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Abstract. We construct examples to show that having nef cotangent bundle is not preserved under finite
ramified covers. Our examples also show that a projective manifold with Stein universal cover may not have
nef cotangent bundle, disproving a conjecture of Liu–Maxim–Wang [7].

Manuscript received 19 February 2022, revised and accepted 6 April 2022.

1. Introduction

The notion of nefness of the cotangent bundle is closely related to various notions of hyperbolic-
ity of a projective manifold (or more precisely, non-ellipticness), and it entails some topological
obstructions. For example, any perverse sheaf on a projective manifold with nef cotangent bun-
dle has nonnegative Euler characteristic [7, Proposition 3.6]. In [7], inspired by the Singer–Hopf
conjecture and the Shafarevich conjecture, the authors made the following conjecture.

Conjecture ([7, Conjecture 6.3]). Let Y be a projective manifold. If the universal cover of Y is a
Stein manifold, then the cotangent bundle of Y is nef.

Since having Stein universal cover is preserved under finite ramified covering, one may expect
the property of having nef cotangent bundle is also preserved under finite ramified covering.
However, we show that it is not the case in this paper.

Theorem 1. For any positive integer n ≥ 2, there exists a finite surjective map between projective
smooth n-folds f : X → Y , such that Y has nef cotangent bundle, while X does not.

As a corollary, we give a counterexample to the conjecture above.

Corollary 2. There is a smooth projective variety X whose universal cover is Stein while its
cotangent bundle is not nef.
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By a theorem of Kratz [4, Theorem 2], any compact quotient of bounded domain in Cn (or any
Stein manifold) has nef cotangent bundle. Theorem 1 shows that boundedness in Kratz’s theorem
is necessary.

There are other hyperbolic-type properties that are preserved under finite surjective mor-
phism, for example the property of having large fundamental group. A normal variety is said to
have large fundamental group, if its universal cover does not contain any positive dimensional
proper complex subspaces (see for example [3]). If a variety has Stein universal cover, then it has
large fundamental group ([7, Proposition 6.7]). Having large fundamental group is also related to
various notions of hyperbolicity, as the Shafarevich conjecture predicts varieties with nonpositive
sectional curvature have Stein universal covers (also see [7]).

Corollary 3. There is a projective variety X which has large fundamental group while its cotangent
bundle is not nef.

The example in Theorem 1 is constructed using the cyclic covering trick. We produce ramified
covering map with smooth branched locus. Using a lemma of Sommese, we prove the ramified
cover cannot have nef cotangent bundle.
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2. A Lemma of Sommese

A line bundle L on a projective variety is called nef if for every irreducible curve C , we have
L ·C ≥ 0. A vector bundle E is called nef if the tautological line bundle OP(E)(1) is nef on P(E)
(the space of hyperplanes in E).

The next lemma is due to Sommese [9, Lemma 1.9].

Lemma 4. Suppose f : X → Y is a double covering between n-dimensional smooth projective
varieties over C, n ≥ 2, with smooth ramification locus R ⊂ X and branched locus B ⊂ Y . Sup-
pose furthermore at any point p ∈ R, f can be written (analytical) locally as (u1,u2, . . . ,un) →
(u2

1,u2, . . . ,un). If X has nef cotangent bundle, then R has nef conormal bundle.

Proof. Consider the natural exact sequence

f ∗Ω1
Y →Ω1

X →Ω1
f → 0,

and restrict it to R,
Ω1

X |R →Ω1
f |R → 0,

We claim that Ω1
f |R ' OR (−R). Assuming this is true, since Ω1

X |R is nef and any quotient bundle
of a nef bundle is also nef, we must have OR (−R) is nef.

To prove the factΩ1
f |R 'OR (−R), consider the natural short exact sequence

0 →IR /I 2
R →Ω1

X |R →Ω1
R → 0. (1)

Let ϕ be the composition OR (−R) ' IR /I 2
R → Ω1

X |R → Ω1
f |R , and we want to prove ϕ is an

isomorphism. This can be proved locally. In the coordinate patch U that satisfies the second
condition of this lemma, we know thatΩ1

f can be locally written as⊕n
i=1 OU {dui }

OU {u1du1}
⊕n

i=2 OU {dui }
'OU /u1OU {du1},
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which is a line bundle over R ∩U , generated by du. Moreover, the equivalence class of u
which generates IR /I 2

R maps to the class of du, which generates Ω1
f |R . So ϕ must be an iso-

morphism. �

Corollary 5. Under the assumption of the above lemma, for any irreducible curve C ⊂ R, we must
have C ·R ≤ 0. In particular, if X is of dimension 2, then R ·R ≤ 0.

Proof. For such a curve C , R ·C = degC (OX (R)) = degC (OR (R)) ≤ 0 by OR (−R) is nef. �

Remark. What we actually proved here is the short exact sequence (1) splits. This is clear
geometrically: the tangent bundle T X of X restricted to R has two natural subbundles, one is
the tangent bundle of R, and the other is the kernel bundle of d f |R : T X |R → T Y |B . Moreover,
the assumption “analytic locally” can be replaced by “formal locally”, since for checking a is an
isomorphism, we only need to verify it stalk by stalk formally. Therefore the argument works in
all characteristics not 2.

3. The Cyclic Covering

We recall the construction of cyclic covering.

Proposition 6 ([5, Proposition 4.1.6]). Let Y be an algebraic variety, and L a line bundle on Y .
Suppose given a positive integer m ≥ 1 plus a non-zero section

s ∈ Γ(Y ,Lm)

defining a divisor D ⊂ Y . Then there exists a finite flat covering π : X → Y , where X is a scheme
having the property that the pullback L′ = π∗L of L carries a section s′ ∈ Γ(X ,L′) with (s′)m = π∗s.
The divisor D ′ = di v(s′) maps isomorphically to D. Moreover, if Y and D are non-singular, then so
too are X and D ′.

The construction of X can be described in detail locally. On an affine open subset U of Y
that Lm is trivial, s can be viewed as a regular function on U . Then π−1(U ) ⊂ Y ×A1 is defined
by the equation t m − s = 0. In particular, if m = 2, and D is nonsingular, then the covering we
construct here satisfies the second condition of Lemma 4. The reason is that analytic locally, the
map π can be written as (x1, x2, . . . , xn , t ) → (x1, x2, . . . , xn). Since D is nonsingular, at any given
point p ∈ D , there exists some i such that (x1, x2, . . . , x̂i , . . . , xn , s) is a local coordinate of Y . Then
(x1, . . . , x̂i , . . . , xn , t ) → (x1, . . . , x̂i , . . . , xn , s) is the desired coordinate presentation of π.

Now, we can prove the claimed results in the introduction.

Proof of Theorem 1. We pick any smooth n-fold Y with nef cotangent bundle, a very ample line
bundle H , and any smooth section D ∈ |2H |. By the construction above, we get a double covering
map f : X → Y , branched over D , satisfying all the conditions of Lemma 4. In particular, if X
has nef cotangent bundle, then for any irreducible curve C ⊂ D , D ′ · f ∗C = 2D ′ · f −1(C ) ≤ 0 by
Corollary 5 ( f −1(C ) is still irreducible since f maps D ′ isomorphically to D). On the other hand,
D ′ · f ∗C = 2D ·C = 4H ·C > 0 by the assumption H is very ample. Therefore X cannot have nef
cotangent bundle. �

Proof of Corollary 2. Let Y in the above construction be an abelian variety. Then Y has universal
cover Cn . Taking the fiber product in the category of complex spaces, we have the Cartesian
diagram

X ′ Cn

X Y
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where X ′ is an infinite unramified cover of X . Since X → Y is finite, X ′ → Cn is also finite, by [2,
Theorem V.1.1] X ′ is Stein. Therefore, the universal cover of X is Stein because any unramified
covering (not necessarily finite) of a Stein manifold is Stein (see [10]). But the cotangent bundle
of X is not nef. �

Proof of Corollary 3. For a normal variety X , having large fundamental group is equal to say for
any positive dimensional cycle w : W → X , the image of π1(W ) → π1(X ) is infinite (see [3]). It’s
obvious that having large fundamental group is preserved under finite surjective morphism using
this definition. Take Y to be an abelian variety, X as in the proof of Theorem 1, then X has large
fundamental group while its cotangent bundle is not nef. �

Kobayashi hyperbolicity is an important example of hyperbolicity of complex manifolds. If a
projective variety has ample cotangent bundle, then it also has Kobayashi hyperbolicity (see [6,
Theorem 6.3.26]). However, the above construction shows

Corollary 7. There is a projective variety X which is Kobayashi hyperbolic while its cotangent
bundle is not nef.

Proof. Take Y to be any projective Kobayashi hyperbolic variety in the above construction. Then
f : X → Y is finite surjective but X does not have nef cotangent bundle. The variety X is also
Kobayashi hyperbolic, because if there is any nonconstant holomorphic map g :C→ X , then f ◦g
is constant since Y is Kobayashi hyperbolic. Therefore g (C) is contained in a fiber of f , which is
a finite set, so g must be constant, and X is also Kobayashi hyperbolic. �

Remark. Such examples were already known. A smooth hypersurface in Pn cannot have nef
cotangent bundle if n ≥ 3 (see for example [6, Example 7.2.3]), while there are Kobayashi hyper-
bolic hypersurfaces in all dimensions (see for example [8]).

All these examples show that, the nefness of cotangent bundle is too strong as a hyperbolicity
condition. Inspired by [1], one possible adjustment is to look at the class of projective manifolds
that admit a finite morphism to a manifold with nef cotangent bundle. Since the pushforward
of a perverse sheaf under a finite morphism is still perverse, by [7, Proposition 3.6] any perverse
sheaf on such manifold has nonnegative Euler characteristic. In [1], the authors proved the same
property holds for projective varieties that admit a complex variation of Hodge structures with
finite period map. This result also indicates that admitting a finite morphism to a projective
manifold with nef cotangent bundle is a more appropriate hyperbolicity condition.
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