Ordinary differential equations
Sharp uniqueness conditions for one-dimensional, autonomous ordinary differential equations
[Conditions fines d'unicité pour les équations différentielles ordinaires autonomes en dimension 1]
Comptes Rendus. Mathématique, Tome 356 (2018) no. 9, pp. 916-921.

Nous donnons deux conditions nécessaires et suffisantes pour l'unicité des solutions de Filippov des équations différentielles ordinaires autonomes scalaires, avec champs de vitesse discontinus. Lorsqu'une seule de ces deux conditions est satisfaite, nous donnons un critère naturel sélectionnant une unique solution.

We give two conditions that are necessary and sufficient for the uniqueness of Filippov solutions to scalar, autonomous ordinary differential equations with discontinuous velocity fields. When only one of the two conditions is satisfied, we give a natural selection criterion that guarantees uniqueness of the solution.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2018.07.008
Fjordholm, Ulrik Skre 1

1 Department of Mathematics, University of Oslo, Postboks 1053 Blindern, 0316 Oslo, Norway
@article{CRMATH_2018__356_9_916_0,
     author = {Fjordholm, Ulrik Skre},
     title = {Sharp uniqueness conditions for one-dimensional, autonomous ordinary differential equations},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {916--921},
     publisher = {Elsevier},
     volume = {356},
     number = {9},
     year = {2018},
     doi = {10.1016/j.crma.2018.07.008},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2018.07.008/}
}
TY  - JOUR
AU  - Fjordholm, Ulrik Skre
TI  - Sharp uniqueness conditions for one-dimensional, autonomous ordinary differential equations
JO  - Comptes Rendus. Mathématique
PY  - 2018
SP  - 916
EP  - 921
VL  - 356
IS  - 9
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2018.07.008/
DO  - 10.1016/j.crma.2018.07.008
LA  - en
ID  - CRMATH_2018__356_9_916_0
ER  - 
%0 Journal Article
%A Fjordholm, Ulrik Skre
%T Sharp uniqueness conditions for one-dimensional, autonomous ordinary differential equations
%J Comptes Rendus. Mathématique
%D 2018
%P 916-921
%V 356
%N 9
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2018.07.008/
%R 10.1016/j.crma.2018.07.008
%G en
%F CRMATH_2018__356_9_916_0
Fjordholm, Ulrik Skre. Sharp uniqueness conditions for one-dimensional, autonomous ordinary differential equations. Comptes Rendus. Mathématique, Tome 356 (2018) no. 9, pp. 916-921. doi : 10.1016/j.crma.2018.07.008. http://www.numdam.org/articles/10.1016/j.crma.2018.07.008/

[1] Agarwal, R.P.; Lakshmikantham, V. Uniqueness and Nonuniqueness Criteria for Ordinary Differential Equations, Series in Real Analysis, vol. 6, World Scientific Publishing Co, 1993

[2] Aubin, J.-P.; Frankowska, H. Set-Valued Analysis, Birkhäuser, Basel, Switzerland, 2009

[3] Binding, P. The differential equation x˙=fx, J. Differ. Equ., Volume 31 (1979) no. 2, pp. 183-199

[4] Cid, J.Á.; Pouso, R.L. Ordinary differential equations and systems with time-dependent discontinuity sets, Proc. R. Soc. Edinb. A, Volume 134 (2004) no. 4, pp. 617-637

[5] Deimling, K. Multivalued Differential Equations, De Gruyter Series in Nonlinear Analysis and Applications, vol. 1, Walter de Gruyter, 1992

[6] Filippov, A.F. Differential equations with discontinuous right-hand side, Mat. Sb., Volume 5 (1960), pp. 99-127 (English transl. in Amer. Math. Transl., 42, 1964, pp. 199-231)

[7] Hu, S. Differential equations with discontinuous right-hand sides, J. Math. Anal. Appl., Volume 154 (1991) no. 2, pp. 377-390

[8] Osgood, W.F. Beweis der Existenz einer Lösung der Differentialgleichung dydx=f(x,y) ohne Hinzunahme der Cauchy–Lipschitz'schen Bedingung, Monatsh. Math. Phys., Volume 9 (1898) no. 1, pp. 331-345

[9] Rudin, W. Well-distributed measurable sets, Amer. Math. Mon., Volume 90 (1983) no. 1, pp. 41-42

Cité par Sources :