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LOCALIZATION AND COHOMOLOGY OF NILPOTENT GROUPS

by Peter HILTON

CAHIERS DE TOPOLOGIE

ET GEOMETRIE DIFFERENTIELLE

vo r. xr v-4

1. Introduction.

The theory of the P -localization of groups, where P is a family
of primes, appears to have been first discussed by Malcev and Lazard

[ 9 , 10] . In their work emphasis was placed on the explicit construction

of the localization and properties of the localization Gp of the nilpotent

group G were deduced from the construction, utilizing nilpotent group the-

ory. Baumslag [1] has given a comprehensive treatment of the main pro-
perties of nilpotent groups as they relate to the problem of localization,
and has himself [2] explicitly shown how to construct Gp in the case of

an arbitrary nilpotent group G and an arbitrary family of primes P , thus

extending the generality of Malcev’s original construction. Bousfield-Kan

[ 3] exploit this general Malcev construction in their study of completion
and localization. There is a very readable account of the theory of nilpo-
tent groups and a description of the localization construction in the notes

of Warfield [11].
In this paper we adopt a completely different approach. Starting

with the completely elementary theory of localization of abelian groups,
we show that a localizing functor L : Nc - Nc may be built up inductively
with respect to c, where Nc is the category of nilpotent groups of nilpo-

tency class  c . Our tool in demonstrating this is the cohomology theory
of groups and, in particular, the interpretation of H2 ( Q; A ) , where A is

an abelian group (trivial Q -module), as the collection of equivalence clas-

ses of central extensions of Q by the abelian central kernel A . We incor-

porate into the inductive hypothesis the key fact that the natural (locali-

zing) homomorphism e: G - Gp (where G p = L G ) is a P ·isomorphism,

meaning that ker e consists of elements of torsion prime to P and that, for

any y E G p , there exi sts n prime to P wi th yn E im e .

* Conf6rence donn6e au Colloque d’Amiens.
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In our approach we do not have to construct Gp explicitly; we sim-

ply prove that it exists and that the functor L and the natural transforma-

tion e have certain important properties. By using this approach we are

able to deduce various properties of nilpotent groups, some of which make

no explicit mention of localization.

The plan of the paper is as follows. In Section 2 we document the

facts we need about the localization of abelian groups - essentially to

start the induction. In Section 3 we describe the (co) homology theory of

groups, especially with regard to the second cohomology group, and we

recall the Lyndon-Hochschild-Serre spectral sequence. In Section 4 we

prove the main results, showing that the localization exists and has pro-

perties which we demand of it; as indicated, a key property is already built

into the inductive hypothesis. In Section 5 we make applications to the

theory of nilpotent groups; we emphasize that no sophisticated theory has

gone into these applications; we simply exploit the fact that localization

exists and has some nice properties.

Among the facts which immediately emerge is that if C:G-&#x3E;H is

a P -isomorphism of nilpotent groups, then q6p : GP-&#x3E;Hp is an isomor-

phism. To prove the converse of this appears to require deeper properties
of nilpotent groups than those exploited in Sections 2-5 - indeed, in those

sections we use nothing deeper than a group of nilpotency class c is

naturally expressible as a central extension of a group of nilpotency class

C-1. However, in Section 6, we refer to Hall’s theory of basic commuta-

tors [5] in order to prove a lemma which turns out to be crucial in esta-

blishing the converse. Once established, the converse then enables us to

develop a theory of P -isomorphisms of nilpotent groups which parallels
standard results on nilpotent groups.

In Section 7 we prove various results on the localization of nilpo-
tent groups which are particularly revelant to the study of nilpotent spaces
[6,7].

The author wishes to acknowledge very valuable conversations with

Guido Mislin, Joe Roitberg, and Urs Stammbach. A proof of a weaker form

of Theorem 6.1, perfectly adequate for the proof of Corollary 6.4, was com-

municated to the author by Bill Waterhouse.



343

2. Localization of abelian groups.

In this section we collect together the results we will need on the

P -localization e: A-&#x3E;Ap of an abelian group, with respect to a family of

primes P . We recall that Ap =A®Zp, where Zp is the ring of integers
localized at P , that is, the subring of the rationals Q, consisting of those

rationals k / I such that I is prime to P ; ; and e is the natural homomor-

phism a-&#x3E;a®1. Note that a P -local group is just a Zp -module.

P R O P O S I T I O N 2.1. Localization is exact.

PROPOSITION 2.2. Localization commutes with direct limits.

PROPOSITION 2.3. Given

with exact rows, then if any two of 0’, cp, (f " P -localize, so does the

third.

PROPOSITION 2.4.

all P -locczlize.

PROOF. The first two assertions are obvious; we will be content to prove

the third. Let R-F--A be a free abelian presentation of A . Then

Rp -Fp -&#x3E;Ap is exact with RP, Fp flat. Thus we have

Two applications of Proposition 2.3 now show that Tor(e, 1) P -localizes.

N

PROPOSITION 2.5. H*(e):H*(A)-&#x3E;H*(AP) P-localizes, where H* is
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reduced homology with integer coefficients.

PROOF. Let if be the family of abelian groups for which the assertion

holds. First, we claim that Z/pkEF. For if A=Z/pk, p E P , then

AP=A, e=1, and H*(A) is P-local, so the assertion is clear. If

A=Z/pk p E P’ , the complementary set of primes, then A p = 0 , H*(A)
is P’ -torsion, and the assertion is again clear.

Second, we claim that Z 6? . For Zp is torsion-free of rank 1 , so

that

Thus H*(e)=H1(e) and H1 (e) plainly P -localizes.
We next argue that, if A , B E5:, so does A EÐ B. This follows im-

mediately from the natural K3nneth formula for H* (A+B), together with

Propositions 2.3 and 2.4. Thus we have proved that if A is finitely gene-

rated, then A e 5 .

Finally, we use a direct limit argument to show that every A EF.

For A is the (directed) union of its finitely generated subgroups, H* com-

mutes with direct limits, and Proposition 2.2 then enables us to complete
the argument.

DEFINITION. We say that qb : A - B is a P -isomorphism if kercp, cokero-
are both P’ -torsion groups.

PROPOSITION 2.6. cp: A -+ B P -localizes if and only if B is P -local and

qb is a P -isomorphism.

PROOF. We first show that e :A-&#x3E;AP is a P-isomorphism. We may embed

e in the exact sequence

Thus we must show that Tor(A,Zp/Z) and A®ZP/Z are P’-torsion

groups. Now

where Z/p°° is the p -Prüfer group. It is thus plain that Zp / Z is a

P’ -torsion group, from which it readily follows that A®Zp/Z and
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Tor(A,ZP/Z) are P’’ -torsion groups.

Conservely suppose that B is P -local and 0:A-&#x3E;B is a P -iso-

morphism. We thus have a commutative diagram

and the proof of Proposition 2.6 is completed by means of the following two

lemmas.

LEMMA 2.7. 1 f Ba and a are P -isomorphisms, so is 13.

LEMMA 2.8. If O:C-&#x3E;D is a P -isomorphism and C , D are P -local, then

0 is an isomorphism.

PROOF o f 2.7. It is trivial that if coker 13 a is P’-torsion, so is coker B
From the exact sequence

we deduce that if ker Ba and coker a are P’ -torsion, so is ker f3 .

PROOF o f 2.8. It is trivial that if ker e is P’ -torsion and C is P-local,
then ker 0=0. Now suppose cokero is P’-torsion and let dED. Then

nd=0c for some cEC, n E P’ . Since C is P -local, c=nc1, c 1 E C , so
n(d-0c1)=0. Since D is P-local,d-0c1 = 0 , so coker e = 0 .

PROPOSITION 2.9. If B is P-local, then e*: Hom(Ap, B )=Hom(A, B),

e*:Ext(Ap,B)=Ext(A,B).
PROOF. The first isomorphism simply expresses the universal property of

e . As to the second, let B-&#x3E;I-&#x3E;j be an injective presentation of B as

ZP -module. Since Z p is flat, it follows that B-&#x3E;I-&#x3E;j is also an injec-
tive presentation of B as abelian group. Thus we have a commutative dia-

gram

Since the first two vertical arrows are isomorphisms, so is the third.
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3. Cohomology and central extensions.

In this section we recall the results we will need on the homology
and cohomology of groups. We will be concerned exclusively with cohomo-

logy groups Hk(Q;A), where A is a trivial Q -module.

PROPOSITION 3.1. There is a natural universal coefficient sequence

We now study the interpretation of H2 ( Q; A ) as the group of equi-
valence classes of central extensions of the quotient group Q by the abe-

lian kernel A . Let FEH2 (Q;A) be represented by

and let 0:A-&#x3E;A1. Form the product A1 X G and embed A by (*)
a-&#x3E;(-0a, ua). Then A is central in A1XG and we may form the quotient
group G, ; write an element of G, as {a1,g} , the coset containing

(a1,g). Th ere are eviden t maps u1: A1-&#x3E;G1, Y:G-&#x3E;G1, given by

Ui(a1)= {a1,1 },Y(g)={0,g} and

commutes. Moreover

PROPOSITION 3.2. In (3. 2), ILl maps A1 injectively to a central subgroup
of G, and cokeru1= Q .

PROOF. It is trivial that ILl is injective and that u1A1 is central in G1. 
Let E1 : G1 -Q be given by E1 { a, , g} = Eg. It is plain that E1 is well-

defined and surjective. Moreover E1 Ai -0, and, if E1 {a1,g} = 1 , then
g=ua, so

Thus (3.2) enlarges to a map of central extensions

(*) Note that A is written additively, while G and Q are written multiplicatively.
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and we know [8]:

PROPOSITION 3.3. Let O:A-A 1 induce 0*: H2(Q;A)-H2(Q;A1).
Then 0*(F)=F1.

Now let p: Q’ -+ Q. Form the pull-back of p and 6 (3.1); it is then

known that we obtain a map of central extensions

and we know [8]:

PROPOSITION 3.4. Let p:Q’-Q induce p*: H2(Q; A)-&#x3E;H2(Q;A).
Then p*(F)=F’. Moreover

PROPOSITION 3.5. Suppose given two central extensions

and maps cp:Al-+A2’ P:Q1-&#x3E;Q2. Then one may find T:Gl-+G2 yielding
a commutative diagram

if and only if 0*(F1)=P*(F2). Moreover, if T exists, then T’ also

yields a commutative diagram (3. 6) if and only if

(3. 7) T’(x)=t (x)u2K81(x), xEG1, for some K:Q1-&#x3E;A2
PROOF. The key observation is that any diagram of the type (3.3), with

common quotient group, must, in principle, have been constructed as (3.3)
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was constructed, so that the existence of the diagram implies that

0*(F)=F1; and, similarly, any diagram of the type (3.4), with common

, kernel, must, in principle, have been constructed as (3.4) was constructed,
so that the existence of the diagram implies that p*(F)=F’.

Now suppose that T exists in (3.6). Pulling back by means of p,
we find a commutative diagram

with T2T1=T. Thus, by the observation above, p*(F2) = 0*(F1) .
Conversely, suppose that p *(F2)=0*(F1). Then we have a dia-

gr am

and we may take T = T2 6d 71 .
The final statement of the proposition is almost immediate. Since

62 T = 62-r ’, we find a function e : G1-&#x3E;A2, given by

Moreover, e is a homomorphism since Ç2 is a central extension. Since

so B induces K: Ql --+ A2 with K E1=0. Conservely, if T’ is given by
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(3.7), then T’ is a homomorphism and preserves the commutativity of (3.6)

when used to replace ’T.

PROPOSITION 3.6 (LYNDON-HOCHSCHILD-SERRE spectral sequence).

Given any extension of groups

there exists a spectral sequence { E pq }, with E pq =H ( Q; H M), con-

verging finitely to the graded group associated with H * G , suitably filtered.

4. Localization of nilpotent groups.

Let G be a group and let

be the lower central series of G; thus

and

We say that G is nilpotent of class c if

We then write nil G = c .

DEFINITION. Let G be nilpotent. We say that G is P-local if xH x"
x E G , is bij ective for all n E P’ . A homomorphism e: G - Gp , with Gp
nilpotent, is said to P -localize G if Gp is P -local and e has the univer-
sal property for homomorphisms of G into P -local nilpotent groups: that is,
if H is P -local, then e*:Hom (GP,H)=Hom (G,H) ,
DEFINITION. Let G, H be nilpotent groups. We say that 4J: G -+ H is a

P -isomorphism if:

( i ) every element in ker cp is a P’ -torsion element;

(ii) for every yEH, there exist n E P’ , x E G , with cp(x) = yn .

It is immediately clear that this definition generalizes that given in
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Section 2 for abelian groups (nilpotent groups G with nil G  1). If 0 sa-

tisfies ( i ) we call it P -injective, if cp satisfies ( ii ) we call it P -suriec-

tive.

Our main obj ect in this section is to prove the following theorems.

THEOREM 4. i. With each nilpotent group G we may associate its P -loca-

lization e : G-&#x3E; G p . Moreover nil Gp  nil G .

T H E O R E M 4. 2. A homomorphism cp: G-H of nilpotent groups P-localizes

G if and only if H is P -local and 0 is a P -isomorphism.

Let N be the category of nilpotent groups, and let Nc be the full

subcategory of N consisting of groups G with nil G  c . We will achieve

our obj ective by proving the following theorem by induction on c .

THEOREM 4.3. For e ach c&#x3E;1 we may find a functor Lc :Nc-&#x3E;N c and a

natural trans formation ec: 1-&#x3E;Lc such that Lc(G) is P -local and ec (G),

G EN , has the universal property in N . We may choose L, e so that

Further (f : G-&#x3E;H P -localizes G in N c if and only if H is P -local and cp
is a P -isomorphism.

PROOF. The assertion is true for c=1, for we constructed L1 in Section

2 and proved Proposition 2.6. We now assume the assertion holds for c-1

c&#x3E;2, and prove it for c. We write L for Lc-1, e for ec-1, and GP for

L G . Thus we have defined

and wish to extend L to L : N c -+ Nc, and to extend e correspondingly, to

have the universal property in Nc. We draw some consequences from the
truth of Theorem 4.3 in the case c - 1 . First however we need to enunciate

two propositions about N .

PROPOSITION 4.4. Let G’-&#x3E;uG-&#x3E;EG" be a central extension in N .

Then if G’ , G" are P -local, so is G .

PROOF. Let x E G , n E P’ . Then Ex = y"n= Eyn, for some y" E G" , y E G .
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Th u s x = yn u(y’), y’ E G’ . But y’ = x’" f or s om e x’ E G’ , so

since J-L G’ is central in G.

Suppose now that xn=y’2, x, yEG, nEP’, Then Exn= eyn, so

Then xn=yn(x’n) , since fLG’ is central in G, so x’n = 1 , x’ = 1, x = y .

PROPOSITION 4.5. Let

be a map of central extensions in N . Then if cp’,0" are P -isomorphisms,
so is cpo

PROOF. Let yEH. Since 0" is P -surjective, there exist x" E G" , n EP’,
with E(yn)=cp"(x"). Let x"= Ex0, x 0 E G . Th en

so

Since 0’ is P -surj ective, there exist x’ E G’ , m EP’ with y,m=cp’(x’).
Th en, since jiH’ is central in H ,

so qb is P -surjective.
Let x E G with cpx=1. Then cp"E(x)=1 so, 0 " being P -injec-

tive, there exists n EP’ with E(xn)=1.Thus xn = ux’, x’EG’, and

cp’x’=1. Since 0 ’ is P -injective, x,m = 1 for some m EP’ , so xmn = 1 ,

mnEP’, and 0 is P -inj ective.

We are now ready to exploit the inductive hypothesis to prove a

series of propositions which will enable us to establish Theorem 4.3.

PROPOSITION 4.G, L:NC-1-Nc-1 is exact.

PROOF. We have the diagram, in NC -1)
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with the top row short exact, and wish to prove the bottom row short exact.

We use the fact that e is a P -isomorphism.

First, EP is surj ective. For let y"EG"p. Then, for some n E P’ ,

y"n = e x" , x" EG". . Let x" = Ex. Then y"n =e6x= 8p ex. Thus 8p is

P -surj ective, and one proves, just as in the proof of lemma 2.8, that a

P -surj ection of P -local groups is a surj ection .

Second, up is inj ective. For let up y’ = 1 , y’ EG’p. Then, for some
so

Thus ux’m = 1 for some m E P’ . Thus x’m=1, y,mn=1, and m n E P’ , so

y’ = 1 since Gp is P -local.

Third, 4p is the kernel of 6p . Of course 6p up = 0 so we must

prove that ker 6p C im f.Lp. Let 6p Y = I , YEG. Then, for some n E P’ ,

yn =ex, x EG, so

Thus Exm=1 for some m E P’ . Thus xm=ux’, x’ E G’ , s o that ymn =

= f-Lp e x’ , and m n E P’ . Again one argues just as in the proof of Lemma 2.8

that, since ymn Eimup and Gp, G p are P .-local, therefore y E im I-Lp .

P R O P O SIT IO N 4.7. 1 f, in the commutative diagram, in Nc-1 

the top extension is central, so is the bottom.

PROOF. Let x’EG’, y E G p . Then yn = ex , xEG , for some n E P’ . Thus

so

Since Gp has unique ntb roots, so
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be lon gs to th e cen ter of Gp .
Now let y’ E Gp . Then y’m = ex’, x’EG’, for some m EP’ . Thus,

for any y EGp ,

Since Gp has unique mth roots, y-1 (Apy’)y = upy’, so upy’ belongs
to the center of G p . Thus up GP is central in Gp .

THEOREM 4.8. Let GENi, ic-1. Then H*(e):H*(G)-&#x3E;H*(Gp)
P -l ocal izes.

PROOF. We argue by induction on i , the theorem being true for i = 1 (Pro-

position 2.5). Suppose the theorem true for all groups K with nil K i-1,
i&#x3E;2, and let nil G i. Let Z be the center of G . Then nil Z = 1,
ni l G / Z i - 1, and, by Proposition 4.6 and 4.7, we have a map of central
extensions

Then (4.3) induces a map of spectral sequences {Epq }-&#x3E;{Epq}, where
(Proposition 3.6) 

the coefficients being trivial in both cases. It now follows from the induc-

tive hypothesis, together with Propositions 2.3, 2.4, taken in conjonction

with the natural universal coefficient sequence in homology, that (4.3) in-

duces e2:E2pq-&#x3E;Ep2q which is P -localization unless ( p , q) = ( 0 , 0 ) . By

Proposition 2.1 we now readily infer that e00:E00 -&#x3E;E00 is also P -locali-
zation unless ( p, q=(0, 0) .

Since, for any n , Hn G (Hn GP) has a finite filtration whose

associated graded group is

with

it follows from Proposition 2.3 that Hn(e) : Hn G - Hn GP P -localizes

for n&#x3E;1.
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COROLLARY 4.9. Let GENc-1 and let A be a P -local abelian group.
Then e:G-&#x3E;Gp induces e*: H*(GP; A)=H*(G;A).
P R 00 F . The case n= 0 being trivial, we show that

Consider the diagram

induced by e . It follows immediately from Theorem 4.8 and Proposition 2.9

that e" is an isomorphism. If n=1 this completes the argument; if n&#x3E;2
it follows immediately from Theorem 4.8 and Proposition 2.9 that e’ is an

isomorphism. Thus e* is an isomorphism.

We are now ready to carry out the inductive step establishing Theorem

4.3 and hence Theorems 4.1, 4.2.

PROOF O F T H E O R E M 4.3. Assume G nilpotent with nil G  c . We then
have a central extension

with nil T’ c  1 , nil G / I-’  c - 1. Let (4.4) represent F EH2 ( G / T’ c; T’ c ,
Then e* F E H2 ( G / T’c; T’c p ) and, by Corollary 4.9, there exists a unique

element F p EH2 ((G/ T’c )p;T’cp) such that

Let the central extension

represent Fp . Then by Proposition 3.5, we have a commutative diagram

We first remark that, since (4.6) is a central extension and
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ni l (G / T’cp ) p c - 1 , then Gp is nilpotent and nil Gp ( c . We next remark

that, by Proposition 4.4, G p is P -local. We also remark that if, in fact,

nilG  c-1, then

and we naturally take Gp = ( G / T’cp , preserving the same P -localization
if we define L G = Gp , as we propose to do.

Now, by Proposition 4.5, e : G -&#x3E; GP in (4.7) is a P -isomorphism. It

follows, by a trivial modification of the argument of Lemma 2.8 (we restate

the result in Lemma 4.11) that e : G -&#x3E; GP is thus an isomorphism if G is

P -local. Then the universal property of e will follow directly from the fact,
still to be proved, that e is a natural transformation of functors. For we

then readily infer that

is surjective if H is P -local in Nc , and the fact that e* is injective fol-

lows immediately from the fact that e is P -surjective and H is P -local.

Thus it remains to define L on morphisms of Nc as a functor, and

to prove the naturality of e. Let qb : G - G in Nc) and let T’ = T’c (G).
Then we have

and our object is to define Op : Gp - Gp to make (4.8) commutative. It is

clear that any 0p yielding 0Pe = e0 is uniquely determined so the func-

toriality of L is automatic once a suitable 0p is defined.

In (4.8) 0, 0" are induced by 0, and
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Thus

But

by Corollary 4.9, so 0p"* Fp = 0’p* Fp. Thus (Pr-Dp. 3.5) we may find

T: GP -&#x3E; Gp so that 

Consider the diagram

Here

It is thus clear that (4.10) commutes if Y = e 0 or Y =Te , so that Propo-
sition 3.5 implies that there is 0: G / Tc-&#x3E; TcP , such that

Let be gi ven by and define

Again by Proposition 3.5 we have, from (4.9),

and also

We are now left merely with the final assertion of Theorem 4.3. We

know that e : G -&#x3E; GP is a P-isomorphism and G p is P -local. We prove the
converse just as for Proposition 2.6. We state the appropriate lemmas again,

explicitly.
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LEMMA 4.10 . I f, in N , 8 a and a are P -isomorphisms, so is 8.

PROOF. It is trivial that Ba is P-surjective, so is 8. Now consider

and let

Since a is P -surjective, there exists n prime to P with xn2 = ax1, xl EG1. 
Then Bax1=1, so, Ba being P-injective, there exists m prime to P

with xm1=1. Then x2mn =1, m n prime to P , so 8 is P -injective.

LEMMA 4.11. In N a P -isomorphism between P -local groups is an iso-

morphism.

PROOF. We make a trivial modification of the proof of Lemma 2.8.

Now that the proof of Theorems 4.1, 4.2 is complete, we may, of

course, restate Propositions 4.6, 4.7, Theorem 4.8 and Corollary 4.9 without

any reference to the inductive parameter c . We ask the reader to assume

those restatements made.

5. Applications.

In this section we show how the existence of a P -localization

e : G-&#x3E; GP, together with the characterization of e as a P -isomorphism to

a P -local group, may be used to infer facts about nilpotent groups.

TH E O R EM 5.1. Let IT be a family o f primes. Then if G is nilpotent it has

a 11.torsion subgroup Tn. 
PROOF. Let p=il’. Localize at P by e:G-G p . Since e is a P -iso-

morphism, every element in k er e is a 11-torsion element. Since GP is

P -local, every 11 -torsion element is in ker e. Thus ker e = TIT.

TH E O R E M 5. 2. Suppose G is nilpotent and has no 11-torsion. Then i f

xn = yn, x, y E II, it follows that x = y .

PROOF. Localize at P = II’ . Then e : G -&#x3E; GP is injective and e (x)n =

=e(y)n . Since GP is P -local, e(x)=e(y), so x=y.
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COROLLARY 5.3. The nilpotent group G is P -local if and only if it has

no P’ -torsion and xhxn, x EG, is surjective for all n EP’.

THEOREM 5.4. Let G’-&#x3E;G-&#x3E;G" be a short exact sequence of nilpotent

groups. Then if any two of G’ , G , G" are P -local, so is the third.

PROOF. Since P-localization is exact, we obtain a map of short exact

sequences

The hypothesis implies that two of the vertical arrows are isomorphisms. So

therefore is the third, and the theorem is proved.

We now turn to results which make explicit mention of P -locali-

zation.

THEOREM 5.5. Let ,

be a map of short exact sequences of nilpotent groups. Then if any two of

0’, 0, 4J" P -localize, so does the third.

PROOF. By Theorem 5.4, we infer that H’, H , H" are all P -local. By
P -localizing the top row, we obtain

where Y’ e = qb ’ , 9 e = (f , Y"e = 0" . Moreover, the commutativity relations
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uY’ = Yup , -EY =Y"Ep follow from the universal property of e . But the

hypothesis implies that two of Y’,Y,Y" are isomorphisms. So therefore
is the third, and the theorem is proved.

TH EOREM 5.6. Let G be nilpotent and let q6: G- K P -localize G. Then

Ti0:TiG-&#x3E;TiK P-localizes tiG, for all i &#x3E; 1 .

PROOF. It follows from Theorem 5.5 that it is sufficient to prove that the

homomorphism 0i: G/TiG -&#x3E; K /TiK, induced by0 , P -localizes. We

argue by induction on i , the assertion being trivial for i = 1 and following
from Theorem 4.8 for i = 2 . Thus we assume that 0i P -localizes, i &#x3E; 2
and prove that 0i+1 P -localizes. A second application of Theorem 5.5
shows that it is sufficient to prove that the homomorphism

induced by 0, P -localizes. We apply the 5-term exact sequence in the

homology of groups to the diagram

to obtain

Then 0* , 0ab P-localize by Theorem 4.8 and 0i*, Oiab P -localize by
the inductive hypothesis and Theorem 4.8. It is now evident, by a mild

extension of Proposition 2.3, that 0 P -localizes.

Our next theorem appeared explicitly in [6]; we include it here

for completeness.

T H E O R E M 5.7. L et 0: G -&#x3E;K be a bomomorph ism o f nil potent groups. Then

0 P -localizes if and only if H* (G) : H* (G) -&#x3E; H*(K) P -localizes.
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PROOF. Theorem 4.R asserts that H* (0) P -localizes if cp P -localizes .

We next prove that if H* (K) is P -local, then K is P -local. For let

e : K -’ KP P -localize. Then H*(e): H*(K) -&#x3E; H* (Kp) P -localizes; but

H* (K) is P -local, so H* (e) is an isomorphism. It follows from the

Stallings-Stammbach Theorem that e is an isomorphism.
Now let H* (0) P -localize. Then H* (K) is P -local, so K is

P -local. Thus 0 factors as G -&#x3E; Gp -&#x3E;K and

But since H* (0), H* (e) both P -localize, H* (Y) is an isomorphism.
Thus the Stallings-Stammbach Theorem again implies that 9 is an isomor-

phism, so that 0 P -localizes.

We turn now to a consideration of the upper central series of a

nilpotent group:

where Z ( G ) is the center of G . We then easily prove

PROPOSITION 5.8. If G is P -local, so is Zi(G), i &#x3E; 1. Moreover,

e : G -&#x3E; GP sends Zi ( G) to Zi ( G p ).
PROOF. TQ prove Z ( G ) P-local, we only have to show that if x E G

and xn EZ(G), n EP’, then x EZ(G), But if xn EZ(G), then y -1 xn y = xn
for all y E G . Taking n th roots, y 1 x y = x , so x E Z (G) . An easy induc-

tion, involving two applications of Theorem 5.4, now shows that Z’(G)
is P -local, i &#x3E;1.

It was proved in Proposition 4.7 that e:G-&#x3E;Gp sends Z (G) to

Z ( Gp ) . Thus, again, an easy induction shows that e sends Z’( G ) to

Zi(Gp), i&#x3E;1.

Let us write ZI (e) : Zi (G) -&#x3E; Zi (Gp) for the restriction of e :

G-&#x3E;Gp. Then we may prove
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TH E O R E M 5.9. If G is finitely generated nilpotent and e:G-G p P -lo-

calizes G , then the restriction Zi( e ) : Zi ( G) - Zi (Gp) P -localizes

Zi( G). 

PROOF. This was proved in [6] for i =1, but we will repeat the proof
in order to demonstrate that only facts about nilpotent groups explicitly
mentioned in this paper are required. It is plain, in view of Proposition
5.8 and Theorem 4.2, that we only have to prove that Z ( e ) is P -surjec-
tive. We proceed by a series of lemmas.

LEMMA 5.10. Let G be a group, x, y EG and the commutator [x, y I ETi .

Then [X,yn]= [x,y]n mod T’ i+1.

PROOF. This is immediately evident from the commutator identity

where

LEMMA 5 . 1 1. Let G be nilpotent and [ x, y I E T II , the II-torsion sub-

group of G (Theorem 5.1). Then [x, yn ] = 1 for some n EII .

PROOF. First observe (by passing to the quotient group G / Tn) that if

[x,y] ETII, then [x,y] E TII for all r . Now, since G is nilpotent, it

suffices to show that, for each i , there exists ni E II with (x,yni] ETi.
For i = 2 take ni= 1, and proceed by induction on i . For if [ x, yni , ET’i,
ni EII, then, since [x, yni] ETII , there exists mi EII with [x, yni]mi=
- 1 , and, by Lemma 5.10,

LEMMA 5.12. Let G be finitely generated nilpotent, and let e(y)C-Z(Gp) -
Then there exists nEP’ with y’ EZ (G).

PROOF. Let G=(x1 , x2, ... , xk). For each xj we have e[xj,y]=1 
so that [x,,Yl eTp, . Thus there exists njEP’, with [ xj’y]=1, by
Lemma 5.11. Set n = n1 n2 ... n., . Then

and

so that
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We now prove that Z (e) : Z (G) -&#x3E; Z (Gp) is P -surjective. Let

bEZ(Gp). Then there exists m EP’ with bm=e(y), yEG. By Lemma

5 .12, there exists nEP’ with yn EZ(G) and e (yn) = bmn , m n E P’ . Thus

Z ( e ) is P -surjective and Theorem 5.9 is proved for i = 1 .

The argument is now completed by an easy induction. Assume i &#x3E; 2,
and that Zi-1 (e) P -localizes. Then the induced map

also P -localizes, by Theorem 5.5. Moreover, G / Zi-1 (G) is finitely

generated, so that

P -localizes. Finally, a second application of Theorem 5.5 establishes

that Zi (e) P -localizes.

6. P -isomorphisms.

It is trivial to prove that a composite of P -isomorphisms is a P -iso-

morphism. It thus readily follows from Lemmas 4.10, 4.11 that if, in the

diagram

in N, 0 is a P -isomorphism, then (f p is an isomorphism. Our main objec-
tive in this section is to prove the converse of this, and thereby to be able

to obtain consequences about the properties of P -isomorphisms of nilpotent

groups. However, the converse appears to require deeper properties of nil-

potent groups than those so far exploited. We will use Philip Hall’s theory
of basic commutators [ 5 1 to prove the following result, which we have

not succeeded in finding in the literature.

T H E O R E M 6.1. Let G be a group, x, y E G with yn =1. Then
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PROOF. We may assume without loss of generality that G is generated by

x , y . Then T’i (G) / T’i+1 (G) is generated by the cosets of certain i -fold

basic commutators. Moreover, an i -fold commutator is linear in each of its

arguments, modulo T’i+1 (G). Since an i -fold basic commutator, i&#x3E;2,
must involve y as an argument, it follows that, for any such commutator c ,

cn ETi+1 (G), so that, for any element

We now proceed to prove the theorem by induction on i . If i = 1,
then

Now suppose that (xy)n1 = xnt q, for some i&#x3E;1 , with qET’+ 1. Then

qn ET’i+2, so

and the theorem is proved.

COROLLARY 6.2. Let G be a nilpotent group with nil G  c. Then if x,

y E G , with yn = 1,

PROPOSITION 6.3. Given G1-&#x3E; G2-&#x3E;G3 in N, then if f3a and B
are P -isomorphisms, so is a.

PROOF. It is trivial that a is P-injective if Ba is P-injective. Now let

y6G 2 - Since 8 a is P-surjective, B(ym ) =Ba (x), for some x E G1’
m E P’. Then, since /3is P -injective, ym = a ( x) b , with b E G2and bn=1 ,
n 6?’. By Corollary 6.2,

where

Since m nc EP’ , it follows that a is P -surjective.

COROLLARY 6.4. In the diagram (6. 1) in N , (f is a P -isomorphism if and

only if 0P is an isomorphism..

It now follows (see [4] ) that the P -isomorphisms of N are pre-
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cisely those morphisms of N which are rendered invertible by the locali-

zation functor; we are thus led to the general theory of completions as in

[3,4], but we do not take that direction here. Instead, we draw some

immediate consequences.

THEOREM 6.5. Let

be a map of short exact sequences of nilpotent groups. Then if any two of

0’ , If I If 11 are P -isomorphisms, so is the third.

PROOF, We P -localize. Since P -Iocalization is exact and two of pi
0p , 0p" are isomorphisms, so is the third. The theorem thus follows from
Corollary 6.4.

THEOREM 6.6. Let cp:G-tK be a P -isomorphism o f nilpotent groups.
Then T’ i 0:Ti G-&#x3E;T’i K is a P -isomorphism.

PROOF, We P -localize. Since Cpp is an isomorphism T’i- (0p) is an iso-

morphism. But, by Theorem 5.6, Ti (0p) = (Ti 0)p. Thus, by Corollary

6.4, Ti0 is a P -isomorphism,

T H E O R E M G. 7. L et 0.- G - K be a homomorphism o f nilpotent groups. Th en

1J is a P -isomorphism if and only if H* (0): H* ( G) - H* ( K ) is a P -iso-

morph ism.

PROOF. We P -localize. Then-

0 is a P -isomorphism =&#x3E; 0p is an isomorphism H* (0p) is

an isomorphism =&#x3E; H* (0)p is an isomorphism =&#x3E; H* (0) is a

P -isomorphism.

Here the first equivalence uses Corollary 6.4; the second uses the Stallings-
Stammbach Theorem; the third uses Theorem 5.7; and the fourth again uses

Corollary 6.4.

THEOREM 6.8. The following assertions about the nilpotent groups G , K
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are equivalent (see [4]):

( i ) G p and KP are isomorphic;

( ii ) there exists a ni lpotent group L and P -isomorphisms a: G -&#x3E; L ,

B.K-&#x3E;L ;
( iii ) there exists a nilpotent group M and P -isomorphisms y : M -&#x3E; G ,

d :M-&#x3E;K.

PROOF. It is plain from Corollary 6.4 that (ii) =&#x3E; (i), (iii) =&#x3E; (i).

Also, since e is a P -isomorphism, the diagram

where

shows that (i) =&#x3E; (ii). That (ii) =&#x3E; ( iii ) now follows from

PROPOSITION 6.9. Let

be a pull-back in the category o f groups, and let G , K , L be nilpotent.
Then M is nilpotent and d is a P -isomorphism i f a is a P -isomorphism.

PROOF. M is a subgroup of G X K and thus certainly nilpotent. Since

ker a=ker d it is plain that 8 is P -inj ective if and only if a is P -inj ec-
tive. Now let ac be P -surjective and let x6K. Then there exists y EG ,
n E P’ with a ( y ) = f3 ( xn ) . But then

and

so 8 is P -surj ective. This proves Proposition 6.9 and, with it, Theorem 6.8.

Let us call G , K P -isomorphic if any of conditions (i) , (ii),

( iii ) of Theorem 6.8 hold.

THEOREM 6.10. Let G , K be finitely generated P-isomorphic nilpotent

groups. Then Zi (G ), Zi ( K) are P -isomorphic for all i &#x3E; 1.

PROOF. Apply Theorem 5.9.

R E M A R K . In fact, in the category of nilpotent groups, the four implications
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are all valid, refining Corollary 6.4. Of these, the implication

alone requires Corollary 6.2, the others being elementary. Using these

implications, one may obtain the following variant of the Stallings-Stamm-
bach Theorem:

THEOREM 6.11. Let qb : G - K be a homomorphism of nilpotent groups.

Then 0 is a P -isomorphism if and only if 0ab is a P -isomorphism and

H2 (0) is a P -surjection. 

7. Localization of firtitely generated nilpotent groups.

In this section we prove three theorems which are useful in ap-

plications of localization to homotopy theory. We begin with some lemmas.

LEMMA 7.1. [5] A subgroup of a finitely generated nilpotent group is

f initely generated.

PROOF. From the Hall theory of basic commutators and an easy induction

we readily infer that if G is finitely generated nilpotent, so are the terms
riG of the lower central series. We now prove the lemma by induction on

nil G , since it is true if nil G = 1 .

Let H be a subgroup of G . Then H rl r 2 G is a subgroup of r 2 G
and nil T2 G  nil G, so, by the inductive hypothesis, H n r2 G is finitely
generated. We have the short exact sequence

but H T2 (G) / T’2 (G) C Gab , and hence is finitely generated. Thus H

is itself finitely generated.

Let Pl , l &#x3E; 0 , be the complement of the set {p1, P2, ..., Pl}
consisting of the first I primes.
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L E MM A 7.2. 1 f G is finitely generated nilpotent, then there exists I such

that Gp - G0 is injective, where GO is the rationalization of G .

PROOF. Since G is finitely generated, so is its torsion subgroup T . Since

T is then easily seen to be finite, T has p -torsion for only finitely many

primes p . Thus, for I sufficiently large, Gp 1 is torsion free and GPl -&#x3E; G 0
is injective.

THEOREM 7.3. Let G, K be finitely generated, nilpotent groups and let

0: G - K0 be a homomorphism. Then there exists I such that 4) has a

unique lift into K p .
l

PROOF. We first choose I so that K p 
l 
0 is inj ective. Let

(x1, x2 , ... , xn ) generate G , let e:K-&#x3E;K0 rationalize K , and then find

y. EK , m. 1. EN, such that

Now subject I to the further condition that

and factorize e as

Since Kp is PI-local, we have
so

and 0 lifts uniquely into Kp .
l

Let us say that the nilpotent group G has property A if G is the

pull-back of its localizations G p over its rationalization GO. Then it has

been observed (e.g. in [6]) that a finitely generated abelian group has

property A.

PROPOSITION 7.4.. Let G’ -&#x3E; G -&#x3E; G " be a short exact sequence

o f nilpotent groups, Then i f G’ , G" have property A, so has G.

PROOF. Write e p : G -&#x3E; Gp for the localization, rp : Gp -&#x3E; G0 for the rationa-
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lization. We want to prove that, given g p E G p , with rp gp = g0 , for all p ,

there exists a unique g E G with ep g = gp . Now

and

for all p . Since G" has property A, there exists a unique g" E G" with

ep g" = p gp. Let g" = 8g. Then Ep gp = Ep ep g, so that gp = (epg) g’p , 
where g’ EG’p , and we regard /-L, up , /-Lo as inclusions. Moreover

g0=(rg) (rp gp) for all p , where r: G -+ GO is the rationalization, so that

the elements g’p have a common rationalization. Since G’ has property A,
there exists a unique g’ E G’ with e p g’ = gp . Then gp = ep (gg’).

It remains to prove uniqueness. We suppose g EG with epg = 1 ,
for all p . Then e"p Eg = 1 , for all p , so Eg = 1, by uniqueness, and

g E G’ . But then e’p g = 1, for all g , so g = 1 by uniqueness.

T H E O R E M 7.5. A finitely generated nilpotent group has property A.

PROOF. We argue by induction on the nilpotency class of the group G ,

since the theorem is true if nil G = 1 . We suppose nil G = c &#x3E; 2 , and that

the theorem has been proved for finitely generated nilpotent groups of class

 c -1. But then (see Lemma 7.1)

is a short exact sequence of finitely generated nilpotent groups with

Thus r 2 G and G / T’2 G have property A and so, by Proposition 7.4,
h as G .

THEOREM 7.6. Let 0: G-H be a horriomorphism o f nilpotent groups. Then

0 is an isomorphism if and only if 0 p is an isomorphism for all p .

PROOF, We assume OP an isomorphism for all p , that is, 0 is a p -iso-

morphism for all p . Since ker 0 is a torsion group, and all primes are for-

bidden, ker0 = {1}. Now let y E H . Then, for each p , we have x(p) E G,
n p prime to p , and y P = 0x(p). Since gcd (n)p = 1, we may find integers
a p , almost all zero, such that Eap np = 1. Set x = II x(pp). It is then plain
that y=ox.
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