F,-]] from B* to 2-Cat , where [[ F, e]] is the strong com-

ma object of F and e ( strong means that T ( e ) is a catadesis and satis-

fies a universal property for catadeses ) and a 2-natural transformation from

[ [F,-]] to the 2-funct or A from B* constant on A , given by the natu-

ralization p ( e ) of these strong coinma objects.

We have also :

= 

M(2-Cat,H)(G’, G)D being the full sub-2-category of M(2- Cat,H)(G’,G)
whose objects are 2-natural transformations.

In the same way, if C admits 2-catalimits (resp. catalimits) we
= 

can define , from M(2-Cat, B*) [ C, [ [ F, - ] ] ] 0 to M(C, B), a 2-functor

L (resp. a functor LoDD), taking for L (T) (e) the 2-catalimit( resp.
the catalimit) of T(e) for each 2-natural transformation T between

[ F, - and C. Then the 2-functor L (resp. the functor Lo DD) is

a 2-right adjoint to 7TFM(F).iB (resp. a right adjoint to the functor

ITFoDD .M(C,F)oDD. iBoDD).G
REMARKS. 10 If a 2-cata-Kan-extension functor E exists and if G is a

2-functor from A to C, the 2-functor L(G) is a sub-2-functor of L(G).

From a general remark: let G be a functor from H to H, K a right adjoint
to G,H’ a sub-category of H having the same objects than H and K’

a right adjoint to G. z=G’. For each object e of the category H , we can
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consider K’ (e) and the ejection IT’ (e) from G’ . K’ ( ë) toward e

and also K ( e ) and the ejection IT(e) from G . K (e) . The morphism IT’(e)

determines a morphism o-’ ( e ) in H from K’ (e) to K ( e ) so that

The morphism IT(e) determines a morphism o- (e) in H’ from K (e) to

K’(e) so that: IT’(e). G(o-(e))= IT(e). Then the equalities

imply that o- (e) is a monomorphism.
2° A 2-weak cata-Kan-extension of a 2-functor F by itself determines a

2-triple ( as in the ordinary case ) .

APPLICATIONS. 1° If we take F = id A , we obtain that, if C admits 2-
i 
A 
-

catalimits, the inclusion 2-functor M(C,A)iE-&#x3E;M(C,A) has a 2-right

adj oint. In particular this is true for the inclusion M(M,A) -&#x3E;M(M,A) .
For instance the 2-cofree structure associated to the 2-functor from A to

, constant on 1 , is the 2-funct or H defined by H ( e ) = A/ e, the 2-cate-

gory of obj ects over e .

2° (With J. Penon ) . Let Adj be the 2-category such

that a 2-functor from Adj «gives an adjunctions:
- Ad j has two objects a and B ;
- the 1-morphisms are generated by a pair (p,q) of 1-morphisms, where

p goes from a to /3 and q from /3 to a. ;

- the 2-morphisms are generated by a pair ’rj ), where 6 goes from

B to p . q and n from q . p to a satisfying:

and
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Let H be a 2-category. We denote by H the push-out of the diagram:

where u (e) = (e,a) for each object e of H . The full sub-2-category of

H , whose objects are the (e,B)’s for all the objects e of H , will be de-

noted by Relax H . With the notations of R. Street (1IJ, we have :

and

Let H be the push-out of the same diagram, but in which we take u ( e ) =

(e,B). Then CoRelax H will be the full sub-2-category of H whose ob--

j ects are the (e,a,)’s . If we denote by Colax what is defined as Lax

by M. Bunge,

and

The isomorphism of proposition 1 has obvious consequences here. Let us

consider now the two constructions of R. Street [111 - He shows that the

obvious 2-funct or M(M,H )-&#x3E;Lax (M,H) has a 2-right adj oint and that

M(M,H)-&#x3E; Lax (M,H) has a 2-left adjoint. If we study these construc-

tions, we can describe them in the following way. The 2-right adjoint is

given by :

h is the 2-weak cata-Kan-extension functor along the 2-functor h from

Relax H to H given by the identity lax funct or H - H . The 2-left adj.oint
is :

h is the 2-weak ana-Kan-coextension functor along the same h . There-

fore these constructions generalize to the case where we take, instead of

71, a 2-category C admitting 2-catalimits ( 2-coanalimits ).

6. Analgebras and catalgebras.

Gathering example (definition 3) and example 2 (definition 10),
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we get:

DEFINITION 18. If F is a 2-functor from C to )1, a catadesis from the
2-functor AC (1) ( from C to ?I constant on 1) to F is called a catal-

M 
. AMC -&#x3E; 

gebra over F, and an anadesis from ACM(1) to F is called an analgebra
over F.

PROPOSITION 23. 1 f for each object e o f C, the category F(e) admits

limits, the 2-catalimit of F ( i. e. the category of catalgebras over F)

admits limits.

P R 00 F . Let h be a functor from H to the 2-catalimit of F . It determines

a catadesis t from ACM(H) to F, and therefore, for each object e of C

a functor T ( e) from H to F ( e ) . Taking for each e the limit of T(e),

we construct a catadesis from ACM (1) to F which is the limit of h in

M(M,C) [F, ACM (1)]. 
M

M(M,C)[F,ACM(1)].
We have obviously the dual result:

PROPOSITION 24. If, for each object e of C, the category F(e) admits

colimits, the 2-analimit of F ( i. e. the category of analgebras over F)
admits colimits.

These propositions allow, in particular, to find anew the following
well known result: if B and B’ are categories, the category n ( B’ , B)
of natural transformations between functors from B to B’ admits the same

limits than B’ : indeed n( B’ , B) is at the same time a 2-catalimit of
- *

ABM ( B’ ) and a 2-analimit of AB*(B’).

Catalgebras and analgebras over a 2-functor allow to describe

structures (in the same way as algebras over a triple ) .

EXAMPLES.

1° Let S o- 0 1 be the sub-2-category of S generated by the unique

2-morphism u = o- 0 1 between 2 and 1 . Let G be the 2-functor to n whose

domain is So- 0 1 defined by:
- G (0) is 1 the category ? of maps between sets (associated to a uni-

verse belonging to cU),
- G (1) is the functor from M to ? «product by 2&#x3E;&#x3E; (where 2 is the set
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with two elements),
- G ( u ) associates to every set E the projection from ( E X 2 ) X 2 to

EX2.

The catalgebras over G identify with the maps b:E-&#x3E; EX2 satis-

fying

i.e. with the graphs. 
Let us indicate that the analgebras over G, which are defined by

the maps b : E X 2- E satisfying

reduce to the data of a sub-set A of E and of an endomorphism f on E ,

idempotent and stable on A .

2° Let T be the 2-category with only one object (denoted by 0),

genrated by a unique 1-morphism (denoted by 1 , then every 1-morphism
will be denoted by an integer), a 2-morphism i from 1 to 0 and a 2-mor-

phism u from 2 to 1 .

Let G be the 2-functor from T to l’l defined by:
- G(0) = M, G (1) = P, where P is the endofunctor of M defined by:

and

P being the « sub-set» functor ;

- G (i) associates to every set E , the projection from P (E) to E,

and G (u) is the map which associates to each pair f{(Ai,xi)},(A,x))
of P2 (E) the pair ( (J A i I x ) of P (E).

i 
i

The analgebras over G , which are defined by the maps b between
E and P (E) satisfying

and

identify with the preordered sets, and the morphisms between analgebras
« are » the maps f such that f(x )=f(x), where x  is the set of the

elements greater than x .

The catalgebras over G «are» obviously the sets (because of the

2-morphism i).



406

3° Let now G’ be the 2-funct or from T to 11 defined by:

- G’ (0) = m, G’ (1) = F, where F is the endofunctor on N defined

for every set E by

F being the «filter f unctor »;

- G’ ( i ) associates to every set E the projection from F ( E ) to E,

and G’ (u) (E) is the map which associates to every pair (P,(0,x))

therefore (D is a filter on F ( E ) ) the pair (V0 ,x) , where X belongs to
V$ if and only if there exists an element K of (D such that X belongs
to 0’ for every pair (0’, x’) of K.

The analgebras over G’ identify with the topologies on E and the

morphisms between analgebras « are » the maps f so that F (f)(Ox ) =
Of(x), if OX is the filter of neighborhoods of x. ,

Finally, there is a cotriple on P whose counit associates to eve-

ry set E the projection from P ( E ) to E and whose cocomposition asso-

ciates to E the map which associates to ( A , x ) the pair

of p2 (E); the analgebras ( i.e. the coalgebras ) «are» the equivalences.
4° Let us mention without detail that T-graphs [5] and pointed

T - graphs [5] are analgebras over a 2-functor whose domain is a 2-cate-

gory with two obj ects.

Conditionned catadeses, catal gebras, catalimits.

Let F be a 2-functor from C to C’ . For each obj ect e of C’ , we

can consider the strong comma object [ [F.e] ] of the 2-functor F and
of the 2-functor from 1 to C’ defining e . A catadesis ’r from ACC’(e)
to F determines a 2-functor t from C to [[F,e]]. Let cp be a 2-

functor from (D to C, having a ( usual ) limit cone in C, denoted lim cp,
and whose vertex is Lim 0.

DEFINITION 19. We say that ’T is a qb-conditionned catadesis when t

preserves the limit of 0 -
When C’ = 1i, a catalgebra will be said 0-conditionned when the
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catadesis from ACM (1) to F defining it is 0 -conditionned.

DEFINITION 20 . A 0-conditionned catadesis will be called a 2-cp-condi-
tionned catalimit if it is 2-universal relative to 0-conditionned catade- 

ses.

If 0 is a family of 2-functors, we define a 8 -conditionned cata-

desis, catalgebra, catalimit as a catadesis, catalgebra, catalimit which is

0- conditionned for every element 0 of 0 .

EXAMPLE. If IT = (C,T’) is a projective prototype [1] , if C’= M and
-

if F is the 2-functor ACM ( D ) , the 9-conditionned catalgebras over F are

the 7T-structures in D ( where 8 is the set of the bases of the elements

of I).

REMARK. There is a weaker notion, where C is only a 2-neocategory
[1] and where t associates a limit to a distinguished cone in C . The

T-categories [5 ] give an example of this weak notion.

Let F be a 2-functor from C to n.

P RO P O SI TI ON 25 . The category of cP -conditionned catalgebras over F
is the 2-0-conditionned catalimit of F, if the factorization of F( lim 0)

through the 2-catalimit of F . 0 has a right adjoint.

PROOF. Let h be the factorization of F ( lim cP) through the 2-catalimit

H of F. 0. A catalgebra T over F determines obviously an object T in

H . The catalgebra ’r is 0-conditionned if and only if the value of T (Lim 0)
is a cofree structure, for h , of 7-.is a cofree structure, for b , of T. 

AC ( D ) and F, it factorizes throughIf T is a catadesis between ACM (D) and F, it factorizes through
H by aT. Then T is 0 -conditionned if and only if the value of T( Lim 0
is a cofree structure, for M(b, D ) , of 7 .

Let T be the factorization of T through the 2-catalimit of F . Then

if h has a right adjoint, we compute termwise a right adjoint of M(b,D)
and therefore ’T (s) ( for each obj ect s of D ) is not only a catalgebra but

also a 0-conditionned catalgebra.

PROPOSITION 26. The category of 0-conditionned catalgebras over F

admits limits in the conditions of proposition 23 .
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PROOF. It comes from the fact that right adjoints preserve limits.

In particular, the category of 7T-structures (where 7T is a projec-
tive prototype) in a category admitting limits, admits limits.

We can also define 0-conditionned anadeses, analgebras, anali-

mits. Thus we obtain :

PROPOSITION 27. The category o f gb -conditionn ed analgebras over F is

a 2-If -conditionned analimit o f F if the factorization of F(lim0) through
the 2-analimit of F.4; has a left adjoint.

PROPOSITION 28 . The category of 0-conditionned analgebras over F ad-

mits colimits in the conditions of proposition 24 .

There is no difficulty to define co-0-conditionned catalgebras
( where q5 has a colimit and t preserves it) and co-0-conditionned anal-

gebras.
Let us remark that if F = ACM (D) and if C is a 2-category whose

second law is discrete (i.e. an ordinary category), a 0-conditionned

analgebra over F is a co-0*-conditionned catalgebra over F’ = 4i £$/( D ) .
Therefore the proposition 28 has for a corollary the (known) result that

the category of 7T-structures (where 7T is an inductive prototype), in a ca-

tegory which admits colimits, admits colimits.

PROPOSITION 29. The category of co-0 -conditionned catalgebras over

F is a 2-co-0-conditionned catalimit of F , if the category F (co Lim 0 )
admits colimits.

P R O O F . A catalgebra ’r over F determines the catalgebra 7.0 over

F .0 . Denote by T’ the colimit cone colim q5 ; then F . T’ is a catadesis

from F . 4 to AOM (F(coLim 0)). The catadesis F.T’ DD T.0 from AOM (1)
to AOM (F( coLim 0)) determines a 2-functor g from 0 to F ( co Lim 0).
Then T is co-0-conditionned if and only if the value of T( coLim q5 ) is

the colimit of g .

In the same way a catadesis T between A C(D) and F determi-
. .

nes the catadesis T.0 from AOM (D) to F . 0. The catadesis F T’ m T0

going between AOM (D) and A OM (F(coLim 0 )) determines a 2-functor

g from O to M(F(coLim0), D) . Then T is 0-conditionned if and only
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T(coLim0 ) is a colimit of g .

Let ’T be the factorization of ’r through the 2-catalimit of F . Then

if F ( coLim cp) admits colimits, we compute termwise a colimit of g and

therefore T ( e ) ( for each object e of D ) is not only a catalgebra but also

a co-O-conditionned catalgebra.
To have an analogous of proposition 26, we need a commutation

between limits and colimits in the category F(coLim(f). In the same

way :

P R O P O SI T I O N 31. The category o f co-0-conditionned analgebras over F
is a 2-co-0-conditionned analimit of F when F( coLim 0) admits limits.

We have the same remark as after the proposition 28.

The notion of a 0-conditionned catalgebra has another interest:
it generalizes the usual notion of a limit in a category. If 0 is the in-

clusion functor from a category 0 to the universally associated category
- O+with an initial object O+, and if F is the 2-functor AOM (D), the 0-

conditionned catalgebras correspond to the data of a funct or from 0 to D

and of a limit of this functor. If F is not a constant functor we have

then a new concept of limits. Moreover the proofs of proposition 25 and

27 show that existence of this kind of limits ( colimits ) can be looked on

as existence of right ( left) adjoint as in the usual case.

Co-o-relative catadeses and catalimits.

Let F be a 2-functor from C to C’ . If we consider the strong

comma object [ [e,F]] of A1C’(e) and F , a catadesis T from F to

ACC’ (e) determines a 2-functor t from C to [[e,F]]. Let cp be a

2-functor from V to C , having a (usual) colimit in C (which we deno-

te by colim 0).

DEFINITION 21 . We say that ’r is a co-cp-relative catadesis if t preser-

ves the colimit of 0.

D E F I N I TI O N 22. A co-0-relative catadesis will be called a 2-co-cp-rela-
tive cocatalimit if it is 2-universal for co-0-relative catadeses.

More generally we could define 0-relative catadeses ( if t preser-

ves the limit of 0), 2-0-relative catalimits, co-qb-relative and 0-relative
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anadeses, 2-co-0-relative and 2-0-relative analimits.

The situation here is not as good as for 0-conditionned catadeses.

However we have the two following results :

Let F be a 2-funct or from C to nand ’T be a catadesis from F

to 6n ( D ). Let H be the 2-cocatalimit of F . 0, and hi the factorization

of T.0 through H ; if T’ is the colimit-cone defining coLim cp, let h2 be
the factorization of F . T’ through H . Then T is a co-cp -relative catade-

sis if and only if T (colim0) is a Kan-coextension of b1 along h2 .
ACM(D) and if T’ is theIf ’r is always a catadesis from F to CM(D) and if T" is the

limit-cone lim 0, the catadesis T.0 DD F T" between AOM (F(Lim0) )
and AOM (D) determines a 2-functor g from O to M(D, F(Lim0)).Then
T is a (f -relative catadesis if and only if T ( Lim 0) is a limit of g .

Of course, we have dual results concerning 0-relative and co-

0-relative anadeses.
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REMARKS ON COHOMOLOGY

Since I began to study catadeses, Mme Bastiani told me that this

notion is connected with the crossed homomorphisms defined by Ehres-

mann [6] in order to generalize Mac Lane’s [10] cohomology construc-

tions from groups to categories. Indeed, given a functor F from a category
C to JI, a crossed homomorphism [61 is nothing but a catalgebra over F.

This leads to the following remarks about cohomology.

Firstly, let us set 0-Cat=M 1-Cat - Cat. Denote by n-Cat the C3-’

tegory of the (n-1)-Cat-categories [ or simply n-categories]. It is clear

that a n-category is nothing but a n-uple (C1, C2 , ... , Cn ) of categories
in which each pair (Ci,Cj) (ij) is a 2-category.We have, from n-Cat to
( n-1 )-Cat , n interesting forgetful functors pn defined by :

and p11 =pF. Whence the diagram :

where Ga is the category of abelian groups. Indeed an abelian group A
can be considered as a peculiar 2-category ( A , A ) (with only one object

0, one 1-morphism 0 and non-trivial 2-morphisms: the other elements).

Therefore we can also consider A as the non-trivial (i.e. the n-th law

is not discrete ) n-category (Ai) 1in where Ai = A for each i . Thus

this diagram commutes but Ga is not its limit.

A II-module A can be looked upon as a functor pA from the mo-

nord I1 to Ga. The underlying set of the 0-cohomology group

is clearly the limit of p0.pA (we shall call its elements the algebras
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over p0. pA). The 1-cocycles of pA [i.e. the maps from to A satis-

fying f (xy) = f (x) + x f (y)] are clearly the catalgebras over pl . pA . 
If f and f’ are two catalgebras, a morphism between them is given by a

morphism a in A such that

(in other words, f (x) - f’ (x) = x a -a is a principal crossed homomor-

phism [10]).
Thus the underlying set of the first cohomology group H 1 ( pA ) is the set

of the components of the catalimit (which is a groupoid) of P1 - PA .
Let us define now a new kind of morphism between 3-functors

by setting a 3-morphism where there is an equality in the definition of a

catadesis and by imposing coherence conditions : there are obviously se-

veral ways to do it, we choose the best one for our purpose.

Let C and C’ be two 3-categories, F and F’ two 3-functors from
C to C..

DEFINITION. A tetradesis from F to F’ will be defined as an element

t = (F’,T,F), wh ere :

1° T (e) is a 1-morphism from F ( e ) to F’ ( e ) , for each object e of

C,

2° T( f) is a 2-morphism from F’ (f)T(e) to T (e’) F (f), for each

1-morphism f from e to e’

3° T(n) is a 3-morphism from T(f’). F’(n)T(e) to T(e’)F(n).T(f),
for each 2-morphism n between f and f’ satisfying the following condi-

tions :

- for each 3-morphi sm t from n to n’ : 

- for each pair (;7, n ) of composable 2-morphisms:

4° T(g,f) is a 3-morphism from T(gf) to ’T(g) F (f) . F’(g) T(f),
for each pair ( g , f ) of composable 1-morphisms, such that:

- for each triple (h,g,f) of composable 1-morphisms the diagram:
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commutes;

- for each pair (m,f), where m is a 2-morphism from g to g’ , the

diagram

commutes;

- for each pair (g,n), where n is a 2-morphism from f to f ’ , there

is a similar coherence condition.

D E F I N I TI O N . A 2-tetradesis from t to t’ = ( F’ , T, F) is defined as an ele-

ment d=(t’, 0 , t), where:

- 8( e ) is a 2-morphism from ’r(e) to T (e) , for each object e of C,

- 8(f) is a 3-morphism from ’r’ (f) . F’(f) d (e) to 8( e’) F (f). T(f )
for each 1-morphism f from e to e’ , satisfying the coherence condition :

and other ones with 2-morphisms which we will not use here.
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There is no difficulty to define 3-tetradeses.

The 2-cocycles of pA ( i.e. the maps from Il x 11 to A satisfying :

[10] ) are the tetralgebras over p2 . pA . A morphism between two tetral-

gebras f and f’ is given by a map g from 11 to A such that g ( 1 ) = 0
( the unique possible 1-morphism of A ) and

Thus the underlying set of the second cohomology group H2 (pA) is the

set of the components (for the first law) of the tetralimit (which is a 2-

groupoid there ) of P2 - pA . Therefore it seems probable that the underlying
set of each group Hn ( pA ) can be looked as the set of the components

(for the first law ) of a (en-limit) of pn . pA (which would be a n-groupoid ) .
Whence two remarks. Given a category C there is no obstruction to deve-

lop an abelian cohomology of C over p ( from C to Ga), since H0 (p)
HI (p), H2 (p) ( seen as the set of the components of the limit of p0.p,
the catalimit of pl . p , the tetralimit of p2.p) have an obvious abelian

group structure. The difficulty of a non abelian cohomology of C over p
(from C to Cat ) appears to be due not only to the lack of good tools

(exact sequences for instance) but also to the necessity of having a hi-

gher « dimension » for the objects of the codomain of P, 
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