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Abstract. A theorem of Katanaga, Saeki, Teragaito, and Yamada relates Gluck and Price twists of 4-manifolds.
Using trisection diagrams, we give a purely diagrammatic proof of this theorem, and answer a question of
Kim and Miller.

Résumé. Un théorème de Katanaga, Saeki, Teragaito, et Yamada établit une connexion entre des torsions
de Gluck et Price. On donne une nouvelle démonstration de ce théorème en utilisant des diagrammes de
trisection, et on répond à une question de Kim et Miller.
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1. Introduction

Trisections of 4-manifolds were introduced by Gay and Kirby in 2012 as a 4-dimensional analogue
of Heegaard splittings. Recently, they have been used to give new proofs of classical results [13,14]
and understand embedded surfaces in 4-manifolds [8,19]. One main feature of trisections is that
they may be represented diagrammatically, and thus offer a new perspective with which to view
smooth 4-manifolds. As an example of the power of these diagrams, we give a completely new
proof of a non-trivial surgery theorem using a purely diagrammatic argument.

Suppose that S is an embedded 2-sphere in a 4-manifold X with regular neighbourhood N ⊂ X
diffeomorphic to S2×D2. Let rθ : S2 → S2 be the diffeomorphism which rotates S2 by θ. Originally
defined by Gluck [9], the Gluck twist of X along S is the 4-manifold

ΣS (X ) := (X − int(N ))∪τ N

where τ is the diffeomorphism of S2 × S1 given by τ(x,θ) = (rθ(x),θ). This construction is
particularly interesting when X is the 4-sphere; ΣS4 (S) is a homotopy 4-sphere, and is therefore
homeomorphic to S4 by work of Freedman [6]. However, it remains an open question whether all
Gluck twists on S4 are standard, i.e. diffeomorphic to S4.

A similar surgery can be performed along an embedded projective plane. Suppose that P
is a projective plane in a 4-manifold X with Euler number ±2. A regular neighbourhood of P
is diffeomorphic to N±, a disk bundle over P whose boundary Q is the quaternion space (the
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quotient of S3 by the action of the quaternion group). If φ is a self-diffeomorphism of Q, the 4-
manifold

ΠP,φ(X ) := (X − int(N±))∪φ N±

is called a Price surgery along P . Price [20] studied the self-diffeomorphisms of Q, and showed
that there are only six classes up to isotopy. In particular, up to isotopy there is only one non-
trivial self-diffeomorphism of Q which could be used to produce a 4-manifold homeomorphic
(but perhaps not diffeomorphic) to X . Consequently, the resulting 4-manifold is called the Price
twist of X along P , and we will denote it by ΠP (X ). Like the Gluck twist, this surgery is known to
produce exotic 4-manifolds in some settings [1], but is most interesting in the case that X is the
4-sphere. Note that by a theorem of Massey [16], all embedded projective planes in S4 have Euler
number ±2.

In this paper, we use trisection diagrams to give an entirely new proof of the following theorem
that relates these surgeries, proved by Katanaga, Saeki, Teragaito, and Yamada [11]. This is made
possible by recent work on trisection diagrams of complements of surfaces in 4-manifolds; the
existence of a purely trisection-diagrammatic proof of this theorem answers a question of Kim
and Miller [12].

Theorem 1 ([11]). Let X be a 4-manifold. Let S ⊂ X be an embedded sphere with Euler number 0,
and let P± ⊂ X be an unknotted projective plane with Euler number ±2. Then ΣS (X ) is diffeomor-
phic to ΠS#P± (X ).

Trisection diagrams are very similar to Heegaard diagrams, but with three sets of curves. A
diagram encodes a smooth closed 4-manifold, and after a suitable stabilization operation (as
in the Reidemiester-Singer theorem for Heegaard splittings), any two diagrams for the same 4-
manifold are related by a surface automorphism, and isotopy and slides of curves of each type.
After carefully setting up trisection diagrams for ΣS (X ) and ΠS#P± (X ), the proof is a step-by-
step verification that these diagrams are related by allowable moves. A priori, one might expect
that arbitrary stabilizations might be needed in the proof, but surprisingly this is not the case.
Consequently, the calculation in this paper provides evidence that trisection diagrams are an
effective computational tool for working with smooth 4-manifolds.

Organization

This paper is organized as follows. In Section 2, we review trisections and trisection diagrams.
In Section 3, we briefly review work of Gay-Meier and Kim-Miller on trisection diagrams of
complements of surfaces in 4-manifolds, and build the requisite diagrams. Finally, in Section 4
we give a purely trisection-diagrammatic proof of Theorem 1.
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2. Trisections of 4-manifolds

2.1. Trisections and trisection diagrams

In this section we briefly review the definition of a trisection and a trisection diagram. For more
exposition the reader is referred to [4, 7, 19].

Definition 2. A handlebody of genus g is a compact, orientable manifold which can be built with
a single 0-handle and g 1-handles.

Definition 3 ([7]). Suppose that X is a smooth, oriented, closed, and connected 4-manifold. A
trisection T of X is a decomposition X = X1 ∪X2 ∪X3 such that:

• Xi is diffeomorphic to a 4-dimensional handlebody of genus ki ;
• Xi ∩X j is diffeomorphic to a 3-dimensional handlebody of genus g ;
• X1 ∩X2 ∩X3

∼=Σg , a closed surface of genus g .

We will refer to this as a (g ;k1,k2,k3)-trisection of X . When k1 = k2 = k3 the trisection is
called balanced, and we refer to it as a (g ;k)-trisection. Each Xi is called a sector, and the triple
intersection is called the central surface of T . Note that the central surface induces a genus g
Heegaard splitting of ∂Xi

∼= #ki S1 ×S2.

Example 4. The simplest trisection is of S4. If S4 ⊂R5 =C×R3 is parametrized as

S4 = {(r e iθ, x, y, z) : |(r e iθ, x, y, z)| = 1},

then we can define three sectors by

Xk = {(r e iθ, x, y, z) ∈ S4 : 2πk/3 ≤ θ ≤ 2π(k +1)/3}.

It is easy to check that each Xk is a 4-ball, and that in fact X1∩X2∩X3 is an unknotted 2-sphere (it
is the collection of points where r = 0). Consequently, this is a (0;0)-trisection of S4. In fact, any
(0;0)-trisection is diffeomorphic to this one.

There is a natural stabilization operation for trisections of a fixed 4-manifold.

Definition 5. Suppose that T is a (g ;k1,k2,k3)-trisection of a 4-manifold X , with sectors X1, X2

and X3. Let α ⊂ X1 ∩ X2 be a properly embedded and boundary parallel arc, and define a new
trisection T ′ of X by:

• X ′
1 = X1 \ν(α);

• X ′
2 = X2 \ν(α);

• X ′
3 = X3 ∪ν(α).

One can check that this decomposition is a (g + 1;k1,k2,k3 + 1)-trisection of X , and that this
operation is well defined up to isotopy of trisections. The trisection T ′ is called a 3-stabilization
(or simply stabilization) of T , and T is called a destabilization of T ′. One can define 1- and 2-
stabilizations analogously.

The reader may wish to compare Definition 5 to the usual stabilization operation for Heegaard
splittings. Note that this process stabilizes the Heegaard splittings of ∂X1 and ∂X2, while adding
an S1 ×S2 summand to ∂X3 (in the case of 3-stabilization). Similar to the case of Heegaard split-
tings, one can also view stabilization as the connected sum (respecting the trisection structure)
of T with one of the three possible genus one trisections of S4 obtained by stabilizing the trivial
(0;0)-trisection of S4.

The following fundamental result allows us to study closed 4-manifolds via trisections:

Theorem ([7]). Every smooth, oriented, closed, and connected 4-manifold X admits a (g ;k)-
trisection for some 0 ≤ k ≤ g . Any two trisections of X become isotopic after sufficiently many
stabilizations.
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A key feature of trisections is that they can also be described diagrammatically. Indeed, by a
classical theorem of Laudenbach and Poénaru [15], a trisection is determined by its spine (the
subset

⋃
(Xi ∩ X j )). This in turn can be built from the Heegaard splittings of ∂Xi , which may be

recorded with a diagram.

Definition 6. A (g ;k1,k2,k3)-trisection diagram is a tuple D = (Σ;α,β,γ), where Σ is a closed
orientable surface of genus g , and α, β, and γ are collections of g embedded closed curves such
that:

• Each ofα,β, and γ is a cut system of curves forΣ, i.e. surgery on each set of curves yields S2;
• Each pair of curves is standard, i.e. each of (Σ;α,β), (Σ;β,γ), and (Σ;γ,α) is a genus g

Heegaard diagram for #ki S1 ×S2.

By Waldhausen’s theorem, there is a unique Heegaard splitting for #ki S1 ×S2, and so any pair
of α, β, and γ can be standardized by handle slides. However, the three sets of curves are usually
not simultaneously standard.

A trisection diagram determines a trisected 4-manifold up to diffeomorphism in the following
way. Beginning with Σ×D2, attach thickened 3-dimensional handlebodies corresponding to the
α, β, and γ curves along Σ× {0}, Σ× {2π/3}, and Σ× {4π/3} respectively, where D2 is thought of
as the unit disk in C. By assumption, the three boundary components of the resulting 4-manifold
are diffeomorphic to #ki S1 × S2, and so by a theorem of Laudenbach-Poénaru [15] they can be
uniquely filled in (up to diffeomorphism) with \ki S1 ×B 3 to obtain a closed trisected 4-manifold.

The simplest trisection diagram encodes the (0;0)-trisection of S4 described above. It consists
of a 2-sphere, with no curves. The reader may wish to follow the construction given above to see
this is the case. In particular, the following diagrams describe the three possible stabilizations of
the trivial (0;0)-trisection of S4. Note that exactly one sector in each trisection is diffeomorphic
to S1 ×B 3, and the other two are diffeomorphic to B 4.

Figure 1. The three genus one (unbalanced) trisection diagrams for S4, obtained by stabi-
lizing the (0;0)-trisection of S4.

Stabilizing a trisection may also be represented diagrammatically. In general, if D1 and D2 are
trisection diagrams for X1 and X2, then D1#D2 is a trisection diagram for the natural trisection of
X1#X2 obtained by performing the connected sum at points on the central surfaces. Note that up
to handle slides and isotopy of the curves, it does not matter how this connected sum of diagrams
is performed. In particular, by the remark following Definition 5, stabilization can be thought of as
a connected sum with a genus one trisection of S4. Consequently, we give the following definition.
For more exposition, the reader is referred to [17].

Definition 7. Suppose that (Σ;α,β,γ) is a trisection diagram for X . If S is one of the genus one
trisection diagrams for S4 in Figure 1, then Σ#S is also a trisection diagram for X , and we call Σ#S
a stabilization of Σ. Conversely, Σ is called a destabilization of Σ#S.

Besides stabilization, there are other moves on trisection diagrams that do not change the
resulting 4-manifold. In particular, isotopy of the curves in a diagram, or applying a global surface
automorphism obviously do not change the resulting 4-manifold. The following theorem allows
us to understand smooth closed 4-manifolds via their trisection diagrams.
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Theorem ([7]). Every trisection of a 4-manifold can be represented by a trisection diagram.
Moreover, two trisection diagrams describe diffeomorphic 4-manifolds if and only if they are related
by stabilization, handle slides and isotopy of curves (among curves of the same type), and surface
diffeomorphisms.

The reader may wish to compare this theorem with the analogous statement for Heegaard
splittings. Recall that a handle slide of a curve α1 over α2 in Σ is simply a third curve α3 with the
property that α1, α2, and α3 bound an embedded pair of pants P ⊂Σ.

In general, it may not be obvious whether two trisection diagrams describe diffeomorphic 4-
manifolds. If they do, arbitrarily many stabilizations might be required to relate them by handle
slides. It is also usually difficult to decide if a given trisection diagram can be destabilized, since
in principle, one must rearrange the curves to realize the diagram as a connected sum with one
of the stabilizations in Figure 1. Alternatively, Lemma 8 gives a slightly more practical condition
that can be used to recognize a destabilization, and we will used it frequently in Section 4.

Lemma 8. Suppose that D= (Σ;α,β,γ) is a trisection diagram, and thatα0 ∈α, β0 ∈β, and γ0 ∈ γ
are three curves with the property that:

• Two of α0, β0, and γ0 are parallel;
• The remaining curve intersects these parallel curves each exactly once.

Then D can be destabilized. To do so, we can simply eraseα0, β0, and γ0 from Σ and surger Σ along
any of these curves.

Proof. By hypothesis, the diagramDdecomposes as a connected sumD′#S, where S is one of the
stabilized diagrams in Figure 1. Since destabilization is equivalent to surgering any of the curves
in S, this completes the proof. �

Trisection diagrams can be quite complicated in general, but some standard 4-manifolds
admit diagrams of low genus. Some examples are given below.

Example 9. Figures 2 and 3 illustrate minimal genus diagrams of some well known simply
connected 4-manifolds. Using the algorithm outlined in [7], one can convert these trisection
diagrams into Kirby diagrams to verify that they describe the correct 4-manifolds.

Figure 2. A (1;0)-trisection diagram
for CP2.

Figure 3. A (2;0)-trisection diagram
for S2 ×S2.

2.2. Trisections of 4-manifolds with boundary

Trisecting 4-manifolds with boundary is more technical than the closed case. A relative trisection
of a 4-manifold X with boundary also decomposes ∂X into three pieces, and in particular induces
an open book decomposition on ∂X . In this paper, we will only consider cases where ∂X is
connected.
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Definition 10. Suppose that Σ is an orientable, connected surface with non-empty boundary. A
compression body on Σ is a 3-manifold C obtained by attaching 3-dimensional 2-handles to a
thickening of Σ, i.e.

C =Σ× [0,1]∪Σ×{1} {3-dimensional 2-handles}

The boundary of C decomposes as ∂C = (∂−Σ)∪ (∂Σ× [0,1])∪ (∂+Σ), where

∂−C =Σ× {0},

and
∂+C = ∂Σ\ (∂−Σ∪∂Σ× (0,1)).

We will often assume that ∂+C is connected.

We will now describe specific decompositions of a 4-dimensional 1-handlebody; like the
closed case, these will make up the sectors of a relative trisection.

Definition 11. Let Σ be an orientable and connected surface with non-empty boundary, and let C
be a compression body on Σ. Note that Z =C ×[0,1] is a 4-dimensional 1-handlebody. Consider the
decomposition ∂Z = ∂inZ ∪∂outZ , where

∂inZ = (C × {0})∪ (∂−C × [0,1])∪ (C × {1}),

and
∂outZ = (∂Σ× [0,1]× [0,1])∪ (∂+C × [0,1]).

The portion ∂inZ admits a (generalized) Heegaard splitting as ∂inZ = Y −∪Y +, where

Y − = (C × {0})∪ (∂−C × [0,1/2])

and
Y + = (∂−C × [1/2,1])∪ (C × {1}).

In particular, the splitting surface is Y −∩Y + = ∂−C×{1/2}. Any Heegaard splitting of ∂inZ obtained
from this one by stabilization is called standard. For brevity, we will continue to denote any such
decomposition of ∂inZ by (Y +,Y −).

With these models in mind, we can now define a relative trisection.

Definition 12. Let X be a smooth, oriented, and connected 4-manifold with connected non-empty
boundary. A relative trisection T of X is a a decomposition X = X1 ∪X2 ∪X3 such that:

• There are diffeomorphisms φi : Xi → Z such that φi (Xi ∩∂X ) = ∂outZ ,
• For each i , φi (Xi ∩Xi−1) = Y − and φi (Xi ∩Xi+1) = Y +.

The advantage of this structure is that it naturally induces an open book on ∂X with binding
L = ∂(X1∩X2∩X3), for which the surfaces Xi ∩X j ∩∂X are pages. Indeed, by construction ∂X \ν(L)
fibers over S1, with fiber diffeomorphic to ∂+C . In particular, the binding is a |∂Σ|-component
link in ∂X , and the pages have genus g (∂+C ). For more details, the reader is encouraged to
consult [3] and [7]. If ∂X is connected, then the pages of this open book decomposition are also
necessarily connected; this key observation is required to compute relative trisections of surface
complements in [12].

Analogous to the closed case, the following fundamental result allows us to study 4-manifolds
with boundary via relative trisections.

Theorem ([7]). Let X be a smooth, oriented, and connected 4-manifold with connected non-
empty boundary, and fix an open book decomposition of ∂X . Then there is a relative trisection
of X inducing this open book decomposition. Any two relative trisections for X inducing isotopic
open books on ∂X become isotopic after sufficiently many interior stabilizations.
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There are also moves relating relative trisections inducing different open book decomposi-
tions, but we will not discuss them in this paper. See [5] and [2] for more details. A key feature of
relative trisections is that two such decompositions can be glued together to form a closed (tri-
sected) 4-manifold. The following gluing theorem was originally proved by Castro in his thesis [2].

Theorem ([2]). Let T and T ′ be trisections of 4-manifolds X and X ′, respectively. Denote the
open book decompositions induced on ∂X and ∂X ′ by O and O ′, respectively. Suppose that there is
a diffeomorphism f : ∂X → ∂X ′, and that f (O ) is isotopic to O ′. Then there is a naturally induced
trisection T ∪T ′ of X ∪ f X ′.

The main advantage of using such specific decompositions of ∂i n Z is that one can define
relative trisection diagrams.

Definition 13. A (g ,k; p,b)-relative trisection diagram is a tuple (Σ;α,β,γ), whereΣ is a connected
surface with non-empty boundary,α,β, γ are collections of disjoint embedded curves, and (Σ;α,β),
(Σ;β,γ), (Σ;γ,α) are slide-standard, i.e. diffeomorphic to the diagram in Figure 4 after handle
slides.

k −2p −b +1 g +p +b −k −1 p

b > 0 boundary components

Figure 4. A standard set of curves for a (g ,k; p,b)-trisection diagram. The surface has genus
g and b > 0 boundary components, and the result of compressing either set of curves has
genus p. The integer k records the genus of the 4-dimensional handlebodies of the relative
trisection.

As in the closed case, a relative trisection diagramD determines a trisected 4-manifold, and up
to stabilization, two relative trisection diagrams inducing the same open book decomposition are
related by a sequence of isotopies and handle slides of curves, and surface automorphisms. In [3],
the authors also show how to compute the abstract monodromy of the open book decomposition
induced by a relative trisection diagram. We will summarize the algorithm here, but refer the
reader to [3] for more details. This algorithm begins by standardizing the α and β curves, but this
is not strictly necessary; one can state a version of this algorithm which does not require this.

Algorithm 14 (Monodromy Algorithm). Suppose that D = (Σ;α,β,γ) is a relative trisection
diagram for X . We will denote the result of compressing Σ along the α curves by Σα. This is
diffeomorphic to a page for the open book decomposition on ∂X , and the monodromy will be
described as an automorphism of Σα.

(1) Standardize the α and β curves, i.e. perform handle slides so that they look like the
curves in Figure 4 (this is often already the case). Let a be a collection of disjoint properly
embedded arcs that are disjoint from α and β, such that the result of compressing Σ\ a is a
disk.
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(2) Do slides of β and γ curves and slide a over β until a is transformed into a collection of
arcs, c, disjoint from γ.

(3) Let α′ be another copy of the α curves. Do slides of the γ and α curves and slides of c over
α, until c is transformed into a new collection of arcs, a′, which are disjoint from α′.

(4) Perform slides of α and a′ over α until α′ = α (in practice, this is often already the case),
and a′ is another set of arcs disjoint from α. The required automorphism φ of Σα is now
described by φ(a) = a′.

There are many choices appearing in this algorithm, but the work of [3] shows that the
monodromy is independent of these choices.

Definition 15. Suppose that D = (Σ;α,β,γ) is a relative trisection diagram. An arced relative
trisection diagram is a diagram (Σ;α,β,γ; a,b,c), where a and c are a choice of arcs in Σ appearing
in Algorithm 14 and b is another copy of a.

Example 16. Figure 5 illustrates a relative trisection diagram for B 4. There are two boundary
components, and the induced open book decomposition on S3 has annular pages. Using Algo-
rithm 14, one can compute the induced abstract monodromy of this open book decomposition.

(a) (b) (c)

Figure 5. In (a), a (1,1;0,2)-relative trisection for B 4. In (b), an arced relative trisection for
B 4. In (c), the result of applying the monodromy algorithm: an arc and its image inΣα under
the induced monodromy. The open book decomposition induced on S3 has annular pages
and monodromy given by a single left handed Dehn twist.

In combination with the gluing theorem of Castro, the monodromy algorithm can be used
to glue relative trisection diagrams. Indeed, suppose that D = (Σ;α,β,γ) and D′ = (Σ′;α′,β′,γ′)
are two relative trisection diagrams for X and X ′, and that the induced open books O and O ′

on ∂X and ∂X ′ are diffeomorphic. Moreover, assume that f : ∂X → ∂X ′ is a diffeomorphism that
respects the open books O and O ′. First, choose a cut system of arcs a forΣα, and use Algorithm 14
to obtain an arced relative trisection diagram (Σ;α,β,γ; a,b,c) for X . The image a′ = f (a) of a is
a cut system of arcs for Σ′

α′ , and we can use Algorithm 14 to complete this to an arced relative
trisection diagram (Σ′;α′,β′,γ′; a′,b′,c ′) for X ′. Then a relative trisection diagram for X ∪ f X ′ is
given by (Σ∪ f Σ

′,α′′,β′′,γ′′), where:

α′′ =α∪α′∪ (a ∪a′)
β′′ =β∪β′∪ (b ∪b′)
γ′′ = γ∪γ′∪ (c ∪ c ′)
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Here, we use the gluing map f to identify the boundary components of Σ and Σ′. In some
cases, (when the open book decomposition has annular pages) this process is straightforward.
For more details, the reader is encouraged to consult [3] or [8].

2.3. Bridge trisections of surfaces

In [18] and [19], Meier and Zupan generalized bridge splittings of knots in S3 to knotted surfaces
in 4-manifolds.

Definition 17 ([19]). Suppose that a closed 4-manifold X has a (g ;k1,k2,k3)-trisection T , with
sectors X1, X2, and X3. An embedded surface S ⊂ X is in bridge position with respect to T if:

• S ∩Xi =Di is a trivial ci -disk system,
• S ∩ (Xi ∩X j ) = τi j is a trivial b-tangle,
• S ∩ (X1 ∩X2 ∩X3) is a collection of 2b points.

Here, a trivial ci -disk system is a collection of ci properly embedded and boundary parallel disks
in Xi , and a trivial b-tangle is a collection of b properly embedded and boundary parallel arcs in
Xi ∩ X j . The surface S is said to be in (b;c1,c2,c3)-bridge trisected position with respect to T . If
c1 = c2 = c3 = c, the bridge trisection is called balanced, and we will refer to this as a (g ,k;b,c)-
bridge trisection.

Note that since each Di is boundary parallel, the union of any pair of tangles is necessarily
an unlink. In fact, the unlink bounds a unique collection of boundary parallel disks in \k S1 ×B 3

up to isotopy (rel boundary), and so a bridge trisection is completely determined by the union
τ12 ∪τ23 ∪τ31.

In [19], Meier and Zupan show that if T is a trisection of a 4-manifold X and S ⊂ X is an
embedded surface, then S can be isotoped to lie in bridge trisected position with respect to T .
Analogous to the natural stabilization operation for bridge splittings of knots in S3, there is a
stabilization operation for bridge trisections with respect to a fixed trisection [18]. Hughes, Kim,
and Miller [10] have shown that any two bridge trisections for S ⊂ X can be made isotopic after
some number of stabilizations. We will not need this stabilization operation in this paper, and so
refer the reader to [18] for more details.

If the 4-manifold in question is S4 together with the (0;0)-trisection, then a tri-plane diagram
is a depiction of each τi j ⊂ S3. Meier and Zupan give a complete calculus of moves that can be
used to pass between any two tri-plane diagrams of the same surface in S4. An example of a (4;2)-
tri-plane diagram is illustrated in Figure 6.

In general, we cannot easily draw diagrams of tangles in #k S1×S2. Instead, we draw projections
of τi j on the central surface Σ for T (since τi j are boundary parallel). These are called shadows
for the bridge trisection, which we will denote by si j . Note that for any choice of si j , the union
si j ∪τi j bounds a disk in Xi ∩ X j . While there may be many different choices of shadows (and
corresponding disks in Xi ∩ X j ), any two choices of shadows for τi j are related by disk slides.
These may be realized in Σ by sliding one shadow over another. A shadow diagram of the trivial
tangles in Figure 6 is illustrated in Figure 7.

Example 18. We illustrate a bridge trisection for the spun trefoil S ⊂ S4. With respect to the trivial
trisection of S4, S can be described by the triplane diagram in Figure 6. It is also described by the
shadow diagram in Figure 7.

It is sometimes desirable to arrange the bridge trisection of S ⊂ X to have a small number of
bridge points. If S is connected, one can meridionally stabilize the trisection; this decreases the
number of bridge points by modifying the trisection of X in a way that increases the trisection
genus.
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Figure 6. A (4;2)-triplane diagram for S consisting of three tangle diagrams in B 3. Any
tangle together with the mirror of any other tangle gives a 2-component unlink. The arc
τ will be used for meridional stabilization in Figure 8.

Figure 7. An alternate diagram for the bridge trisection of S in Figure 6, consisting of three
shadow diagrams in S2. Different choices of shadows for the tangles in Figure 6 are related
by slides of the shadows among each other.

Definition 19. Suppose that a closed 4-manifold X has a (g ;k1,k2,k3)-trisection T , and that a
connected surface S ⊂ X is in (b;c1,c2,c3)-bridge position. Suppose that c1 ≥ 2. Then there is an arc
t ∈ τ23 connecting different components of D1, and we can define a new trisection T ′ of X by:

• X ′
1 = X1 ∪ν(τ);

• X ′
2 = X2 ∪\ν(τ);

• X ′
3 = X3 ∪\ν(τ),

and a new bridge trisection of S with respect to T ′ by:

• D′
1 =D1 ∪ (S ∩ν(τ));

• D′
2 =D2 \ν(τ));

• D′
3 =D3 \ν(τ));

The trisection T ′ is called a meridional 1-stabilization of T . Meridional 2- and 3-stabilization are
defined similarly.

Meier and Zupan show [19, Lemma 22] that T ′ is indeed a (g +1;k1+1,k2,k3)-trisection for X ,
and that S is in (b −1;c1 −1,c2,c3)-bridge position with respect to T ′. In particular, by repeated
meridional stabilization, one can arrange for a connected surface S ⊂ X to be in (b;1)-bridge
trisected position with respect to some trisection of X , and for some b ≥ 1. Note that if S is in
(b;c)-bridge position then χ(S) = 3c−b, and so an embedded 2-sphere can always be put in (1;1)-
bridge position with respect to some trisection.

Example 20. To meridionally stabilize the bridge trisection of the spun trefoil S in Figure 7, note
that the arc τ connects the two components bounded by the union of the red and blue tangles.
The stabilization adds the annulus ∂ν(τ)∩(X1∩X2) to the central surface Σ. In the schematic, the
two open circles in each image are identified to form a torus. The surface S now intersects Σ in
only 6 points, and has the illustrated shadows.

For more exposition on bridge trisections and the various stabilization operations, as well as
many more examples, see [19].
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Figure 8. Meridionally stabilizing the bridge trisection in Figure 7 once gives the following
schematic, which records a (3;1,2,2)-bridge trisection of S with respect to a (1;1,0,0)-
trisection of S4.

3. Trisection Diagrams of Surface Complements

In this section, we summarize some recent results on relative trisection diagrams of complements
of surfaces in 4-manifolds. Suppose that X is a 4-manifold equipped with a trisection T and
that S ⊂ X is a connected embedded surface. By [19], one can isotope S to be in bridge position
with respect to T . In fact, one can meridionally stabilize T until S is in (3 − χ(S);1)-bridge
position with respect to some (stabilized) trisection, which we will continue to denote by T . One
might hope that a relative trisection of X \ν(S) could be obtained by simply deleting a regular
neighbourhood of S from each sector of T . In fact, if S is a sphere in 1-bridge position, then a
relative trisection of X \ν(S) can be obtained in this way. If S is not a sphere, then this procedure
never produces a relative trisection of X \ν(S). Indeed, relative trisections are required to induce
an open book decomposition on ∂X for which Xi ∩X j ∩∂X are (connected) pages. In general, if S
is in (b;1)-bridge position then (Xi \ν(S))∩(X j \ν(S))∩∂(X \ν(S)) =tbS1×I , which is disconnected
unless S is in 1-bridge position (and S is a sphere). However, this decomposition of X \ν(S) can
be improved to a trisection using the boundary stabilization technique developed in [12].

Definition 21 ([12]). Let X be a smooth, oriented, closed, and connected 4-manifold with con-
nected non-empty boundary, and suppose that X = X1 ∪X2 ∪X3 where int(Xi )∩ int(X j ) =;. Let c
be an arc in Xi ∩X j ∩∂X , and let ν(c) be a fixed open tubular neighbourhood of c. Define:

• X ′
i = Xi \ν(c);

• X ′
j = X j \ν(c);

• X ′
k = Xk ∪ν(c).

The replacement (X1, X2, X3) → (X ′
1, X ′

2, X ′
3) is called a boundary stabilization.

Kim and Miller show that in general, a relative trisection for X \ν(S) can be obtained by deleting
a tubular neighbourhood of S from each sector, and then boundary stabilizing the resulting
decomposition sufficiently many times (thus connecting the components of ∂X ∩ Xi ∩ X j ). For
more details, we refer the reader to [12]. As a brief example, we will consider the case of projective
planes embedded in S4.

Definition 22. Let M± ⊂ S3 ⊂ S4 be the standard Möbius band with either a positive or negative
half twist. Pushing the boundary of M± into the upper hemisphere of S4 and capping the resulting
unlink with a disk gives an embedded projective plane P± ⊂ S4, which we will refer to as unknotted.
These two embeddings are distinguished up to isotopy by their normal Euler numbers, since
e(P±) =±2.

A triplane diagram of the unknotted projective plane P+ ⊂ S4 is given in Figure 9. In fact,
S4 \ν(P+) ∼= ν(P−), and so S4 = ν(P+)∪ν(P−) [11]. After boundary stabilizations, Kim and Miller
obtain the relative trisection diagram for S4 \ν(P−) given in Figure 10. One can also verify that this
diagram is correct using the usual algorithm to extract a Kirby diagram from a trisection diagram.
The mirror image of this diagram is a diagram for ν(P−).

Gay and Meier [8] studied the special case of surgery along 2-spheres in detail. Suppose that
S is a 2-sphere embedded in a trisected 4-manifold X with trivial normal bundle, and that S
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Figure 9. A triplane diagram describing a (2,1)-bridge trisection of P− with respect to the
(0;0)-trisection of S4.

Figure 10. A (2,2;0,3)-relative trisection diagram of S4 \ ν(P−) obtained by starting with
the bridge trisection of P− in Figure 9 above, removing ν(P−) from S4, and performing
boundary stabilizations.

is in (1;1)-bridge position. Then X \ ν(S) inherits a natural trisection which induces an open
book decomposition on ∂(X \ν(S)) ∼= S1 ×S2 with annular pages (and identity monodromy). In
general, a relative trisection diagram is called p-annular if the pages of the induced open book
are annuli, and the induced monodromy is given by p Dehn twists about the core of the annulus.
In particular, the boundary of the described 4-manifold is the lens space L(p,1). Gay and Meier
show that if T and T ′ are p-annular relative trisections of X and X ′, then there is a unique way
to glue the associated trisections together. Moreover, given relative trisection diagrams D and D′

for T and T ′, the resulting diagram is independent of the choices of arcs extending D and D′ to
arced relative trisection diagrams.

Consequently, one way to produce a trisection diagram for the Gluck twist ΣS (X ) of X along
S is to glue a 0-annular relative trisection diagram for S2 ×D2 to a 0-annular relative trisection
diagram for X \ν(S) (via the twist map τ : S2 × S1 → S2 × S1 from Section 1). Theorem C of [8]
provides a short cut-and-paste method to produce such a diagram.

Theorem ([8]). Let X be a 4-manifold and suppose S ⊂ X is an embedded 2-sphere. Suppose that
D0 is an arced trisection diagram for the complement X \ν(S). Then the result of Gluck surgery
along S in X is described by the trisection diagram D0 ∪Da, as in Figure 11.

The content of this theorem is illustrated in Figure 11. Here, Da is the annular diagram
consisting of two parallel b,c arcs and an a arc that differs by a positive Dehn twist. It is important
to note that Da is not a relative trisection diagram for S2×D2, but features as though it is. It arises
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as the result of destabilizing the diagram obtained by gluing D0 to an honest relative trisection
diagram for S2 ×D2. The result is also true if we replace Da with the analogous diagrams Db or
Dc, or their mirrors ([8, Remark 5.6]).

Figure 11. Performing Gluck surgery by gluing diagrams.

Here and in the next section, we will draw a grey arc in a diagram (e.g. D0 in Figure 11) to
indicate that this portion of the diagram may contain many curves of arbitrary colors. For clarity,
we will also color arcs in a trisection diagram lighter than closed curves.

4. Diagramatic Proof

4.1. Reducing to diagrams

We will now give a new proof of Theorem 1. We will begin by precisely formulating a diagrammatic
statement that implies the result, and then carry out a proof using these diagrams.

Proposition 23. Let X be a smooth, oriented, closed and connected 4-manifold, and let S ⊂ X be
an embedded 2-sphere with trivial normal bundle. Let P± ⊂ X be an unknotted projective plane.
Then the manifolds ΣS (X ) andΠS#P± (X ) are diffeomorphic if the portion of the trisection diagram
illustrated in Figure 12 can be converted (through a sequence of handle slides, isotopy of curves,
surface diffeomorphisms and destabilizations) to one of Da,Db, or Dc.

Remark 24. The large diagram on the left of Figure 12 is only part of a larger trisection diagram
for a closed 4-manifold. Such a diagram is not necessarily guaranteed to be an honest relative
trisection diagram, even though the illustration is suggestive. Similarly, Db (on the right of
Figure 12) is not a relative trisection diagram.

Proof. Let T be a trisection of X . By [19], the 2-sphere S can be isotoped to lie in bridge position
with respect to T . Furthermore, by repeated meridional stabilization, S can be assumed to be in
(1;1)-bridge position with respect to a stabilization of T (which we will continue to denote by
T ). Consequently, X \ν(S) inherits a natural 0-annular relative trisection, i.e., the induced open
book decomposition of ∂(X \ν(S)) = S2×S1 has annular pages and trivial monodromy. LetDX \ν(S)

be a relative trisection diagram describing this relative trisection of X \ν(S).
Now, let P± ⊂ X be an unknotted projective plane with Euler number ±2. By the gluing results

in [12, Section 5], a relative trisection diagram for X \ ν(S#P±) can be obtained as DX \ν(S) ∪
DS4\ν(P±). This is illustrated in the schematic in Figure 13 below, for the case of P−. For clarity,
the arcs in these relative trisection diagrams have been omitted. They appear in full in Figure 12.
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Figure 12. A portion of a trisection diagram for ΠS#P± .

We have now constructed a relative trisection diagram for X \ν(S#P±), and need to glue in
the neighbourhood N± via the Price surgery map. By [12, Corollary 5.3] a trisection diagram for
ΠS#P± (X ) can be obtained by gluing together our diagram for X \ν(S#P±) and a relative trisec-
tion diagram Dν(P±) for N±, as in the schematic. It is important to note that this must be per-
formed carefully; the surgery dictates which boundary components are identified. In fact, by [12,
Lemma 5.1] this choice essentially determines the arcs of the diagram, since the monodromy of
Q = ∂N± is highly constrained (it consists of two Dehn twists about each boundary component,
with signs as indicated). After using the monodromy algorithm of [3] to complete Figure 13 with
arcs (in the case of P−), one obtains the trisection diagram for ΠS#P± (X ) illustrated on the left of
Figure 12.

Figure 13. The origin of Figure 12.

On the other hand, constructing a trisection diagram for ΣS (X ) is more straightforward. By [8,
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Theorem C], such a diagram is given by DX \ν(S)∪Db, together with arcs for each diagram. This is
illustrated on the right of Figure 12.

Thus, if DS4\ν(P±) ∪Dν(P±) can be converted through a sequence of trisection moves (i.e.,
a sequence of destabilizations, isotopy of curves, handle slides, and surface diffeomorphisms
that do not modify DX \ν(S)) to give Da (or Db or Dc), then we will have exhibited the fact that
ΠS#P− (X ) is diffeomorphic to ΣS (X ). In fact, a diagram for ΠS#P+ (X ) can be obtained using the
mirror image of DS4\ν(P±) ∪Dν(P±) in Figure 13, and so to prove the statement for P± it suffices to
prove it for P−. �

Remark 25. SinceΣS (X ) andΠS#P± (X ) are indeed diffeomorphic by [11], any trisection diagrams
for ΣS (X ) and ΠS#P± (X ) can be related by handle slides and isotopy, at least after stabilizations.
A priori, one might expect that both stabilizations and destabilizations are necessary to carry out
the proof in this paper, but surprisingly this turns out not to be the case. Indeed, we will see in the
next section that only destabilizations are required.

4.2. Diagrams

We complete the proof of Theorem 1 by proving the following proposition.

Proposition 26. There is a sequence of destabilizations, isotopy of curves, handle slides, and
surface diffeomorphisms that convert the trisection diagram D in Figure 12 into Db.

Proof. The proof will be a step-by-step verification that this is possible. The strategy will be
to perform handle slides and isotopy to transform D so that Lemma 8 applies, destabilize the
diagram (i.e., surger a particular curve), and repeat. For organization, we will break the proof into
steps.

Step 1. We start by labelling some curves in Figure 12. This is illustrated in Figure 14. We continue
to adopt the convention that arcs in diagrams are colored lighter than closed curves, even though
these are all closed curves in a trisection diagram for ΠS#P− (X ). Since we will perform many
handle slides and destabilizations, any labels will be specific to each figure and will change during
the proof. We will adopt the standard convention thatα,β, and γ curves are colored red, blue, and
green, respectively.

Observe that α intersects both β and γ once. Moreover, we can easily make β and γ parallel
after some handle slides. Specifically, slide β over β1,β2 and β3 to make it parallel to γ. The result
of these slides is illustrated in Figure 15.

We can now apply Lemma 8 to the curvesα, β, and γ in Figure 15 and destabilize this diagram.
To destabilize, we surger the surface along theα curve and erase the β,γ curves. The result of this
process is illustrated in Figure 16.

Step 2. We observe that in Figure 16, the curves α and β are parallel and intersect γ once.
Consequently, we can slide γ1 and γ2 over γ to obtain the diagram in Figure 17.

In Figure 17, we can now apply Lemma 8 to the curves α, β, and γ. To destabilize, we erase the
β and γ curves, and surger the surface along the α curve. The result of this process is illustrated
in Figure 18.

Step 3. We now note that in Figure 18, the curve γmeets the arcs a and b exactly once. Moreover,
since the trisection for X \ν(S) is 0-annular, a and b can be assumed to be parallel outside of this
part of the diagram. Thus after some handle slides, we will be able to destabilize using a,b and γ.

In order to do this, we first arrange γ to look less complicated. We perform two Dehn twists
along the curve β1 and one Dehn twist along the curve labelled d . After doing this, we obtain the
diagram illustrated in Figure 19.
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Figure 14. The diagram D from Figure 12, with labels.

Figure 15. The diagram after performing some handle slides to Figure 14 in Step 1.

Now that γ looks simpler, we perform some additional handle slides so that we may appeal
to Lemma 8. In Figure 19, slide α over α1, and then α1 over a. Next, slide β1 over b. Last, slide
c over γ1 and γ. Note that although a, b, and c appear as arcs, they are actually closed curves in
this trisection diagram. This process removes all extraneous intersections with γ, and the result
of these handle slides is illustrated in Figure 20.

We now use Lemma 8 to destabilize the diagram in Figure 20 using the curves a, b, and γ. To
do so, we erase a and b and surger the surface using γ. This takes slightly more visualizing than
the previous two destabilizations, but the result after a mild isotopy is illustrated in Figure 21.

Note that while this process removes the curves a and b from DX \ν(S), our earlier slides
produced a second copy of these curves, and so DX \ν(S) remains unchanged.
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Figure 16. The diagram after destabilizing Figure 15 in Step 1.

Figure 17. The diagram after performing some handle slides to Figure 16 in Step 2.

Step 4. This step is similar to Step 3, but slightly more involved. We note that in Figure 21, the
curve β intersects the α and γ curves each once. If we can arrange α and γ to be parallel, we will
be able to use Lemma 8 to destabilize the diagram again.

To this end, perform a Dehn twist to make the curve α1 appear as a standard longitude of the
leftmost hole of the surface. Then, to simplify the diagram, slide the curve c over γ. Now slide a
over both α curves repeatedly so that it is parallel to c. Lastly, slide γ over c and α over a so that
these curves no longer intersect β.

The result after this Dehn twist and these handle slides is illustrated in Figure 22. Using
Lemma 8, we can now use the curves a, β, and c to destabilize the diagram. To do so, we erase the
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Figure 18. The diagram after destabilizing Figure 17 in Step 2.

Figure 19. The diagram in Figure 18 after three Dehn twists in Step 3.

a and c curves, and surger the surface usingβ. The result of this process is illustrated in Figure 23.
As before, DX \ν(S) remains unchanged.

Step 5. We only need to perform one more destabilization. In Figure 23, slide a over α twice.
Next, do a Dehn twist along α to make the curve β appear as a standard meridian of the hole in
the surface. We can now slide b overβ to make it parallel to c, and the resulting pair of curves both
intersect α exactly once. To apply Lemma 8, we only need to perform handle slides to remove all
other intersections with α. To do this, slide β over the new b curve and γ over c. The result of this
Dehn twist and these handle slides is illustrated in Figure 24.

We can now apply Lemma 8, and destabilize the diagram in Figure 24 using the curves α, b,
and c. To do this, we erase the b and c and surger the surface using α. The result of this process is
illustrated in Figure 25.

Up to Dehn twists, we see that the diagram in Figure 25 is in fact equivalent to the diagram
Db.This completes the proof. �
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Figure 20. The diagram in Figure 19 after performing some handle slides in Step 3.

Figure 21. The diagram after destabilizing Figure 20 in Step 3.

5. Further questions

Even though the proof in Section 4 is a seemingly ad hoc sequence of moves, one might hope
to apply similar trisection diagrammatic methods to show that various homotopy 4-spheres are
standard. Unlike Kirby diagrams, trisection diagrams offer three seemingly symmetric possible
destabilizations. It would be interesting to see if this additional flexibility provides any insight into
the handle decompositions of any homotopy 4-spheres that are not known to be diffeomorphic
to S4.

In particular, [8, Theorem C] gives a potential method to show that a given Gluck twist ΣS (S4)
is standard. Starting with an embedded 2-sphere S in (1;1)-bridge position, one could attempt to
destabilize the resulting trisection diagram of ΣS (S4) to one which describes S4.

Question 27. Can trisection diagrammatic methods be used to understand the handle structure
of homotopy 4-spheres such as Gluck twists?
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Figure 22. The diagram in Figure 21 after one Dehn twist and several handle slides in Step
4.

Figure 23. The diagram in Figure 22 after a destabilization in Step 4.

However, even if ΣS (S4) ∼= S4, it remains an open question whether all trisection diagrams for
S4 are standard, i.e., are stabilizations of the (0;0)-trisection of S4. Whether this is the case is a
conjecture of Meier-Schirmer-Zupan [17].

Conjecture 28. Every trisection of S4 is isotopic to the (0;0)-trisection or a stabilization of the
(0;0)-trisection.
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Figure 24. The diagram in Figure 23 after performing a Dehn twist and several handle slides
in Step 5.

Figure 25. The diagram in Figure 24 after a destabilization in Step 5. After Dehn twists, this
diagram is equivalent to the diagram on right side of Figure 12.
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