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This paper considers boundary value problems for a class of singular elliptic operators 
that appear naturally in the study of asymptotically anti-de Sitter (aAdS) spacetimes. 
These problems involve a singular Bessel operator acting in the normal direction. 
After formulating a Lopatinskiı̌ condition, elliptic estimates are established for functions 
supported near the boundary. The Fredholm property follows from additional hypotheses 
in the interior. This paper provides a rigorous framework for mode analysis on aAdS 
spacetimes for a wide range of boundary conditions considered in the physics literature. 
Completeness of eigenfunctions for some Bessel operator pencils is shown.
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r é s u m é

Cette Note considère des problèmes aux limites pour une classe d’opérateurs elliptiques 
singuliers, qui apparaissent naturellement dans l’étude des espaces-temps asymptotiquement
anti-de Sitter (aAdS). Ces problèmes impliquent un opérateur de Bessel singulier agissant 
dans la direction normale. Après avoir formulé une condition de Lopatinskiı̌, nous 
établissons des estimations elliptiques pour les fonctions dont le support est voisin 
du bord. La propriété de Fredholm suit d’hypothèses additionnelles à l’intérieur. Nous 
fournissons ici un cadre rigoureux pour l’analyse des modes sur les espaces-temps aAdS 
d’une large classe de conditions au bord, considérées en physique. Nous montrons que 
certains pinceaux d’opérateurs de Bessel ont un ensemble complet de fonctions propres.
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1. Introduction

The study of linear fields on asymptotically anti-de Sitter (aAdS) spaces has stimulated new interest in boundary value 
problems for a class of singular elliptic equations wherein the operator D2

x + (ν2 − 1/4)x−2 acts on one of the variables 
[20,27,30,28,46,49,50]. To formulate this class of operators more precisely, consider a product manifold [0, ε) × ∂ X , where 
∂ X is compact. The model for what we call a Bessel operator has the form

P (x, y, Dx, D y)= D2
x + (ν2 − 1/4)x−2 + A(x, y, D y),

where (x, y) ∈ (0, ε) × ∂ X and A is a family of second-order differential operators on ∂ X depending smoothly on x ∈ [0, ε). 
The parameter ν is required to be real and strictly positive. In the study of linear waves on aAdS spacetimes, ν is related to 
the mass of a scalar field — see Section 3 for more details. The condition ν > 0 corresponds to the Breitenlohner–Freedman 
bound [10,11].

Boundary data for this problem are formally defined by the following weighted restrictions:

γ−u = xν−1/2u|∂ X , γ+u = x1−2ν∂x(xν−1/2u)|∂ X .

Some care is needed to give precise meaning to these restrictions — see Section 4.4, along with an earlier discussion in [49]. 
The boundary operators in this paper are of the form T = T−γ− + T+γ+ , where T−, T+ are differential operators on ∂ X of 
order at most one and zero, respectively. This paper is concerned with solvability of the boundary value problem{

P u = f on X

T u = g on ∂ X
(1.1)

when 0 < ν < 1, and the simpler equation

P u = f on X (1.2)

when ν ≥ 1. No boundary conditions are imposed when ν ≥ 1. The difference between the cases 0 < ν < 1 and ν ≥ 1 is 
explained in more detail in the introduction to Section 5.

Ellipticity of the Bessel operator P is defined in Section 2.4. As in the study of smooth boundary value problems, there is 
also a notion of ellipticity for (1.1) given by a natural Lopatinskiı̌ condition on the pair (P , T ). This condition is introduced 
in Section 5.4. Elliptic estimates are proved in Theorem 5.1. When the operators P , T depend polynomially on a spectral 
parameter λ, there is a notion of parameter-ellipticity for both P and the boundary value problem (1.1). Theorem 5.2
provides elliptic estimates in terms of parameter-dependent norms which are uniform as |λ| →∞ in the cone of ellipticity.

For the global problem, consider a compact manifold X where [0, ε) × ∂ X is identified with a collar neighborhood of 
∂ X . Suppose that the restriction of P to this collar is a Bessel operator — see Section 2 for details. As in the case of smooth 
boundary value problems, estimates for P near ∂ X may often be combined with estimates in the interior X to establish the 
Fredholm property (including some cases where P fails to be everywhere elliptic on X). In Section 6, a sufficient condition 
of this type is discussed. Furthermore, in the presence of a spectral parameter λ, unique solvability is established for λ in 
the cone of ellipticity provided |λ| is sufficiently large.

Section 3 recalls the notion of an aAdS metric, which is the primary motivation for this paper. It is shown that the 
Fourier transformed Klein–Gordon operator is indeed a Bessel operator whose order ν depends on the Klein–Gordon mass. 
One goal is to study the Klein–Gordon equation by Fourier synthesis once its spectral family is understood, corresponding 
to the study of normal or quasinormal modes. This paper provides a rigorous framework for future work in that direction; 
see [22,23] for some recent progress.

For stationary aAdS spacetimes with compact time slices and an everywhere timelike Killing field ∂t , Section 7 describes 
a class of boundary conditions which yield a complete set of normal modes associated with a discrete set of eigenval-
ues. Of particular interest are boundary conditions which depend on ∂t (hence depend on the spectral parameter after a 
Fourier transform). This is important for the study of modes with transparent or dissipative boundary conditions, along with 
superradiance phenomena [3,30,51].

The approach of this paper is inspired by the texts of Roitberg [44] and Kozlov–Maz’ya–Rossman [35] in the smooth 
setting. This approach is particularly suited to the singular nature of Bessel operators, and allows for the study of boundary 
value problems in low regularity spaces as needed in applications to general relativity — see Section 6. All the methods 
are classical, using only homogeneity properties of differential operators. The key is exploiting the theory of “twisted” 
derivatives as first emphasized in [49]. This is based on the classical observation that the one-dimensional Bessel operator 
D2

x + (ν2 − 1/4)x−2 admits a factorization as the product of a first-order operator and its adjoint; this first-order operator 
is then treated as an elementary derivative.

Using a variational approach, similar elliptic estimates were studied by Holzegel and Warnick [27,29,49,50]. However, 
only the “classical” self-adjoint boundary conditions were handled when 0 < ν < 1; these are the Dirichlet (T = γ−) and 
Robin boundary conditions (T = γ+ + βγ− with β a real-valued function). The approach taken here accounts for a larger 
class of non-self-adjoint boundary conditions.
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Using results of this paper, discreteness of quasinormal frequencies on Kerr–AdS black holes with arbitrary rotation speed 
is established in [23]. These frequencies replace eigenvalues in scattering problems [14,17,23,31,34,50]. When 0 < ν < 1, 
arbitrary boundary conditions satisfying the Lopatinskiı̌ condition may be imposed on the field (although of course one 
does not have any completeness statement). This generalizes earlier work of Warnick [50], where, as noted above, only 
Dirichlet or Robin boundary conditions were considered.

The results of this paper should also be compared to earlier works of Vasy [46] and Holzegel [27] on aAdS spaces, where 
a more restrictive measure is used to define the space of square integrable functions. In those works, the square integrability 
condition is equivalent to the generalized Dirichlet boundary condition. This limits the range of applications, since different 
boundary conditions are employed throughout the physics literature on aAdS spaces [3,6,10,11,16,32,52].

There is also a general microlocal approach to degenerate boundary value problems developed by Mazzeo–Melrose [39]
and Mazzeo [43], culminating in the work of Mazzeo–Vertman [41] on general boundary value problems. In particular, the 
elliptic theory in [41] could likely reproduce the results of this paper, and is also applicable to much more general classes 
of elliptic operators. On the other hand, the approach developed here is directly motivated by the physics literature. For 
instance, the Sobolev spaces used in this paper were originally defined in [49] to give precise meaning to the energy renor-
malization implicit in the work of Breitenlohner–Freedman [10]. Furthermore, the parameter-dependent (or semiclassical) 
theory is not developed in [41]. There is also a simplicity advantage in using physical space methods, rather than a more 
sophisticated microlocal approach. It should also be stressed that Bessel operators of the precise kind studied here arise in 
numerous contexts outside of general relativity with negative cosmological constant, both mathematical and physical.

2. Preliminaries

2.1. Conventions for differential operators

If P is a smooth differential operator on a manifold Y , then in local coordinates,

P =
∑
|α|≤m

aα(y)Dα
y . (2.1)

The order of P is said to no greater than m, written ord(P ) ≤m. If ord(P ) ≤m, then the symbol σm(P ) of P with respect 
to m is the polynomial function on T ∗Y given in local coordinates by

σm(P )(y, η)=
∑
|α|=m

aα(y)ηα, (y, η) ∈ T ∗Y .

The space of smooth differential operators of order no greater than m is denoted Diffm(Y ). The following convention will 
be useful throughout Section 5: if ord(P ) ≤m with m < 0, then P = 0; conversely if P = 0, then P can be assigned any 
negative order.

The class of parameter-dependent differential operators on a manifold Y is defined as follows: P ∈ Diffm
(λ)(Y ) if in local 

coordinates,

P (y, D y;λ)=
∑

j+|α|≤m

aα, j(x)λ j Dα
y .

The statement ord(λ)(P ) ≤m about the parameter-dependent order of P is defined by assigning to λ j the same weight as a 
derivative of order j. Thus the parameter-dependent principal symbol of P is given by

σ
(λ)
m (A)=

∑
j+|α|=m

aα, j(t)λ
jηα, (y, η,λ) ∈ T ∗Y ×C.

If Y is a compact manifold without boundary, the parameter-dependent Sobolev norms on Y are defined for s ≥ 0 by

‖|u‖|2Hs(Y ) = |λ|2s‖u‖2
H0(Y )

+ ‖u‖2
Hs(Y ),

and an operator P ∈ Diffm
(λ)(Y ) is bounded Hs(Y ) → Hs−m(Y ) uniformly with respect to |λ| in these norms.

2.2. Manifolds with boundary

Let X = X ∪ ∂ X denote an n-dimensional manifold with compact boundary ∂ X and interior X . A boundary defining 
function for ∂ X is a function x ∈ C∞(X) satisfying

x−1(0)= ∂ X, x > 0 on X, dx|∂ X 
= 0.

Given x, there exists an open subset W ⊇ ∂ X , a number ε > 0, and a diffeomorphism φ : [0, ε) × ∂ X→W such that x ◦ φ

agrees with the projection [0, ε) × ∂ X → [0, ε). A collar of this type is said to be compatible with x. Unless otherwise 
specified, a manifold with boundary X will always refer to X equipped with a distinguished boundary defining function x
and a choice of compatible collar diffeomorphism φ.
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2.3. Bessel operators

Given ν ∈R, formally define the differential operator ∂ν by the formula

∂ν = ∂x + (ν − 1/2)x−1 = x1/2−ν∂xxν−1/2.

Furthermore, let ∂∗ν =−xν−1/2∂xx1/2−ν , which is the formal adjoint of ∂ν with respect to Lebesgue measure on R+ . Similarly, 
let Dν =−i∂ν and D∗ν = i ∂∗ν . Note that

|Dν |2 := D∗ν Dν = D2
x + (ν2 − 1/4)x−2

is the one-dimensional Bessel operator in Schrödinger form.

Definition 2.1. Let X denote a manifold with compact boundary. A differential operator P ∈ Diff2(X) is called a Bessel 
operator of order ν > 0 if there exist

A = A(x, y, D y) ∈ Diff2(∂ X), B = B(x, y, D y) ∈ Diff1(∂ X)

depending smoothly on x ∈ [0, ε), such that B(0, y, D y) = 0 and

φ∗P = |Dν |2 + B(x, y, D y)Dν + A(x, y, D y). (2.2)

The set of such operators is denoted by Bessν(X).

The requirement that |Dν |2 appears with unit coefficient is not at all essential. If the coefficient is a nonvanishing 
function smooth up to x = 0, then the quotient of P by this coefficient is a Bessel operator as above, and this normalization 
does not affect any of the arguments in Sections 5, 6.

The class of Bessel operators depends strongly on the pair (x, φ), where x is a boundary defining function and φ is a 
collar diffeomorphism compatible with x in the sense of Section 2.2. This dependence will be written as Bessν(X; x, φ) when 
necessary. On the other hand, let (x̃, ỹ) denote arbitrary local coordinates near ∂ X , where x̃ is a local boundary defining 
function. If (x, y) are local coordinates induced by φ, then P is still of the form (2.2) (up to a smooth nonvanishing multiple) 
in (x̃, ỹ) coordinates provided that x̃/x and ỹ are even functions of x modulo O(x3).

A (smooth, positive) density μ on X is said to be of product type near ∂ X if

φ∗μ= |dx| ⊗μ∂ X

for a fixed density μ∂ X on ∂ X . It is of course always possible to choose a density of product type near ∂ X . This is useful 
in light of the next lemma. If X is compact, then L2(X) may be defined as the space of square integrable functions with 
respect to any smooth density μ on X , in particular one of product type near ∂ X .

Lemma 2.2. Suppose that μ is of product type near ∂ X. If P ∈ Bessν(X), then P∗ ∈ Bessν(X), where P∗ is the formal adjoint of P
with respect to μ.

Proof. The pullback of P∗ to (0, ε) × ∂ X is given by

|Dν |2 + D∗ν B∗ + A∗,

where A∗, B∗ are the formal adjoints of A, B with respect to μ∂ X . On the other hand,

D∗ν B∗ = B∗D∗ν + [Dx, B∗].
Furthermore, since B = xB1 for a first-order operator B1 on ∂ X depending smoothly on x ∈ [0, ε), it follows that

B∗D∗ν = xB∗1 D∗ν = B∗1(xDx − i(1/2− ν))= B∗Dν − i(1/2− ν)B∗1,
which completes the proof since the multiple of B∗1 as well as [Dx, B∗] may be absorbed into A∗ . �

For the local theory, it is convenient to work on Tn+ =R+×T
n−1, where Tn−1 = (R/2πZ)n−1. The set of Bessel operators 

on Tn+ is defined with respect to the canonical product decomposition on Tn+ . Thus P ∈ Bessν(Tn+) if

P (x, y, Dν, D y)= |Dν |2 +
∑
|β|≤1

bβ(x, y)Dβ
y Dν +

∑
|α|≤2

aα(x, y)Dα
y

for bβ ∈ xC∞(Tn+) and aα ∈ C∞(Tn+). When working on Tn+ , the functions bβ, aα are referred to as the coefficients of P .
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Fix a coordinate chart Y ⊆ ∂ X and a diffeomorphism θ : Y → V , where V is an open subset of Tn−1. Setting

U = φ([0, ε)× Y ),

the map ψ : U →[0, ε) × V given by ψ = (1 × θ) ◦φ−1 defines a boundary coordinate chart on X . Given P ∈ Bessν(X), there 
clearly exists P U ∈ Bessν(Tn+) such that

P u = P U (u ◦ψ)

for each u ∈ C∞c (U ◦). Furthermore, it is always possible to arrange it so that the coefficients of P U (in the sense of the 
previous paragraph) are constant outside a compact subset of Tn+ .

2.4. Ellipticity and the boundary symbol

Given P ∈ Bessν(X) which near ∂ X has the form

P = |Dν |2 + B Dν + A,

let A0(y, D y) = A(0, y, D y). Ellipticity of P at a point p ∈ ∂ X is defined via the function

ξ2 + σ2(A0)(p, η), (2.3)

which is a homogeneous polynomial of degree two in (ξ, η) ∈ R × T ∗p∂ X .

Definition 2.3. The Bessel operator P ∈ Bessν(X) is said to be (properly) elliptic at p ∈ ∂ X if for each η ∈ T ∗p∂ X \ 0 the 
polynomial

ξ �→ ξ2 + σ2(A0)(p, η) (2.4)

has no real roots.

Thus, ellipticity implies the existence of nonreal roots ±ξ(p, η), where Im ξ(p, η) < 0 by convention. For each (p, η) ∈
T ∗∂ X \ 0, the symbol σ2(A0)(p, η) determines a family of one-dimensional Bessel operators given by

P̂ (p,η) = |Dν |2 + σ2(A0)(p, η). (2.5)

The operator P̂ (p,η) is called the boundary symbol operator of P . Let M+(p, η) denote the space of solutions to the equation

P̂ (p,η)u = 0

which are bounded as x →∞. Ellipticity at p ∈ ∂ X implies that dimM+(p, η) = 1 for each η ∈ T ∗p∂ X \ 0. Indeed, the space 
of solutions to P̂ (p,η)u = 0 is spanned by the modified Bessel functions{

x1/2 Kν(i ξ(p, η)x), x1/2 Iν(i ξ(p, η)x)
}

.

Since Re i ξ(p, η) > 0, it follows that

x1/2 Kν(i ξ(p, η)x)=O
(

e−x/C
)

, x→∞,

while the second solution grows exponentially [42, Chapter 7.8]. Thus only the first solution can possibly lie in M+(p, η).

2.5. Parameter-dependent Bessel operators

Definition 2.4. Let X denote a compact manifold with boundary as in Section 2.2. A differential operator P (λ) ∈ Diff2
(λ)(X)

is called a parameter-dependent Bessel operator of order ν > 0 if there exist

A(λ)= A(x, y, D y;λ) ∈ Diff2
(λ)(∂ X), B(λ)= B(x, y, D y;λ) ∈ Diff1

(λ)(∂ X)

depending smoothly on x ∈ [0, ε), such that B(0, y, D y; λ) = 0 and

φ∗P (λ)= |Dν |2 + B(x, y, D y;λ)Dν + A(x, y, D y;λ). (2.6)

The set of such operators is denoted by Bess(λ)
ν (X).
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Ellipticity with parameter is defined by replacing the standard principal symbol of A with its parameter-dependent 
version. Begin by fixing an angular sector � ⊆C.

Definition 2.5. A parameter-dependent Bessel operator P (λ) is said to be (properly) parameter-elliptic with respect to � at 
p ∈ ∂ X if for each (η, λ) ∈ T ∗p∂ X ×� \ 0, the polynomial

ξ �→ ξ2 + σ
(λ)
2 (A0)(p, η;λ) (2.7)

has no real roots.

Similarly, for (p, η, λ) ∈ T ∗∂ X ×� \ 0, define

P̂ (p,η;λ) = |Dν |2 + σ
(λ)
2 (A0)(p, η;λ),

and then let M+(p, η; λ) denote the space of solutions to P̂ (p,η;λ)u = 0 which are bounded as x →∞. As in Section 2.4, 
this space is one-dimensional.

3. Motivation: asymptotically anti-de Sitter manifolds

This section recalls the notion of an asymptotically anti-de Sitter (aAdS) metric. Then, a convenient expression for the 
Klein–Gordon equation is given with respect to a certain product decomposition near the conformal boundary. By means 
of a Fourier transform, the initial boundary value problem for the Klein–Gordon equation is reduced to the study of the 
boundary value problem for a stationary partial differential equation depending polynomially on the spectral parameter. 
The corresponding operator is a Bessel operator whose order ν depends on the Klein–Gordon parameter; the condition 
ν > 0 translates into the well-known Breitenlohner–Freedman bound.

3.1. aAdS metrics

Let X denote an n-dimensional compact manifold with boundary as in Section 2.2, and set M = R × X . Here t ∈ R will 
denote a global time coordinate. A boundary defining function ρ on M satisfying ∂tρ = 0 is said to be stationary. There is an 
obvious one-to-one correspondence between stationary boundary defining functions on M and boundary defining functions 
x for X .

Definition 3.1. A smooth Lorentzian metric g on M is said to asymptotically simple if there exists a boundary defining 
function ρ ∈ C∞(M) with the following properties.

(1) the Lorentzian metric ḡ = ρ2 g admits a smooth extension to M ,
(2) the restriction ḡ|T ∂M is again Lorentzian.

The map g �→ ḡ|∂M depends on g and a choice of boundary defining function. However, the conformal class [ḡ|T ∂M ]
depends only on g , since any two boundary defining functions differ by a positive multiple. Also note that if g is asymptot-
ically simple, then dρ is spacelike for ḡ|∂M .

Definition 3.2. An asymptotically simple manifold (M, g) is said to be aAdS if there exists a boundary defining function ρ
such that |dρ|2ḡ =−1 on ∂M .

The aAdS property does not depend on the choice of boundary defining function. In addition to being aAdS, suppose that 
g is stationary in the sense that ∂t is a Killing vector field for g . For the remainder of this section, all metrics are assumed 
to be stationary.

The following is a well-known observation of Graham–Lee [24], adapted to the Lorentzian setting.

Lemma 3.3. Suppose that (M, g) is an aAdS spacetime. If g and γ0 ∈ [ḡ|T ∂M ] are stationary, then there exists a unique stationary 
boundary defining function x with the following properties.

(1) x2 g|T ∂M = γ0 ,
(2) |dx|2

x2 g
=−1 in a collar neighborhood of ∂M.

Proof. The proof of [24, Lemma 5.2] goes through unchanged. �
If x satisfies the condition described in Lemma 3.3, then x is said to be a geodesic boundary defining function. Note the 

integral curves of ∇x2 g x are geodesics of x2 g near ∂M . Thus the Gauss lemma implies that
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φ∗(g)= −ds2 + γ (s)

s2
(3.1)

on [0, ε) × ∂M , where φ : [0, ε) × ∂M→ C is the collar diffeomorphism obtained by the flow-out of −∇x2 g x. Here s �→ γ (s)
is a smooth family of stationary Lorentzian metrics on ∂M such that γ (0) = γ0. Furthermore, φ∗x = s, so by an abuse of 
notation it is convenient to write g = x−2(−dx2 + γ (x)) on the collar neighborhood C .

Definition 3.4. The metric g as in Lemma 3.3 is said to even modulo O(x3) (in the sense of Guillarmou [26]) if there exists 
a two-tensor γ1 on ∂M such that

γ (s)= γ0 + s2γ1 +O(s3).

As in [26, Proposition 2.1], this evenness property is instrinsic to the conformal class [ḡ|T ∂M ]. The fundamental class of aAdS 
metrics which are even modulo O(x3) are the Einstein aAdS metrics; see [2, Section 2] for example. This includes all of the 
physically motivated aAdS spaces. The Einstein condition also enforces additional conditions on the expansion of γ (s) that 
are not exploited here (in the asymptotically hyperbolic setting, see Mazzeo–Pacard [40, Section 2]).

Let φ : [0, ε) × ∂M→ C denote the collar diffeomorphism associated with a geodesic boundary defining function x as 
above, and let t : M→ R be the time function associated with the identification M = R × X . If t0 denotes the restriction 
of t to ∂M , then t0 gives a time coordinate on [0, ε) × ∂M . In general it is not true that φ∗(t) = t0 unless x−2 g−1(dx, dt)
vanishes identically. On the other hand, by stationarity there is a t0-invariant function h such that φ∗(t) = t0 + h, so the 
map

φ0(x, y, t0)= φ(x, y, t0 − h) (3.2)

does satisfy φ∗0(t) = t0, and φ0 : [0, ε) × ∂M→ C is still compatible with x. Furthermore, if {t = 0} meets ∂M orthogonally 
with respect to x2 g , then dh|∂M = 0 as well.

3.2. The Klein–Gordon equation

Fix a stationary aAdS spacetime (M, g) and a geodesic boundary defining function x as in Lemma 3.3. Furthermore, 
suppose that g is even modulo O(x3) in the sense of Definition 3.4. In light of the product decomposition (3.1) it follows 
that near ∂M ,

�g = x2 D2
x + i(n− 1+ e(x))xDx + x2�γ (x),

where x �→ e(x) is a smooth family of functions on ∂M such that

e(x)= x2e0 +O(x3)

for some e0 ∈ C∞(∂M) and ∂te(x) = 0. Indeed, e(x) = (1/2)x∂x log(detγ (x)), and detγ (x) = detγ0 +O(x2). Given ν > 0, let

P g = x−(n+3)/2(�g + ν2 − n2/4)x(n−1)/2,

which corresponds to conjugating the Klein–Gordon operator with mass ν2 − n2/4 by x(n−1)/2 and then dividing by x2. 
Explicitly,

P g = D2
x + (ν2 − 1/4)x−2 + i x−1e(x)Dx +

(n−1
2

)
x−2e(x)+�γ (x). (3.3)

In what follows, X will be identified with the time slice {t = 0} within M , and functions on X are identified with t-invariant 
functions on M . Using that g is stationary, it is possible to define a differential operator on X , depending on λ ∈ C, by

P (λ)u = eiλt P g(e−iλt u), (3.4)

where u ∈ C∞(X).

Lemma 3.5. Let (M, g) denote a stationary aAdS spacetime. Suppose that x is a geodesic boundary defining function, and g is even 
modulo O(x3). Let φ0 be given by (3.2). If X meets ∂M orthogonally with respect to x2 g and P (λ) is given by (3.4), then

P (λ) ∈ Bess(λ)
ν (X; x, φ0).

Proof. Note that φ0 = φ ◦ H , where H(x, y, t0) = (x, y, t0 − h(x, y)) in the notation of (3.2). As noted following (3.2), the 
differential of h vanishes along ∂M . It remains to combine this observation with the expression (3.3) for P g with respect to 
the product structure induced by φ. �
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Lemma 3.6. The following ellipticity properties hold.

(1) If ∂t is timelike for γ0 , then P (λ) is elliptic on ∂ X in the sense of Section 2.4.
(2) If ∂t and dt are both timelike for γ0, then P (λ) is parameter-elliptic on ∂ X in the sense of Section 2.5 with respect to any angular 

sector � ⊆C disjoint from R \ 0.

Proof. See [47, Section 3.2] and [23, Lemma 2.3]. �
4. Function spaces and mapping properties

The purpose of this section is to define Sobolev-type spaces Hs based on the elementary derivatives Dν and |Dν |2, both 
on Tn+ and on a manifold with boundary. Finally, it is shown that Bessel operators act continuously between these spaces.

The exposition is closest to that of [49], where these “twisted” Sobolev spaces were first introduced in the context of 
aAdS geometry. The relationship between H1 and certain weighted Sobolev spaces was exploited both in [49] and also in 
the closely related study of asymptotically hyperbolic spaces in [15].

Throughout this section, the spaces L2(Tn+) and L2(Tn−1) are defined with respect to ordinary Lebesgue measure, and 
Hm(Tn−1) denotes the standard Sobolev space of order m on Tn−1. Here Tn−1 will always denote the boundary ∂Tn+ . The 
notation H0(Tn+) := L2(Tn+) is also frequently used.

4.1. The weighted space H1
μ(Tn+)

Given μ ∈R, let

H1
μ(Tn+)= {u ∈D ′(Tn+) : x μ

2 Dαu ∈ L2(Tn+) for |α| ≤ 1},
which is a Hilbert space under the norm

‖u‖2
H1

μ(Tn+)
=
∑
|α|≤1

‖x μ
2 Dαu‖2

L2(Tn+)
.

Furthermore, let Ḣ1
μ(Tn+) denote the closure of C∞c (Tn+) in H1

μ . These spaces are well studied; see Lions [36] or Grisvard 
[25] for example.

Lemma 4.1. The following hold for μ ∈R.

(1) If |μ| < 1, then C∞c (Tn+) is dense in H1
μ(Tn+).

(2) If |μ| ≥ 1, then H1
μ(Tn+) = Ḣ1

μ(Tn+).

Proof. Proofs of these facts may be found in [25,36]. �
Given a Hilbert space E , let H1

μ(R+; E) denote the Hilbert space of E-valued distributions u ∈D ′(R+; E) such that

x
μ
2 u ∈ L2(R+; E), x

μ
2 u′ ∈ L2(R+; E),

equipped with obvious norm. The Sobolev embedding theorem in this setting, [25, Proposition 1.1’], is

H1
μ(R+; E) ↪→ C0(R+; E), μ < 1,

so u �→ u(0) is continuous H1
μ(R+; E) → E . Taking E = L2(Tn−1), it follows that when μ < 1, any u ∈ H1

μ(Tn+) admits a 
trace

u �→ u|Tn−1 ∈ L2(Tn−1). (4.1)

Furthermore, the kernel of u �→ u|Tn−1 is Ḣ1
μ(Tn+) (see [25, Proposition 1.2]). The next lemma improves upon the regularity 

of this restriction.

Lemma 4.2. If |μ| < 1, then the restriction

u �→ u|Tn−1 , u ∈ C∞c (Tn+)

extends uniquely to continuous map γ : H1
μ(Tn+) → H (1−μ)/2(Tn−1). Furthermore, γ admits a continuous right inverse.
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Proof. By the Sobolev embedding, any ϕ ∈ C∞c (R+) ⊆ H1
μ(R+) admits an estimate of the form

|ϕ(0)|2 ≤ C

∫
R+

xμ
(
|ϕ|2 + |ϕ′|2

)
dx.

Apply this inequality to the function ϕ(sx), and then choose s (depending on ϕ) satisfying∫
R

xμ|ϕ|2 dx= s2
∫
R

xμ|ϕ′|2 dx.

This yields the estimate

|ϕ(0)|2 ≤ 2C

⎛⎜⎝∫
R+

xμ|ϕ|2dx

⎞⎟⎠
(1−μ)/2⎛⎜⎝∫

R+

xμ|ϕ′|2dx

⎞⎟⎠
(1+μ)/2

. (4.2)

Now consider u ∈ H1
μ(Tn+) and let û(q) denote its Fourier coefficients, where q ∈ Zn−1. It suffices to apply the inequality 

(4.2) to û(q), which lies in H1
μ(R+) for each q ∈ Zn−1. Multiplying (4.2) by 〈q〉1−μ and summing over all q, it follows that

‖γ u‖H(1−μ)/2 ≤ C‖u‖H1
μ(R+).

When |μ| < 1, the unique continuation of γ follows from the density of C∞c (Tn+) in H1
μ(Tn+). That γ admits a right inverse 

is also straightforward; see Lemma A.3 for a closely related result. �
The trace u �→ γ u defined in Lemma 4.2 agrees with the restriction given by (4.1) since they both agree on the dense 

set C∞c (Tn+).

4.2. The space H1(Tn+)

Given ν ∈R, define

H1(Tn+)= {u ∈D ′(Tn+) : D j
ν Dα

y u ∈ L2(Tn+) for j + |α| ≤ 1},
where D j

ν Dα
y u is taken in the sense of distributions on Tn+; then H1(Tn+) is a Hilbert space when equipped with the norm

‖u‖2
H1(Tn+)

=
∑

j+|α|≤1

‖D j
ν Dα

y u‖2
L2(Tn+)

.

The space H1∗(Tn+) is defined analogously by replacing Dν with its formal adjoint D∗ν . Let Ḣ1(Tn+) denote the closure of 
C∞c (Tn+) in H1(Tn+), and similarly for Ḣ1∗(Tn+).

Lemma 4.3. If ν 
= 0, then Ḣ1(Tn+) = Ḣ1(Tn+) with an equivalence of norms.

Proof. This can be deduced from Hardy’s inequality

(1/4)‖x−1u‖2
L2(Tn+)

≤ ‖Dxu‖2
L2(Tn+)

,

valid for u ∈ C∞c (Tn+), and the density of C∞c (Tn+) in both spaces. �
The basic observation concerning H1(Tn+) is that the map D ′(Tn+) → D ′(Tn+) given by u �→ xν−1/2u restricts to an 

isometric isomorphism

H1(Tn+)→ H1
1−2ν(Tn+).

It follows from Lemma 4.1 that x1/2−νC∞(Tn+) is dense in H1(Tn+) if 0 < ν < 1, and H1(Tn+) = Ḣ1(Tn+) if ν ≥ 1. Using 
Lemma 4.2, it is also possible to define weighted traces of H1(Tn+) functions, as will be explained in Section 4.4.
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4.3. The space H2(Tn+)

Given ν > 0, define

H2(Tn+)= {u ∈H1(Tn+) : Dνu ∈H1∗(Tn+), and Dα
y u ∈H1(Tn+) for |α| ≤ 1}.

Then H2(Tn+) becomes a Hilbert space when equipped with the norm

‖u‖2
H2(Tn+)

= ‖|Dν |2u‖2
L2(Tn+)

+
∑
|α|≤1

‖Dα
y u‖2

H1(Tn+)
. (4.3)

Although x1/2−νC∞c (Tn+) is dense in H1(Tn+) when 0 < ν < 1, this is not the case for H2(Tn+). In fact, x1/2−νC∞c (Tn+) is not 
contained in H2(Tn+) unless ν = 1/2. An appropriate dense space of smooth functions is defined in Section 4.4.

4.4. Weighted traces

It follows from Lemma 4.2 that the weighted restriction

u �→ xν−1/2u|Tn−1 , u ∈ x1/2−νC∞c (Tn+)

extends uniquely to a continuous map γ− :H1(Tn+) → Hν(Tn−1), and furthermore, if 0 < ν < 1, then γ− admits a continu-
ous right inverse. Similarly, there exists a weighted restricted

γ ∗− :H1∗(Tn+)→ H1−ν(Tn−1),

given by γ ∗−u = x1/2−νu|Tn−1 . However, note that γ ∗− is now defined for ν < 1. Indeed, H1∗(Tn+) is isomorphic to H1
2ν−1(T

n+), 
and the trace on the latter space is only defined for 2ν − 1 < 1. Since u ∈H2(Tn+) implies ∂νu ∈H1∗(Tn+), there exists a 
second trace

γ+ :H2(Tn+)→ H1−ν(Tn−1)

given by the composition γ+ = γ ∗− ◦ ∂ν . The trace γ+ therefore exists for 0 < ν < 1.

Definition 4.4. Given ν > 0, let Fν denote the following spaces of functions.

(1) If 0 < ν < 1, then Fν consists of u ∈ C∞(Tn+) of the form

u(x, y)= x1/2−νu−(x2, y)+ x1/2+νu+(x2, y), (4.4)

where u± ∈ C∞c (Tn+).
(2) If ν ≥ 1, then Fν = C∞c (Tn+).

Note that Fν is contained in Hs(Tn+) for each s = 0, 1, 2, but Fν is not contained in x1/2−νC∞c (Tn+) unless ν = 1/2. On 
the other hand, traces of u ∈Fν are still easily computed from the definitions:

Lemma 4.5. If 0 < ν < 1 and u ∈Fν satisfies (4.4), then

γ−u = u−(0, ·), γ+u = 2νu+(0, ·). (4.5)

Proof. If u ∈Fν satisfies (4.4), then xν−1/2u(x, y) = u−(x2, y) + x2νu+(x2, y). Since this function is continuous on R+ with 
values in C∞(Tn−1), it follows that γ−u = u−(0, ·) (see the remark after Lemma 4.2). A similar argument shows that 
γ+u = 2νu+(0, ·). �
Lemma 4.6. If ν > 0, then Fν is dense in Hs(Tn+) for s = 0, 1, 2.

Proof. A proof is provided in Appendix A. �
Proposition 4.7. If 0 < ν < 1, then there exist unique continuous maps

γ∓ :Hs(Tn+)→ Hs−1±ν(Tn−1)

such that if u ∈Fν satisfies (4.4), then γ−u = u−(0, ·) and γ+u = 2νu+(0, ·). Here γ− is defined for s = 1, 2, while γ+ is only defined 
for s = 2.
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Proof. Combining Lemma 4.6 with Lemma 4.5 shows that the map

u �→ u−(0, ·), u ∈Fν

admits a unique extension Hs(Tn+) → Hν(Tn−1) for s = 1, 2. The additional regularity γ−u ∈ H1+ν(Tn−1) for u ∈H2(Tn+)

follows from the equality γ±∂α
y u = ∂α

y γ±u for u ∈Fν and each multiindex α. Similarly, the map

u �→ 2νu+(0, ·), u ∈Fν

admits a unique extension H2(Tn+) → H1−ν(Tn−1). �
4.5. Dual spaces

Throughout, H0(Tn+) = L2(Tn+) is identified with its own antidual H0(Tn+)′ via the Riesz representation. Given s = 1, 2, 
let

H−s(Tn+)=Hs(Tn+)′

denote the corresponding antiduals. Since the inclusion ι :Hs(Tn+) ↪→H0(Tn+) is dense, H0(Tn+) is identified with a dense 
subspace of H−s(Tn+) via the map ι∗ : H0(Tn+) ↪→ H−s(Tn+). Thus if s ≥ 0 and u, v ∈ Hs(Tn+), then the image ι∗u in 
H−s(Tn+) acts on v via the H0(Tn+) pairing

ι∗u(v)= 〈u, v〉Tn+ .

Because Hs(Tn+) is dense in H−s(Tn+), there is no ambiguity in using the notation

〈 f , v〉Tn+ := f (v), f ∈H−s(Tn+), v ∈Hs(Tn+)

in general.

4.6. A Fourier characterization

Given s = 0, 1, 2, any u ∈Hs(Tn+) has well-defined Fourier coefficients

û(q)= (2π)−(n−1)/2
∫

[−π,π]n−1

e−i 〈q,y〉u(·, y)dy, q ∈ Zn−1.

It is easily seen û(q) ∈Hs(R+) for each fixed q ∈ Zn−1.
This may be extended uniquely by duality: given f ∈H−s(Tn+), let f̂ (q) ∈H−s(R+) denote the functional

〈 f̂ (q), v〉Tn+ = (2π)−(n−1)/2〈 f ,ei 〈q,y〉v〉Tn+ , (4.6)

where v ∈Hs(R+). Given τ > 0 and u ∈Fν , let

(Sτ u)(x, y)= u(τ x, y) (4.7)

denote the action of dilation in the normal variable. This clearly extends to a bounded map Sτ :Hs(Tn+) →Hs(Tn+) for 
s = 0, 1, 2. Furthermore, Sτ may be extended uniquely to H−s(Tn+) by duality: given f ∈H−s(Tn+), define

〈Sτ f , v〉Tn+ = τ−1 〈 f , Sτ−1 v
〉
T

n+

for v ∈Hs(Tn+).

Lemma 4.8. Given s = 0, ±1, ±2,

‖u‖2
Hs(Tn+)

=
∑

q∈Zn−1

〈q〉2s−1 ‖S〈q〉−1 û(q)‖2
Hs(R+)

for each u ∈Fν .

Proof. When s ≥ 0 this follows from Parseval and Fubini’s theorems. When s < 0, the proof is a simple modification of the 
argument in [35, Lemma 2.3.1]. �



O. Gannot / C. R. Acad. Sci. Paris, Ser. I 356 (2018) 988–1029 999
4.7. The space H̃s(Tn+)

If t = (t1, . . . , tk), define

Ht(Tn−1) :=
k∏

j=1

Htk (Tn−1).

Keeping this notation in mind, let ν = (1 − ν, 1 + ν) and then set

γ =
(

γ−
γ+

)
. (4.8)

Following [35,44] in the smooth setting, define the following spaces for 0 < ν < 1. Given s = 0, ±1, ±2, let H̃s(Tn+) denote 
the set of all

(u, φ−, φ+) ∈Hs(Tn+)× Hs−ν(Tn−1)

such that

(1) φ− = γ−u and φ+ = γ+u if s = 2,
(2) φ− = γ−u and φ+ is arbitrary if s = 1,
(3) φ± are arbitrary if s ≤ 0.

A typical element of H̃s(Tn+) will be denoted (u, φ), where φ = (φ−, φ+). The norm of (u, φ) is given by

‖(u, φ)‖2
H̃s(Tn+)

= ‖u‖2
Hs(Tn+)

+ ‖φ‖2
Hs−ν (Tn−1)

.

If s = 2, then u �→ (u, γ u) provides an isomorphism

H2(Tn+)→ H̃2(Tn+).

On the other hand, if s ≤ 1, then the two spaces Hs(Tn+), H̃s(Tn+) are fundamentally different.

Lemma 4.9. Let 0 < ν < 1. For each s = 0, ±1, ±2, the set

{(u, γ u) : u ∈Fν}
is dense in H̃s(Tn+).

Proof. It suffices to prove this for s ≥ 0, since H̃0(Tn+) is dense in H̃s(Tn+) if s < 0. Given (u, φ) ∈ H̃s(Tn+), choose un ∈Fν

and φ±,n ∈ C∞(Rn) such that

un→ u in Hs(Tn+), φ±,n→ φ± in Hs−ν(Tn−1).

Let χ ∈ C∞c (R+) satisfy χ = 1 near x = 0, and define

un,ε = un −
(

x1/2−ν(γ−un − φ−,n)+ (2ν)−1x1/2+ν(γ+un − φ+,n)
)
χ(ε−1x).

Clearly un,ε ∈Fν and γ±un,ε = φ±,n . Furthermore, since s ≥ 0, it is easy to check that un,ε→ un in Hs(Tn+) for n fixed and 
ε→ 0. Thus it is possible find a sequence εn→ 0 such that un,εn → u in Hs(Tn+) as n →∞, and hence

(un,εn , γ un,εn )→ (u, φ)

in H̃s(Tn+). �
Recall from Section 4.6 the dilation Sτ given by (4.7). Note that

(γ− ◦ Sτ )u = τ 1/2−νγ−u, (γ+ ◦ Sτ )u = τ 1/2+νγ+u

for each τ > 0 and u ∈Fν . Thus Sτ may be extended uniquely to H̃s(Tn+) by defining

Sτ (u, φ)= (Sτ u, τ 1/2−νφ−, τ 1/2+νφ+).

It follows from Lemma 4.8 and the usual Fourier characterization of Hm(Tn−1) that
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‖(u, φ)‖2
H̃s(Tn+)

=
∑

q∈Zn−1

〈q〉2s−1 ‖S〈q〉−1(û(q), φ̂(q))‖2
H̃s(R+)

for each (u, φ) ∈ H̃s(Tn+).

4.8. Parameter-dependent norms

When considering the action of parameter dependent Bessel operators, one must consider modified norms on the spaces 
defined so far. Given s = 0, 1, 2 and u ∈Hs(Tn+), let

‖|u‖|2Hs(Tn+)
=

s∑
j=0

|λ|2(s− j)‖u‖2
H j(Tn+)

.

Furthermore, if f ∈H−s(Tn+), let

‖| f ‖|H−s(Tn+) = sup{| 〈 f , u〉Tn+ | : ‖|v‖|Hs(Tn+) = 1}.
Recall the standard parameter-dependent norms ‖ |v‖ |Hm(Tn−1) on Hm(Tn−1) as in Section 2.1. Given (u, φ) ∈ H̃s(Tn+), set

‖|(u, φ)‖|2H̃s(Tn+)
= ‖|u‖|2Hs(Tn+)

+ ‖|φ‖|2Hs−ν (Tn−1)
.

These parameter-dependent norms have the property that there exists C > 0 independent of λ such that

‖|u‖|Hs−1(Tn+) ≤ C |λ|−1‖|u‖|Hs(Tn+), ‖|(u, φ)‖|H̃s−1(Tn+) ≤ C |λ|−1‖|(u, φ)‖|H̃s(Tn+)

for u ∈Hs(Tn+) and (u, φ) ∈ H̃s(Tn+), respectively.

4.9. Mapping properties

In this section, mapping properties of Bessel operators on Tn+ are examined. The analogues of Green’s formulas are 
established, which allow the extension of P to spaces with low regularity. Recall from Section 2.3 that P ∈ Bessν(Tn+)

means that

P = |Dν |2 + B(x, y, D y)Dν + A(x, y, D y), (4.9)

where B ∈ Diff1(Tn−1) and A ∈ Diff2(Tn−1) depend smoothly on x ∈ R+ and B(0, y, D y) = 0. Throughout this section, as-
sume that the coefficients of A, B are constant outside a compact subset of Tn+ . The boundedness of each term in P will be 
examined individually.

Before proceeding, it is necessary to consider certain multipliers of Hs(Tn+) when s ≥ 0. The commutation relations

[∂ν,ϕ] = ∂xϕ = [∂∗ν ,ϕ], [|Dν |2,ϕ] = −∂2
x ϕ − 2(∂xϕ)∂x (4.10)

will be used throughout the following lemma.

Lemma 4.10. Suppose that ϕ ∈ C∞(Tn+) is bounded along with all of its derivatives, and consider multiplication by ϕ as a continuous 
map D ′(Tn+) →D ′(Tn+).

(1) For s = 0, 1, multiplication by ϕ restricts to a continuous map

Hs(Tn+)→Hs(Tn+).

(2) If ∂xϕ|Tn−1 = 0, then multiplication by ϕ restricts to a continuous map

H2(Tn+)→H2(Tn+).

In either of these two cases,

‖ϕu‖Hs(Tn+) ≤ ‖ϕ‖C0(Tn+)
‖u‖Hs + Cs‖u‖Hs−1(Tn+), (4.11)

where Cs ≥ 0 depends on the first s derivatives of ϕ , and C0 = 0.



O. Gannot / C. R. Acad. Sci. Paris, Ser. I 356 (2018) 988–1029 1001
Proof. The continuity statement is obvious for s = 0. For s = 1, it follows from the first commutator formula (4.10). When 
s = 2, the additional condition ∂xφ|Tn−1 = 0 is needed to ensure that

u �→ (∂xϕ)∂xu

is bounded H1(Tn+) →H0(Tn+): the vanishing of ∂xφ at the boundary implies (∂xϕ)∂x = (∂xϕ)∂ν modulo multiplication by 
a smooth function, which acts continuously by the first part. The estimate (4.11) follows as well from (4.10). �
Remark 4.11. Lemma 4.10 result may also be extended to H̃s(Tn+) by defining

ϕ(u, φ) := (ϕu,ϕ|Tn−1φ),

and using that standard Sobolev spaces on Tn−1 are closed under multiplication by smooth functions.

Remark 4.12. The hypotheses of Lemma 4.10 can not be improved when s = 2, in the sense that H2(Tn+) is not closed 
under multiplication by arbitrary C∞c (Tn+) functions. On the other hand, as a special case of Lemma 4.10, if ϕ ∈ C∞c (Tn+) is 
constant in a neighborhood of Tn−1, then Hs(Tn+) is closed under multiplication by ϕ for each s = 0, 1, 2.

Now consider the term |Dν |2 in (4.9) which is clearly bounded

|Dν |2 :H2(Tn+)→H0(Tn+).

The distinction between 0 < ν < 1 and ν ≥ 1 plays an important role when extending this action. Suppose that 0 < ν < 1, 
and let J denote the usual symplectic matrix,

J =
(

0 1
−1 0

)
.

Then the following formulae are valid for each u, v ∈Fν :〈
|Dν |2u, v

〉
T

n+
=
〈
u, |Dν |2 v

〉
T

n+
+
〈
γ u, Jγ v

〉
Tn−1

, (4.12)〈
|Dν |2u, v

〉
T

n+
= 〈Dνu, Dν v〉Tn+ −

〈
γ+u, γ−v

〉
Tn−1 . (4.13)

Since Fν is dense, (4.12) is valid for v ∈H2(Tn+), and (4.13) is valid for v ∈H1(Tn+).

Lemma 4.13. Let 0 < ν < 1 and s = 0, 1, 2. Then there exists C > 0 such that

‖|Dν |2u‖Hs−2(Tn+) ≤ C‖(u, γ u)‖H̃s(Tn+)

for each u ∈Fν .

Proof. For s = 2 this follows since the norms ‖u‖H2(Tn+) and ‖(u, γ u)‖H̃2(Tn+) are equivalent for each u ∈Fν . The case s = 1

follows from (4.13), and the case s = 0 follows from (4.12). �
As a consequence of Lemma 4.13, the map (u, γ u) �→ |Dν |2u with u ∈ Fν admits a unique extension as a bounded 

operator

|Dν |2 : H̃s(Tn+)→Hs−2(Tn+)

for s = 0, 1, 2 and 0 < ν < 1. The situation is simpler when ν ≥ 1, since in that case Fν = C∞c (Tn+) is dense in Hs(Tn+). The 
analogues of (4.12), (4.13) are given by〈

|Dν |2u, v
〉
T

n+
=
〈
u, |Dν |2 v

〉
T

n+
, (4.14)〈

|Dν |2u, v
〉
T

n+
= 〈Dνu, Dν v〉Tn+ , (4.15)

valid for each u, v ∈Fν . The analogue of Lemma 4.13 is the following.
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Lemma 4.14. Let ν ≥ 1 and s = 0, 1, 2. Then there exists C > 0 such that

‖|Dν |2u‖Hs−2(Tn+) ≤ C‖u‖Hs(Tn+)

for each u ∈Fν .

From Lemma 4.14, it follows that the map u �→ |Dν |2u with u ∈Fν admits a unique continuous extension as a bounded 
operator |Dν |2 :Hs(Tn+) →Hs−2(Tn+) for s = 0, 1, 2 and ν ≥ 1.

Next consider a typical term in B Dν . Such a term may be written as b(x, y)Dβ
y Dν , where b ∈ xC∞(Tn+) is constant for x

large and |β| ≤ 1. The following result holds for all ν > 0, since there are no boundary terms when integrating by parts.

Lemma 4.15. Suppose that b ∈ xC∞(Tn+) is constant for x large and |β| ≤ 1. Then

bDβ
y Dν :Hs(Tn+)→Hs−|β|−1(Tn+)

is bounded for each s = 0, 1, 2. Furthermore, there exists c > 0 depending on s, β and C ≥ 0 depending on b, s, β, r such that

‖bDβ
y Dνu‖Hs−|β|−1(Tn+) ≤ cr‖b‖C1(Tn+)

‖u‖Hs(Tn+) + C‖u‖Hs−1(Tn+). (4.16)

for each u ∈Hs(Tn+) such that supp u ⊆ {0 ≤ x ≤ r}.

Proof. The boundedness result is clear for s = 2. For s = 0, 1, it follows from the same considerations as in Lemma 2.2: 
define B = bDβ

y , and note that B = B1x = xB1 where B1 is smooth up to x = 0. Thus

B Dν = D∗ν B + i(1− 2ν)B1 + [B, Dx].
Then for each u, v ∈Fν ,

〈B Dνu, v〉Tn−1 = 〈Dνu, B∗v
〉
Tn−1 =

〈
u, B∗Dν v − i(1− 2ν)B∗1 v + [B, Dx]∗v

〉
T

n+
.

The first equality implies boundedness for s = 1, while the second implies boundedness for s = 0.
Similarly, (4.16) clearly holds for s = 2. To prove the other cases, begin by writing b = xb1, where b1 is smooth up to 

x = 0. Also define q = [Dβ
y , b] and q = xq1, so that q1 is smooth up to x = 0 (and vanishes if |β| = 0). To avoid a distracting 

proliferation of complex conjugates, assume that q is real-valued.
(1) If s = 1, then for u, v ∈Fν ,〈

bDβ
y Dνu, v

〉
T

n+
=
〈
bDνu, Dβ

y v
〉
T

n+
− 〈u, Dν(qv)+ i(2ν − 1)q1 v〉Tn+ .

Thus

‖bDβ
y Dνu‖Hs−|β|−1(Tn+) ≤ ‖bDνu‖H0(Tn+) + C‖u‖H0(Tn+),

whence the result follows by Lemma 4.10.
(2) Similarly for s = 0, if u, v ∈Fν , then〈

bDβ
y Dνu, v

〉
T

n+
=
〈
bu, Dν Dβ

y v
〉
T

n+
+
〈
[b, Dν ]u− i(2ν − 1)b1u, Dβ

y v
〉
− 〈u, Dν(qv)+ i(2ν − 1)q1 v〉Tn+ .

The first term gives

|
〈
bu, Dν Dβ

y v
〉
T

n+
| ≤ ‖bu‖H0(Tn+)‖v‖H1+|β|(Tn+),

as desired. Now [b, Dν ] = i(∂xb), and the second term can be written as〈
u, i(∂xb− (2ν − 1)b1)Dβ

y v
〉
,

which is bounded in absolute value by a constant times ‖u‖H−1(Tn+)‖v‖H1+|β|(Tn+) according to Lemma 4.10. Similarly,

| 〈u, i(2ν − 1)q1 v〉Tn+ | ≤ C‖u‖H−1(Tn+)‖v‖H1(Tn+).

Now | 〈u, Dν(qv)〉 | ≤ ‖u‖H−1(Tn+)‖Dν(qv)‖H1(Tn+) , so it remains to bound the term ‖Dν(qv)‖H1(Tn+) . For this, write

Dν Dνq= (Dνx− i)Dνq1 = (D∗νx− 2iν)Dνq1 = x|Dν |2q1 − i(2ν + 1)Dνq1.
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Using (4.10),

x|Dν |2q1 = xq1|Dν |2 − 2 i x(∂xq1)Dν − x(∂2
x q1)+ (2ν − 1)(∂xq1),

which is bounded H2(Tn+) →H0(Tn+). Terms of the form Dα
y Dν(qv) with |α| ≤ 1 are bounded similarly. Since q vanishes 

for |β| = 0, this shows that

‖Dν(qv)‖H1(Tn+) ≤ C‖v‖H1+|β|(Tn+),

thus completing the proof. �
Remark 4.16. Lemma 4.15 implies that bDβ

y Dν is also bounded

H̃s(Tn+)→Hs−|β|−1(Tn+)

since the projection H̃s(Tn+) →Hs(Tn+) onto the first factor is continuous.

Finally, a typical term in the operator A can be written as a(x, y)Dα
y , where |α| ≤ 2 and a ∈ C∞(Tn+) is constant outside 

a compact subset of Tn+ .

Lemma 4.17. Suppose that a ∈ C∞(Tn+) is constant for x large.

(1) If s = 0, 1 and |α| ≤ 2, then aDα
y :Hs(Tn+) →Hs−|α|(Tn+) is bounded.

(2) If s = 0, 1, 2 and 0 < |α| ≤ 2, then aDα
y :Hs(Tn+) →Hs−|α|(Tn+) is bounded.

Furthermore, suppose that a(0, p) = 0 for p ∈ Tn−1 . Then there exists c > 0 depending on s, α and C ≥ 0 depending on a, s, α, r such 
that in each of the above cases,

‖aDα
y u‖Hs−|α|(Tn+) ≤ cr‖a‖C1(Tn+)

‖u‖Hs(Tn+) + C‖u‖Hs−1(Tn+) (4.17)

for each u ∈Hs(Tn+) such that supp u ⊆ {(x, y) ∈ Tn+ : |x| + |y − p| < r}.

Proof. (1) First suppose that s = 0, 1. The boundedness result is clear if s = 1 and |α| ≤ 1 or s = 0 and |α| = 0. Otherwise, 
suppose that s = 1 and |α| = 2. Write aDα

y =
∑
|γ |=1 Dγ

y Aγ for smooth tangential operators Aγ (x, y, D y) of order at most 
one. Then for each u, v ∈Fν and |γ | = 1,

| 〈Dγ
y Aγ u, v

〉
T

n+
| = | 〈Aγ u, Dγ

y v
〉
T

n+
| ≤ C‖u‖H1(Tn+)‖v‖H1(Tn+).

On the other hand, suppose that s = 0. Then

| 〈aDα
y u, v
〉
T

n+
| = | 〈u, Dα

y av
〉
T

n+
| ≤ C‖u‖H0(Tn+)‖v‖H|α|(Tn+)

for 1 ≤ |α| ≤ 2.
(2) The only case not handled above is s = 2, in which case it follows from Lemma 4.10 that aDα

y is bounded H2(Tn+) →
H2−|α|(Tn+) provided |α| 
= 0.

(3) The estimate (4.17) follows from the same arguments as in the first two parts of the proof. �
To summarize the above discussion, write A =∑|α|≤2 aα Dα

y (non uniquely) in the form

A =
∑
|α|≤1

Dα
y Aα

for some Aα ∈ Diff1(Tn−1) that depends smoothly on x ∈ R+ . Recall that P∗ is also a Bessel operator, according to 
Lemma 2.2. Then there are the two Green’s formulas

〈P u, v〉Tn+ = 〈u, P∗v〉Tn+ + 〈γ u, Jγ v〉Tn−1 (4.18)

and

〈P u, v〉Tn+ = 〈Dνu, Dν v〉Tn+ +
〈
Dνu, B∗v

〉
T

n+
+
∑
|α|≤1

〈
Aαu, Dα

y v
〉
T

n+
− 〈γ+u, γ−v

〉
Tn−1 , (4.19)

valid for each u, v ∈Fν .
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Lemma 4.18. Let 0 < ν < 1 and s = 0, 1, 2. Then there exists C > 0 depending on s such that

‖P u‖Hs−2(Tn+) ≤ C‖(u, γ u)‖H̃s(Tn+)

for each u ∈Fν . Thus the map (u, γ u) �→ P u with u ∈Fν admits a unique extension as a bounded operator

P : H̃s(Tn+)→Hs−2(Tn+)

for s = 0, 1, 2 and 0 < ν < 1. When s = 0, 1, this extension is determined by (4.18), (4.19).

Proof. This is a direct consequence of Lemmas 4.13, 4.15, and 4.17. �
The situation is simpler when ν ≥ 1: the analogues of (4.18), (4.19) are given by

〈P u, v〉Tn+ = 〈u, P∗v〉Tn+ , (4.20)

〈P u, v〉Tn+ = 〈Dνu, Dν v〉Tn+ +
〈
Dν, B∗v

〉
T

n+
+
∑
|α|≤1

〈
Aαu, Dα

y v
〉
T

n+
, (4.21)

valid for each u, v ∈Fν . As before, (4.20) is in fact valid for v ∈H2(Tn+), while (4.21) is valid for v ∈H1(Tn+).

Lemma 4.19. Let ν ≥ 1 and s = 0, 1, 2. Then there exists C > 0 such that

‖P u‖Hs−2(Tn+) ≤ C‖u‖Hs(Tn+)

for each u ∈Fν . Thus the map u �→ P u with u ∈Fν admits a unique extension as a bounded operator

P :Hs(Tn+)→Hs−2(Tn+)

for s = 0, 1, 2 and ν ≥ 1. When s = 0, 1 this extension is determined by (4.20), (4.21). The action of P on Hs(Tn+) is simply the 
restriction of P :D ′(Tn+) →D ′(Tn+) to Hs(Tn+).

Proof. This is a direct consequence of Lemmas 4.14, 4.17, and 4.15. �
Suppose that 0 < ν < 1. If s = 0, 1, then an element f ∈ Hs−2(Tn+) is not uniquely determined by a distribution in 

D ′(Tn+). On the other hand, f may certainly be restricted to a functional on Ḣs(Tn+), which is determined uniquely by 
a distribution since C∞c (Tn+) is dense in this space by definition. Given s = 0, 1, 2 and u ∈ Hs(Tn+), f ∈ Hs−2(Tn+), the 
equation P u = f can be interpreted in this weak sense, namely〈

u, P∗v
〉
X = 〈 f , v〉X

for all v ∈ C∞c (Tn+) ⊆ Ḣ2−s(Tn+). For s = 2 this is just the statement that P u = f in distributions. Furthermore, if (u, φ) ∈
H̃s(Tn+) and P (u, φ) = f , then P u = f weakly.

Now suppose that P ∈ Bess(λ)
ν (Tn+) is a parameter-dependent Bessel operator. Recalling the definition of the parameter-

dependent norms as in Section 4.8, it is straightforward to show that the following hold:

(1) If 0 < ν < 1 and s = 0, 1, 2, then there exists C > 0 such that

‖|P (λ)(u, φ)‖|Hs−2(Tn+) ≤ C‖|(u, φ)‖|H̃s(Tn+)

for each (u, φ) ∈ H̃s(Tn+).
(2) If ν ≥ 1 and s = 0, 1, 2, then there exists C > 0 such that

‖|P (λ)u‖|Hs−2(Tn+) ≤ C‖|u‖|Hs(Tn+)

for each u ∈Hs(Tn+).

There are also straightforward extensions of Lemmas 4.13, 4.14, 4.15, and 4.17 for parameter-dependent norms.
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4.10. Function spaces on a manifold

Consider a compact manifold with boundary X , equipped with a distinguished boundary defining function x and collar 
diffeomorphism φ as in Section 2.2.

Definition 4.20. Given ν > 0, let Fν(X) denote the following spaces of functions.

(1) If 0 < ν < 1, then Fν(X) consists of u ∈ C∞(X) such that

(u ◦ φ)(x, y)= x1/2−νu−(x2, y)+ x1/2+νu+(x2, y) (4.22)

for some u± ∈ C∞([0, 
√

ε) × ∂ X).
(2) If ν ≥ 1, then Fν = C∞c (X).

Thus Fν =Fν(Tn+). Fix a finite open cover X =⋃i U i by coordinate charts (Ui, ψi), such that either

Ui ∩ ∂ X = ∅, ψi : Ui→ψi(Ui)⊆ T
n+,

or if Ui ∩ ∂ X 
= ∅, then

Ui = φ([0, ε)× Yi), ψi = (1× θi) ◦ φ−1

for a coordinate chart (Yi, θi) on ∂ X . This of course implies that ∂ X =⋃i Y i , where the union is taken over all i such that 
Ui ∩ ∂ X 
= ∅. Now take a partition of unity of the form∑

i

χ2
i = 1, χi ∈ C∞c (Ui),

with the additional property that if Ui ∩ ∂ X 
= ∅, then χi has the form

χi = (αβi) ◦ φ−1,

for functions α ∈ C∞c ([0, ε)), βi ∈ C∞c (Yi), where α = 1 near x = 0. Note that if u ∈Fν(X) then χiu may be identified with 
an element of Fν via the coordinate map ψi . Keeping this in mind, define

‖u‖i,Hs(X) := ‖(χiu) ◦ψ−1
i ‖Hs(Tn+)

for s = 0, ±1, ±2 and u ∈Fν(X).

Definition 4.21. Given s = 0, ±1, ±2, let

‖u‖2
Hs(X) =

∑
i

‖u‖2
i,Hs(X).

Then define

Hs(X)= closure of Fν(X) in the Hs(X) norm.

To prove that Hs(X) is independent of the choice of covering Ui and partition of unity χi , the following two elementary 
results are needed; their proofs are left to the reader.

Lemma 4.22. Let Y , Y ′ be open subsets of Tn−1 , and suppose that � : Y → Y ′ is a diffeomorphism between them. Suppose that 
K ⊆R+ × Y is compact. Then for each s = 0, ±1, ±2 there exists C > 0 such that

C−1‖u‖Hs(Tn+) ≤ ‖u ◦ (1×�)‖Hs(Tn+) ≤ C‖u‖Hs(Tn+)

for each u ∈Fν with supp u ⊆ K ′ := (1 ×�)(K ).

Lemma 4.23. Let K be a compact subset of Tn+ . Then for each s = 0, ±1, ±2 there exists C > 0 such that

C−1‖u‖Hs(Tn+) ≤ ‖u‖Hs(Tn+) ≤ C‖u‖Hs(Tn+)

for each u ∈ C∞c (Tn+) such that supp u ⊆ K .
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The combination of Lemmas 4.22 and 4.23 show that the spaces Hs(X) do not depend on any of the choices used to 
define them.

Lemma 4.24. Fix a density on X of product type near ∂ X. Let 〈·, ·〉X denote the inner product on L2(X; μ). For each s = 0, ±1, ±2,

| 〈u, v〉X | ≤ C‖u‖Hs(X)‖v‖H−s(X),

where u, v ∈Fν(X). Furthermore, 〈·, ·〉X extends to a nondegenerate pairing Hs(X) ×H−s(X) →C.

Proof. This can be reduced to the case on Tn+ via the coordinate charts (Ui, ψi) and partition of unity χi used to define 
Hs(X). �

Thus H−s(X) is naturally identified with the antidual of Hs(X) via the inner product induced by μ on H0(X). When 
0 < ν < 1, it is also possible to show that the maps

u �→ u−(0, ·), u �→ 2νu+(0, ·)
for u ∈Fν(X) satisfying (4.22) admit continuous extensions γ∓ such that

γ∓ :Hs(X)→ Hs−1±ν(∂ X).

It is understood that γ− exists for s = 1, 2, while γ+ exists for s = 2. The spaces H̃s(X) are then defined exactly as in 
Section 4.7.

Lemma 4.25. If P ∈ Bessν(X), then the following hold.

(1) If 0 < ν < 1 and s = 0, 1, 2, then there exists C > 0 such that

‖P u‖Hs−2(X) ≤ C‖(u, γ u)‖H̃s(X)

for each u ∈Fν(X).
(2) If ν ≥ 1 and s = 0, 1, 2, then there exists C > 0 such that

‖P u‖Hs−2(X) ≤ C‖u‖Hs(X)

for each u ∈Fν(X).

As in Section 4.9, it follows that (u, γ u) �→ P u admits a unique extension to H̃s(X) for 0 < ν < 1, and u �→ P u has a 
unique continuous extension to Hs(X) for ν ≥ 1.

The parameter-dependent norms on Hs(X) are defined by replacing ‖ · ‖Hs(X) with ‖ | · ‖ |Hs(X) in Definition 4.21, and 
similarly for H̃s(X). Then P is uniformly bounded in λ with respect to these norms.

A proof of the following can be found in [29, Section 6]. It is used in Section 6 to prove the Fredholm property for certain 
boundary value problems.

Lemma 4.26 ([29, Section 6]). Let ν > 0 and μ be a density of product type near ∂ X.

(1) The inclusion H1(X) ↪→H0(X) is compact.
(2) The injection H0(X) ↪→H−1(X) induced by the L2(X; μ) inner product is compact.
(3) If 0 < ν < 1, then H̃1(X) ↪→ H̃0(Tn+) and the injection H̃0(X) ↪→ H̃1(X)′ induced by the L2(X; μ) and L2(∂ X; μ∂ X ) inner 

products are compact.

Proof. For a proof of the first statement, see [29, Section 6]. The other two cases follow by duality. �
4.11. Graph norms

Throughout this section, assume that 0 < ν < 1. Following [44, Chapter 6.1], an alternative characterization of the spaces 
H̃s(X) is given. Given s = 0, 1, 2 and a Bessel operator P , define the norm

‖u‖Hs
P (X) = ‖u‖Hs(X) + ‖P u‖Hs−2(X)

for u ∈Fν(X).
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Lemma 4.27. Give s = 0, 1, 2 there exists C > 0 such that

C−1‖u‖Hs
P (X) ≤ ‖(u, γ u)‖H̃s(X) ≤ C‖u‖Hs

P (X)

for each u ∈Fν(X).

Proof. The first inequality above holds according to Lemma 4.18. For the converse, it clearly suffices to bound

‖γ u‖Hs−ν (∂ X) ≤ C‖u‖Hs
P (X).

Fix u ∈Fν(X), and note that

‖γ u‖Hs−ν (∂ X) = ‖ Jγ u‖Hs−2+ν (∂ X).

On the other hand, if ψ ∈ H2−s−ν(∂ X) has norm one, let (v, ψ) = K̃ψ ∈ H̃2−s(X), where K̃ : H2−s−ν(∂ X) → H̃2−s(X) is the 
map defined in Lemma A.3. Applying Green’s formula,

|
〈

Jγ u,ψ
〉
∂ X
| = | 〈P u, v〉X −

〈
u, P∗(v,ψ)

〉
X
|

≤ C1(‖P u‖Hs−2(X) + ‖u‖Hs(X))‖K̃ψ‖H̃2−s(X) ≤ C2‖u‖Hs
P (X),

whence it follows that ‖(u, γ u)‖H̃s(X) ≤ C‖u‖Hs
P (X) for some C > 0. �

Let Hs
P (X) denote the closure of Fν(X) in the norm ‖ · ‖Hs

P (X) . Since (u, γ u), u ∈ Fν(X) is dense in H̃s(X), it follows 
from Lemma 4.27 that Hs

P (X) is naturally isomorphic to H̃s(X) via the closure of the map u �→ (u, γ u). Moreover, any 
element of Hs

P (X) can be identified with a unique pair (u, f ), where u ∈Hs(X), f ∈Hs−2(X), and P u = f in the weak 
sense (described at the end of Section 4.9).

5. Elliptic boundary value problems

This section concerns boundary value problems for Bessel operators on a compact manifold with boundary X as in 
Section 2.2. When 0 < ν < 1, these are of thee form{

P u = f on X,

T u = g on ∂ X .
(5.1)

Here P ∈ Bessν(X) is a Bessel operator which is elliptic in the sense of Section 2.4 on ∂ X , and

T = T+γ+ + T−γ−
for some differential operators T± on the boundary, to be specified in the next section. The boundary operator T is only 
relevant when 0 < ν < 1. When ν ≥ 1, one considers the simpler equation

P u = f on X .

To highlight the difference between the cases 0 < ν < 1 and ν ≥ 1, fix p ∈ ∂ X and consider the model equation on R+
determined by the boundary symbol operator,

P̂ (p,η)u = f , (5.2)

referring to Section 2.4 for notation. Suppose that P is elliptic at p ∈ ∂ X . Any two solutions to the equation (5.2) differ by 
an element of the kernel of P̂ (p,η) . If u ∈ ker P̂ (p,η) satisfies u ∈ L2((1, ∞)), then necessarily u ∈M+(p, η). On the other 
hand, if ν is not an integer, then

Kν(s)= π
2

I−ν(s)− Iν(s)

sin(νπ)
, (5.3)

where Iν is the modified Bessel function of the first kind [42, Chapter 7.8] (if ν is an integer, equality holds in the sense 
of limits). In particular, if 0 < ν < 1, then I±ν(s) =O(s±ν). Consequently ker P̂ (p,η) ∩ L2(R+) =M+(p, η), and hence P̂ (p,η)

cannot be an isomorphism between any L2 based spaces: in general, (5.2) must be augmented by boundary conditions so 
that the L2 kernel is trivial. Of course, all of these observations are classical when ν = 1

2 (boundary value problems in the 
smooth setting).

This is in contrast to the situation when ν ≥ 1. In that case, 
√

xKν(i ξ(p, η)x) is not square integrable near the origin, and 
so the L2 kernel of P̂ (p,η) is always trivial. Hence specifying f on the right-hand side of (5.2) (in an appropriate function 
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space) will uniquely determine a solution u. Thus in the case ν ≥ 1, it is not necessary to impose any boundary conditions 
apart from the square integrability requirement.

In the self-adjoint setting, the heuristic above is the limit point/limit circle criterion of Weyl on self-adjoint extensions 
of symmetric ordinary differential operators with regular singular points; see [54] for an exhaustive modern treatment, and 
[4,32] for discussions in the context of aAdS spacetimes.

5.1. Boundary conditions

This section is only relevant in the case 0 < ν < 1. Choose differential operators

T− ∈ Diff1(∂ X), T+ ∈ Diff0(∂ X),

noting that T+ is just multiplication by a smooth function on ∂ X . Then set

T = T−γ− + T+γ+.

A natural question is how to define the “leading-order” term in T . Suppose that μ ∈ {1 − ν, 2 − ν, 1 + ν} and

ord(T−)≤μ− 1+ ν, ord(T+)≤μ− 1− ν. (5.4)

Then T is said to have ν-order less than or equal to μ, written as ordν(T ) ≤μ. Note that if ordν(T ) ≤μ, then T :H2(X) →
H2−μ(∂ X) is continuous. If ordν(T ) ≤μ, define the family of operators

T̂(p,η) = σ�μ−1+ν�(T−)(p, η)γ− + σ�μ−1−ν�(T+)(p, η)γ+,

indexed by (p, η) ∈ T ∗∂ X . Thus each (p, η) ∈ T ∗∂ X gives rise to a one-dimensional boundary operator T̂(p,η) .

5.2. The boundary value problem

Although boundary value problems of the form (5.1) are ultimately of interest, for duality purposes it is convenient to 
consider a more general type of problem. Fix J ∈N, and choose

• μk ∈ {1 − ν, 2 − ν, 1 + ν} for k ∈ {1, . . . , J + 1},
• numbers τ j ∈R for j ∈ {1, . . . J }, not necessarily integers.

Let T = (T1, . . . , T J+1)
� denote a ( J + 1) × 1 matrix of boundary operators, such that ordν(Tk) ≤μk . Furthermore, for each 

k ∈ {1, . . . , J + 1} and j ∈ {1, . . . , J }, suppose Ck, j ∈ Diff∗(∂ X) is a differential operator on ∂ X such that

ord(Ck, j)≤ τ j +μk.

Let C denote the ( J + 1) × J matrix with entries Ck, j . Given these prerequisites, consider the modified boundary value 
problem{

P u = f on X,

T u + Cu = g on ∂ X,
(5.5)

where u = (u1, . . . u J ), g = (g1, . . . , g J+1) are collections of functions on ∂ X . In order to associate an operator with this 
problem, note that T u may be written in the form

T u = Gγ u,

where G is the ( J + 1) × 2 matrix

G =
⎛⎜⎝ T−1 T+1

...
...

T−J+1 T+J+1

⎞⎟⎠ .

Throughout, it is always understood that G is associated with T in this way. Finally, set μ = (μ1, . . . , μ J+1) and τ =
(τ1, . . . , τ J ). Then let P denote the map

P(u, φ, u)= (P (u, φ), Gφ + Cu).

This is also written as P = {P , T , C}.
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Lemma 5.1. The map P = {P , T , C} is bounded

P : H̃s(X)× Hs+τ (∂ X)→Hs−2(X)× Hs−μ
(∂ X)

for each s = 0, 1, 2.

Proof. The mapping properties follows from the results of Section 4.10. �
5.3. The adjoint boundary value problem

Fix a density μ which is of product type near ∂ X . Let P∗ denote the formal L2(X; μ) adjoint of P ; then P∗ is also a 
Bessel operator in light of Lemma 2.2. Let C∗, G∗ denote the formal L2(∂ X; μ∂ X ) adjoints of C, G . Define the problem⎧⎪⎨⎪⎩

P∗v = f on X,

Jγ v + G∗v = g on ∂ X,

C∗v = h on ∂ X,

(5.6)

where v = (v1, . . . , v J+1), (g, h) = (g1, g2, h1, . . .h J ) are functions on ∂ X .
Although Green’s formula (4.18) was previously only established for the formal adjoint of a Bessel operator on Tn+ , it is 

clear that (4.18) also holds here when the appropriate μ and μ∂ X inner products are substituted on X and ∂ X :

〈P u, v〉X +
〈
T u+ Cu, v

〉
(∂ X) J+1 =

〈
u, P∗v

〉
X +
〈
γ u, G∗v + Jγ v

〉
(∂ X)2

+ 〈u, C∗v
〉
(∂ X) J .

In light of this, the problem (5.6) is said to be the formal adjoint of (5.5). Also notice that (5.6) has the same form as (5.5). 
The corresponding operator is denoted by P∗ .

5.4. The Lopatinskiı̌ condition

The standard Lopatinskiı̌ condition for smooth elliptic boundary value problems (see [37,44]) has a natural generalization 
to the situation here. Begin by choosing ck, j ∈ Z (not necessarily nonnegative) such that

ord(Ck, j)≤ ck, j ≤ τ j +μk,

and then define the matrix Ĉ(y,η) with entries

(̂C(p,η))k, j = σck, j (Ck, j)(p, η).

Thus (p, η) �→ Ĉ(p,η) is a function on T ∗∂ X with values in matrices over C. Furthermore, define Ĝ(p,η) by the equality

Ĝ(p,η)γ u = T̂(p,η)u.

Definition 5.2. Suppose P is elliptic on ∂ X . The boundary operators (T , C) are said to satisfy the Lopatinskiı̌ condition with 
respect to P if for each fixed p ∈ ∂M and η ∈ T ∗p∂ X \ 0, the only element (u, u) ∈M+(p, η) ×C

J satisfying

T̂(p,η)u + Ĉ(p,η)u = 0

is the trivial solution (u, u) = 0. The boundary value problem (5.5), or equivalently the operator P = {P , T , C}, is said to be 
elliptic on ∂ X if P is elliptic on ∂ X in the sense of Definition 2.3 and (T , C) satisfy the Lopatinskiı̌ condition on ∂ X with 
respect to P .

It is easy to see that the generalized Dirichlet condition T = γ− and Neumann condition T = γ+ satisfy the Lopatinskiı̌ 
condition with respect to any elliptic Bessel operator. The same is therefore true for the Robin condition T = γ+ + T−γ− , 
where T− ∈ Diff0(∂ X). On the other hand, when T− is allowed to be a first-order operator, there are phenomena not present 
for smooth boundary value problems; the following two examples illustrate some possibilities.

Example 5.3. Consider a boundary condition T = γ+ + T−γ− , where T− is a nonzero vector field on ∂ X .

(1) If 1/2 < ν < 1, then T̂(p,η) = γ+ for arbitrary T− . Thus T satisfies the Lopatinskiı̌ conditions with respect to any elliptic 
Bessel operator.

(2) If ν = 1/2, then T is a classical oblique boundary condition. The Lopatinskiı̌ condition is satisfied if T− is a real vector 
field for example, but can otherwise fail.
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(3) If 0 < ν < 1/2, then

T̂(p,η) = σ1(T−)(p, η)γ−.

Since σ1(T−)(p, η) is linear in η, it must have a nontrivial zero at each p ∈ ∂ X provided the dimension of the underlying 
manifold X is at least three (or two if T− is real). In that case the Lopatinskiı̌ condition necessarily fails at every point 
on the boundary.

Example 5.4. Consider the operator �ν = |Dν |2 + D2
y + D2

z acting on (0, 1) × T
2, where (y, z) are standard coordinates on 

T
2 = (R/2π Z)2. Clearly �ν is an elliptic Bessel operator. Consider the boundary value problem{

�νu = f ,

T u = g, u(1, ·)= 0,

where T = (∂y − ∂z)γ− . This is not a Fredholm problem, since there is an infinite-dimensional kernel: for each n ≥ 0, 
consider the function

un(x, y, z)=
(√

xKν(nx)− Kν(n)

Kν(−n)

√
xKν(−nx)

)
ein(y+z).

The family {un} is linearly independent and each un solves the boundary value problem. If 0 < ν < 1/2, then T ′ = γ+ + T is 
a compact perturbation of the original problem; thus the problem with T ′ replacing T is not Fredholm either. If 1/2 ≤ ν < 1, 
then the problem with T ′ satisfies the Lopatinskiı̌ condition, so is indeed Fredholm by the arguments in Section 6.

Before proceeding with the next lemma, suppose that P ∈ Bessν(X) and μ is a density of product type near ∂ X . If P is 
elliptic at p ∈ ∂ X , then so is P∗ , since the function (2.4) is simply replaced by its complex conjugate.

Lemma 5.5. Suppose that P = {P , T , C} is elliptic. If μ is a density of product type near ∂ X and P∗ is the corresponding adjoint 
boundary value problem, then P∗ is also elliptic.

Proof. Since ellipticity only depends on various “principal symbols”, it is easy to see that

P̂∗(p,η) = P̂∗(p,η),

where the latter adjoint is calculated with respect to the standard L2(R+) inner product. Similarly

T̂ ∗(p,η) = T̂ ∗(p,η), Ĉ∗(p,η) = Ĉ∗(p,η),

where the latter adjoints are taken in the sense of matrices over C.
Suppressing the dependence on (p, η), Green’s formula (4.18) implies that

〈 P̂ u, v〉R+ + 〈T̂ u + Ĉu, v〉C J+1 = 〈u, P̂∗v〉X + 〈γ u, Ĝ∗v + Jγ v〉C2 + 〈u, Ĉ∗v〉C J .

The goal is to prove that if v ∈ L2(R+) and the right-hand side vanishes, then (v, v) = 0. The proof relies on Lemma 5.9
below (whose proof is of course independent of the present lemma). As in the proof of Lemma 5.9, the Lopatinskiı̌ condition 
implies that

(u, u) �→ T̂ u + Ĉu

is an isomorphism between the spaces M+ ×C
J →C

J+1. So choose (u, u) ∈M+ ×C
J such that

T̂ u+ Ĉu = v.

Since P̂ u = 0, it follows from Green’s formula that v = 0. On the other hand, from Lemma 5.9 it is always possible to solve 
the inhomogeneous equation{

P̂ u = v,

T̂ u + Ĉu = 0,

whence Green’s formula implies that v = 0 as well. �
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5.5. The Dirichlet Laplacian

The results of this section are applied in one dimension to Section 5.7. Define the Bessel operator �ν ∈ Bessν(Tn+) by

�ν = |Dν |2 +�Tn−1 ,

where �Tn−1 =∑n−1
i=1 D2

yi is the non-negative Laplacian on Tn−1. Consider the continuous, non-negative Hermitian form

�(u, v) := 〈Dνu, Dν v〉Tn+ +
n−1∑
i=1

〈
D yi u, D yi u

〉
T

n+
(5.7)

on Ḣ1(Tn+). Associated with this form is the unbounded self-adjoint operator L on L2(Tn+) with domain

D(L)= Ḣ1(Tn+)∩ {u ∈ L2(Tn+) :�νu ∈ L2(Tn+)}, (5.8)

and Lu =�νu in the sense of distributions for each u ∈ D(L). The domain D(L) is equipped with the graph norm.

Remark 5.6. In one dimension, it is obvious that D(L) = H2(R+) ∩ Ḣ1(R+), with an equivalence of norms via the open 
mapping theorem. This is also true in higher dimensions, but is not immediate from the definition.

The next lemma follows from the Lax–Milgram theorem.

Lemma 5.7. Let ν > 0. For each a ∈C \ (−∞, 0] the inverse (L + a)−1 exists, and maps

(L + a)−1 :
{
Ḣ1(Tn+)′ → Ḣ1(Tn+),

L2(Tn+)→ D(L).

Proof. Since a /∈ (−∞, 0] the form �a(u, v) = �(u, v) +a 〈u, v〉Tn+ is coercive on Ḣ1(Tn+), so �a(u, v) defines an inner product 
on Ḣ1 equivalent to the usual one. The Lax–Milgram theorem guarantees that for each f ∈ Ḣ1(Tn+)′ there exists a unique 
u ∈ Ḣ1(Tn+) such that �a(u, v) = 〈 f , v〉, and the mapping u �→ f is continuous Ḣ1(Tn+)′ → Ḣ1(Tn+).

Furthermore, the unbounded operator associated with �a is clearly L + a (acting in the distributional sense) so L + a :
D(L) → L2(Tn+) is bijective. Since this map is continuous when D(L) is equipped with the graph norm, it is an isomorphism 
by the open mapping theorem. �
5.6. Elliptic Bessel operators on R+

In this section, fix an operator P on R+ of the form

P = |Dν |2 + a, a ∈C. (5.9)

Thus ξ �→ ξ2 + a has no real roots precisely when a /∈ (−∞, 0]. In that case, P is said to be regular. This is distinguished 
from ellipticity of P since the principal symbol of multiplication by a as a second-order operator is zero (in other words, 
the boundary symbol operator is |Dν |2 and not |Dν |2+a). Furthermore, if 0 < ν < 1, fix boundary conditions (T , C). Thus T
is just a column vector of J boundary operators Tk =∑± T±k γ± with T±k ∈C, and C is a ( J + 1) × J matrix with C-valued 
entries.

Regularity of the operator P = {P , T , C} is defined as just the Lopatinskiı̌ condition: let M+ denote the space of 
bounded solutions to the equation P u = 0. Then P is regular if the only element (u, u) ∈M+ ×C

J satisfying T u + Cu = 0
is the trivial solution.

Proposition 5.8. Suppose that P given by (5.9) is regular, and that P = {P , T , C} is regular if 0 < ν < 1.

(1) If 0 < ν < 1, then P is an isomorphism

H̃s(R+)×C
J →Hs−2(R+)×C

1+ J

for each s = 0, 1, 2. The operator norm of P−1 depends continuously on a and the coefficients of G and C.
(2) If ν ≥ 1, then P is an isomorphism

Hs(R+)→Hs−2(R+)

for each s = 0, 1, 2. The operator norm of P−1 depends continuously on a.

The proof of this proposition is split up across several lemmas.
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Lemma 5.9. Proposition 5.8 holds when 0 < ν < 1 and s = 2.

Proof. Since H̃2(R+) is isomorphic to H2(R+) via the map v �→ (v, γ v), it is sufficient to prove the lemma with H2(R+)

replacing H̃2(R+). By the regularity condition, P is injective. Indeed any solution in H2(R+) to the equation P u = 0 must 
lie in M+ , and the Lopatinskiı̌ condition implies that such a solution is unique. It remains to show surjectivity.

Fix ( f , g) ∈H0(R+) ×C
J+1. From Lemma 5.7, it follows that the equation

P u = f

has a solution u1 ∈H2(R+) ∩ Ḣ1(R+). It then suffices to let (u2, u) ∈M+ ×C
J solve{

P u2 = 0,

T u2 + Cu = g − T u1.

This is possible since

(u, u) �→ T u + Cu

as a map between the finite-dimensional vector spaces M+ × C
J → C

J+1 is injective, hence an isomorphism. Setting 
u = u1+ u2 shows that P(u, u) = ( f , g). It is also easy to see that the operator norm of P depends continuously on a and 
the coefficients of G and C , which implies the same for the operator norm of P−1 via the resolvent identity. �
Lemma 5.10. Proposition 5.8 holds when 0 < ν < 1 and s = 0.

Proof. Since the formal adjoint operator P∗ is also regular according to Lemma 5.5, the map

H2(R+)×C
1+ J →H0(R+)×C

2 ×C
J

given by

(v, v) �→ (P∗v, Jγ v + G∗v, C∗v)

is an isomorphism according to Lemma 5.9. But in that case, a direct calculation shows that P∗ agrees with the Hilbert 
space adjoint P ′ of

P : H̃0(R+)×C
J →H−2(R+)×C

1+ J .

Since P ′ is an isomorphism, P is an isomorphism on the stated spaces as well. �
To prove Proposition 5.8 for s = 1, the following regularity result is needed.

Lemma 5.11. Let 0 < ν < 1. Suppose that (u, φ) ∈ H̃0(R+) satisfies P (u, φ) ∈H−1(R+). Then (u, φ) ∈ H̃1(R+).

Proof. Let f ∈ Ḣ1(R+)′ denote the restriction of the functional P (u, φ) to Ḣ1(R+). This implies that f = P u in the sense of 
distributions. By Lemma 5.7, there exists a unique ũ ∈ Ḣ1(R+) such that P ũ = f in the distributional sense. Thus in sense 
of distributions on R+ ,

P (u− ũ)= 0.

Since u and ũ are square integrable, it follows that u − ũ ∈M+ . Thus it is certainly true that

u = (u − ũ)+ ũ ∈H1(R+).

It remains to prove that φ− = γ−u. A priori (u, φ) ∈ H̃0(R+), so for each v ∈H2(R+),

〈 f , v〉R+ = 〈u, P∗v〉R+ − φ+(γ−v)+ φ−(γ+v).

Using that u ∈H1(R+), this may be rewritten as

〈 f , v〉R+ − 〈Dνu, Dν v〉R+ − a〈u, v〉R+ + φ+(γ−v)= (φ− − γ−u)γ+v

for each v ∈ H2(R+). But the left-hand side extends to a continuous functional on H1(R+), which is not true of the 
right-hand side unless φ− = γ−u, thus completing the proof. �
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Lemma 5.12. Proposition 5.8 holds when 0 < ν < 1 and s = 1.

Proof. The regularity result of Lemma 5.11 combined with Lemma 5.10 shows that P defines a continuous bijection, hence 
an isomorphism

H̃1(R+)×C
J →H−1(R+)×C

J+1

as stated. �
Lemma 5.13. Proposition 5.8 holds when ν ≥ 1.

Proof. If ν ≥ 1, then Hs(R+) = Ḣs(R+) for s ≥ 0. Thus it suffices to apply Lemma 5.7 directly when s = 1, 2. The case s = 0
is handled by duality, similar to 5.10. �
Proof of Proposition 5.8. The combination of Lemmas 5.9, 5.12, 5.10, and 5.13 establishes Proposition 5.8 �
5.7. Elliptic Bessel operators on Tn+ with constant coefficients

Throughout this section, P denotes a constant coefficient Bessel operator on Tn+ ,

P (Dν, D y)= |Dν |2 + A(D y). (5.10)

If 0 < ν < 1, then P is also augmented by boundary conditions (T , C) with constant coefficients: thus each boundary 
operator is of the form Tk(D y) =∑± T±k (D y)γ± , and each entry of C(D y) has constant coefficients.

The principal part of P is the operator

P ◦(Dν, D y)= |Dν |2 + A◦(D y),

where A◦(D y) is the usual principal part of A. The principal parts of (T (D y), C(D y)) are defined to be the unique boundary 
operators (T ◦(D y), C◦(D y)) satisfying

T ◦(η)= T̂η, C◦(η)= Ĉη

for each η ∈ Rn−1. Finally, define P◦(Dν, D y) = {P ◦(Dν, D y), T ◦(D y), C◦(D y)}. Ellipticity of either P or P depends only 
on these principal parts.

Lemma 5.14. Assume that P and P are elliptic. Furthermore, assume that the one-dimensional operators P (Dν, q) (if ν ≥ 1) and 
P(Dν, q) (if 0 < ν < 1) are regular for each q ∈Zn−1 .

(1) If 0 < ν < 1, then

P :H2(Tn+)× H2+τ (Tn−1)→H0(Tn+)×H2−μ
(Tn−1)

is an isomorphism.
(2) If ν ≥ 1, then

P :H2(Tn+)→H0(Tn+)

is an isomorphism.

Proof. (1) Let 0 < ν < 1. By ellipticity,

P◦(Dν, 〈q〉−1 q) :H2(R+)×C
J →C

1+ J

is an isomorphism for each q ∈ Z
n−1 \ 0, as in the proof of Lemma 5.9. Since 〈q〉−1 q ranges over a compact subset of 

R
n−1, the operator norm of P◦(Dν, 〈q〉−1 q)−1 is bounded uniformly with respect to q ∈ Zn−1 \ 0. On the other hand, the 

homogeneity of P ◦ implies

τ−2 S−τ P ◦(Dν, D y)Sτ = P ◦(Dν, τ−1 D y), τ−μ+1/2T ◦(D y)Sτ = T ◦(τ−1 D y).

Using τ = 〈q〉, this implies that the operator norm corresponding to the problem{
〈q〉−2 S〈q〉−1 P (Dν,q)S〈q〉v = φ,

〈q〉−μk+1/2 T (q)S〈q〉v +∑ J 〈q〉−τ j−μk Ck, j(q)v =ψ
i=1
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tends to that of P◦(Dν, 〈q〉−1 q) as |q| →∞. Combined with the regularity assumption, the former problem is invertible for 
all q ∈ Zn−1 with an inverse whose operator norm is uniformly bounded in q. Apply this invertibility result to the functions

v = S〈q〉−1 û(q), v = (〈q〉τ1+1/2 û1(q), . . . , 〈q〉τ J+1/2 û J (q)).

This implies that

‖S〈q〉−1 û(q)‖2
H2(Tn+)

+ 〈q〉1+2τ ‖û(q)‖2
C J ≤ C(〈q〉−4 ‖S〈q〉−1 P (Dν,q)û(q)‖2

H0(Tn+)

+ 〈q〉1−2μ ‖T (q)û(q)+ Ck, j(q)û(q)‖2
C J+1). (5.11)

From (5.11) it follows that P is injective. Now multiply this equation by 〈q〉2s−1 = 〈q〉3 and sum over q ∈ Z
n−1. Then 

Lemma 4.8 shows that the Fourier series for (u, u) converges in H2(Tn+) × H2+τ (Tn−1). Combined with the fact that 
P(Dν, q) is invertible for each q ∈ Zn−1, this shows that P is surjective.

(2) The proof when ν ≥ 1 follows as above, disregarding the boundary operators. �
Corollary 5.15. Assume that P and P are elliptic. Furthermore, assume that the one-dimensional operators P (Dν, q) (if ν ≥ 1) and 
P(Dν, q) (if 0 < ν < 1) are regular for each q ∈Zn−1 .

(1) If 0 < ν < 1, then

P : H̃s(Tn+)× Hs+τ (Tn−1)→Hs−2(Tn+)×Hs−μ
(Tn−1)

is an isomorphism for s = 0, 1, 2.
(2) If ν ≥ 1, then

P :Hs(Tn+)→Hs−2(Tn+)

is an isomorphism for s = 0, 1, 2.

Proof. (1) It remains to handle the cases s = 0, 1. First consider s = 0. As in the proof of Lemma 5.10, the formal adjoint

P∗ :H2(Tn+)× Hμ
(Tn−1)→H0(Tn+)× Hν(Tn−1)× H−τ (Tn−1)

agrees with the adjoint of

P : H̃0(Tn+)× Hτ (Tn−1)→H−2(Tn+)× H−μ
(Tn−1).

Now P∗ satisfies the same hypotheses as P in regards to the application of Lemma 5.14, so is an isomorphism. This 
implies that P ′ is an isomorphism, hence so is P on the stated spaces.

The case s = 1 follows from (5.11) combined with Lemma 5.12: indeed, multiplying the analogue of (5.11) by 〈q〉2s−1 =
〈q〉 and using the invertibility result from Lemma 5.12 shows that P is surjective on H̃1(Tn+) × H1+τ (Tn+) (as well as 
injective by the s = 0 case).

(2) As usual, when ν ≥ 1 the proof follows by dropping the boundary terms. �
Remark 5.16. If P (Dν, D y) is elliptic, then P ◦(Dν, D y + 1

2 ) satisfies the hypotheses of Lemma 5.14. Similarly, if 0 < ν < 1
and P(Dν , D y) is elliptic, then P◦(Dν, D y + 1

2 ) also satisfies the hypotheses of Lemma 5.14.

5.8. Elliptic Bessel operators on Tn+ with variable coefficients

In this section, let P be a Bessel operator on Tn+ of the form

P (x, y, Dν, D y)= |Dν |2 + B(x, y, D y)Dν + A(x, y, D y),

where the coefficients of A, B are constant outside a compact subset of Tn+ . If 0 < ν < 1, then P is also augmented by 
boundary conditions (T (y, D y), C(y, D y)). Introduce the notation

P (0)(Dν, D y) := P ◦(0,0, Dν, D y + 1
2 ),

T (0)(D y)= T ◦(0, D y + 1
2 ), C (0)(D y)= C◦(0, D y + 1

2 ).

According to Lemma 5.14, if P and P are elliptic, then P (0) (if ν ≥ 1) and P(0) (if 0 < ν < 1) are isomorphisms on the 
appropriate spaces.
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Given ρ > 0, define the Fourier multiplier Kρ = 1|x|≥ρ(D y). This operator acts both on Sobolev spaces Hm(Tn−1), as well 
as on Hs(Tn+) (or H̃s(Tn+)) via the results of Section 4.6. If m > m′ then clearly

‖Kρφ‖Hm′ (Tn−1)
≤ 〈ρ〉m′−m ‖φ‖Hm(Tn−1) (5.12)

for φ ∈ Hm(Tn−1). Similarly,

‖Kρu‖Hs(Tn+) ≤ C 〈ρ〉−|α| ‖Dα
y u‖Hs(Tn+) ≤ C 〈ρ〉−|α| ‖u‖Hs+|α|(Tn+) (5.13)

for u ∈Hs(Tn+), provided s + |α| ≤ 2. A similar statement holds for (u, φ) ∈ H̃s(Tn+).

Lemma 5.17. Assume that P and P are elliptic at Tn−1 . Then there exists δ > 0 such that the following hold.

(1) Let 0 < ν < 1 and s = 0, 1, 2. Suppose that (u, φ, u) ∈ H̃s(Tn+) × Hs+τ (Tn−1) satisfies

supp u ⊆ {(x, y) ∈ Tn+ : |x| + |y|< δ},
suppφ ⊆ {y ∈ Tn−1 : |y|< δ}, supp u ⊆ {y ∈ Tn−1 : |y|< δ}.

Then

‖(u, φ, u)‖H̃s(Tn+)×Hs+τ (Tn−1) ≤ C(‖P(u, φ, u)‖Hs−2(Tn+)×Hs−μ
(Tn−1)

+ ‖(u, φ, u)‖H̃s−1(X)×Hs−1+τ (Tn−1)), (5.14)

where C > 0 does not depend on (u, φ, u). In addition, if s = 0, 1 and

P(u, φ, u) ∈Hs−1(Tn+)×Hs−μ+1
(Tn−1),

then (u, φ, u) ∈ H̃s+1(Tn+) × Hs+τ+1(Tn+).

(2) Let ν ≥ 1 and s = 0, 1, 2. Suppose that u ∈H2(Tn+) satisfies

supp u ⊆ {(x, y) ∈ Tn+ : |x| + |y|< δ}.
Then

‖u‖Hs(Tn+) ≤ C(‖P u‖Hs−2(Tn+) + ‖u‖Hs−1(Tn+)),

where C > 0 does not depend on u. In addition, if s = 0, 1 and P u ∈Hs−1(Tn+), then u ∈Hs+1(Tn+).

Proof. (1) For concreteness, assume that s = 1 and P(u, φ, u) ∈H0(Tn+) × H2−μ
(Tn−1). If ( f , g) =P(u, φ, u), consider the 

identity

P(0)(u, φ, u)+ (P −P(0))(Kρ(u, φ), Kρu)= ( f , g)− (P −P(0))((1− Kρ)(u, φ), (1− Kρ)u). (5.15)

Noting that the term (P − P (0))(u, φ) depends only on u (and not on φ), it follows from Lemmas 4.15, 4.17 and (5.13) that

‖(P − P (0))Kρu‖H0(Tn+) ≤ C1δ‖u‖H2(Tn+) + C2‖Kρu‖H1(Tn+)

≤ (C1δ+ C2 〈ρ〉−1)‖(u, φ)‖H̃2(Tn+)

for positive constants C1, C2 independent of ρ . By standard interpolation inequalities on Hm(Tn−1),

‖(Tk − T (0)

k )Kρφ‖H2−μk (Tn−1) ≤ C3δ‖φ‖H2−ν (Tn−1) + C4‖Kρφ‖H1−ν (Tn−1)

≤ (C3δ + C4 〈ρ〉−1)C5‖(u, φ)‖H̃2(Tn+).

For this, one should consider the cases 0 < ν < 1/2, ν = 1/2, and 1/2 < ν < 1 separately, but they all yield the same type 
of the estimate. Similarly,

‖(C − C (0))Kρu‖H2−μ
(Tn−1)

≤ (C6δ+ C7 〈ρ〉−1)‖u‖Hs+τ (Tn−1).

These inequalities imply that the operator norm of

(u, φ, u) �→ (P −P(0))(Kρ(u, φ), Kρu)
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can be made arbitrarily small by choosing δ > 0 small and ρ > 0 large. Since P(0) is invertible with domain H̃2(Tn+) ×
H2+τ (Tn−1), it follows that the operator on the left-hand side of (5.15) is invertible for δ small and ρ large.

On the other hand, the map

(u, φ, u) �→ (P −P(0))((1− Kρ)(u, φ), (1− Kρ)u)

is bounded H̃1(Tn+) × H1+τ (Tn−1) →H0(Tn+) × H2−μ
(Tn−1). In particular, (u, φ, u) ∈ H̃2(Tn+) × H2+τ (Tn−1), and the esti-

mate (5.14) holds. Of course, this also implies that (5.14) holds for arbitrary (u, φ, u) ∈ H̃2(Tn+) × H2+τ (Tn−1) as well. The 
exact same argument establishes the regularity result for s = 0, as well as (5.14) for s = 0, 1.

(2) As usual, the case ν ≥ 1 can be handled by a simpler argument not involving the boundary operators. �
Lemma 5.17 can be semi-globalized via a partition of unity argument.

Corollary 5.18. Assume that P and P are elliptic at Tn−1 . There exists δ > 0 such that if ϕ, χ ∈ C∞c ([0, δ)) satisfy ϕ = 1 near x = 0
and χ = 1 near suppϕ , then the following hold.

(1) Let 0 < ν < 1 and s = 0, 1, 2. Then

‖ϕ(u, φ, u)‖H̃s(Tn+)×Hs+τ (Tn−1) ≤ C(‖ϕP(u, φ, u)‖Hs−2(Tn+)×Hs−μ
(Tn−1)

+ ‖χ(u, φ, u)‖H̃s−1(Tn+)×Hs−1+τ (Tn−1)) (5.16)

for each (u, φ, u) ∈ H̃s(Tn+) ×Hs+τ (Tn−1). In addition, if s = 0, 1 and

ϕP(u, φ, u) ∈Hs−1(Tn+)×Hs−μ+1
(Tn−1),

then ϕ(u, φ, u) ∈ H̃s+1(Tn+) × Hs+τ+1(Tn−1).
(2) Let ν ≥ 1 and s = 0, 1, 2. Then

‖ϕu‖Hs(Tn+) ≤ C(‖ϕP u‖Hs−2(Tn+) + ‖χu‖Hs−1(Tn+)) (5.17)

for each u ∈Hs(Tn+). In addition, if s = 0, 1 and ϕP u ∈Hs−1(Tn+), then ϕu ∈Hs+1(Tn+).

Sketch of proof for 0 < ν < 1. By compactness of Tn−1 it is possible to choose δ and a finite cover Tn−1 =⋃i U i such 
that Lemma 5.17 is valid for (u, φ, u) supported in [0, δ) × Ui . Fix a partition of unity βi subordinate to Ui , and choose γi

supported in Ui that γi = 1 on suppβi . For ϕ, χ as in the statement of the corollary,

‖ϕ(u, φ, u)‖H̃s(Tn+)×Hs+τ (Tn−1) ≤ C1‖ϕP(u, φ, u)‖
Hs(Tn+)×Hs−μ(Tn−1)

+
∑

i

‖[P, βiϕ]γiχ(u, φ,μ)‖
Hs(Tn+)×Hs−μ(Tn−1)

+ C2‖ϕ(u, φ, u)‖Hs−1(Tn+)×Hs−1+τ (Tn−1).

Writing ϕi = βiϕ , the commutator [P, βi ϕ] is given by

(u, φ, u) �→ (P (ϕiu, βiφ)− ϕi P (u, φ), [G, βi]φ + [C, βi]u).

It is then straightforward to check that this operator has the requisite mapping properties. The regularity statement is 
established in the same way. �
Remark 5.19. As usual, the norms of the lower-order terms on the right-hand sides of (5.16), (5.17) can be taken in less 
regular Sobolev spaces by iterating Corollary 5.18. Similarly, the regularity result can also be iterated.

5.9. Elliptic Bessel operators on a compact manifold with boundary

The main theorem in this section establishes elliptic estimates and elliptic regularity for elliptic Bessel operators on a 
compact manifold with boundary X .

Theorem 5.1. Let X be a compact manifold with boundary as in Section 2.2. Assume that

P ∈ Bessν(X)
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is elliptic at ∂ X in the sense of Section 2.4. If 0 < ν < 1, then assume P is augmented by boundary conditions (T , C) such that 
P = {P , T , C} is elliptic at ∂ X. There exists δ > 0 such that if ϕ, χ ∈ C∞c ({0 ≤ x < δ}) satisfy ϕ = 1 near ∂ X and χ = 1 near suppϕ , 
then the following hold.

(1) Let 0 < ν < 1 and s = 0, 1, 2. Then

‖ϕ(u, φ, u)‖H̃s(X)×Hs+τ (∂ X) ≤ C(‖ϕP(u, φ, u)‖Hs−2(X)×Hs−μ
(∂ X) + ‖χ(u, φ, u)‖H̃s−1(X)×Hs−1+τ (∂ X)) (5.18)

for each (u, φ, u) ∈ H̃s(X) ×Hs+τ (∂ X). In addition, if s = 0, 1 and

ϕP(u, φ, u) ∈Hs−1(X)×Hs−μ+1
(∂ X),

then ϕ(u, φ, u) ∈ H̃s+1(X) × Hs+τ+1(∂ X).
(2) Let ν ≥ 1 and s = 0, 1, 2. Then

‖ϕu‖Hs(X) ≤ C(‖ϕP u‖Hs−2(X) + ‖χu‖Hs−1(X)) (5.19)

for each u ∈Hs(X). In addition, if s = 0, 1 and ϕP u ∈Hs−1(X), then ϕu ∈Hs+1(X).

Proof. The global problem may be reduced to a local problem on Tn+ via coordinate charts and a partition of unity. �
As in the remark following Corollary 5.18, the error terms in Theorem 5.1 can taken in weaker Sobolev spaces by iteration.
Recall the definition of Hs

P (X) in Section 4.11. Theorem 5.1 can be used to show that Hs
P (X) (or equivalently H̃s(X)) may 

be identified with the space of all pairs (u, f ) ∈Hs(X) ×Hs−2(X) such that P u = f in the weak sense (cf. [44, Chapter 6.1]).

Lemma 5.20. Let 0 < ν < 1, and suppose that P is elliptic at ∂ X. Then for s = 0, 1, 2,

Hs
P (X)= {(u, f ) ∈Hs(X)×Hs−2(X) : P u = f weakly},

where the space on the right-hand side is equipped with the Hs
P (X) norm.

Proof. As in the remark following Lemma 4.27, Hs
P (X) is contained in the space on the right-hand side. For the converse, 

suppose that u ∈Hs(X) and f = P u ∈Hs−2(X) weakly. Consider the functional

�(ψ)=
〈
u, P∗(v,ψ)

〉
X
− 〈 f , v〉X , ψ ∈ H2−s−ν(∂ X),

where v ∈H2−s(X) is any element such that (v, ψ) ∈ H̃2−s(X). Since P u = f weakly, it follows from Lemma A.2 that �
is well defined (namely it does not depend on the choice of v). In particular, one may take (v, ψ) = K̃ψ , where K̃ is a 
bounded right inverse as in Lemma A.3. Thus

�(ψ)≤ C1‖u‖Hs
P (X)(‖K̃ψ‖H̃2−s(X) + ‖ψ‖H2−s−ν (∂ X))≤ C2‖u‖Hs

P (X)‖ψ‖H2−s−ν (∂ X).

By the Riesz theorem, there exists a unique φ ∈ H s−ν(∂ X) such that〈
u, P∗(v,ψ)

〉
X
− 〈 f , v〉X =

〈
Jφ,ψ

〉
∂ X

for each (v, ψ) ∈ H̃2−s(X). Consider the pair (u, φ); a priori this is an element of H̃0(X). On the other hand, for each 
v ∈Fν(X) (taking ψ = γ v),〈

P (u, φ), v
〉

X
= 〈u, P∗v

〉
X +
〈
φ, Jγ v

〉
∂ X

= 〈 f , v〉X ,

so P (u, φ) = f . Since f ∈ Hs−2(X) and φ− ∈ Hs−1+ν(∂ X), Theorem 5.1 implies that (u, φ) ∈ H̃s(X) since the boundary 
value problem {P , γ−} is elliptic at ∂ X . According to Lemma 4.27, this means that the pair (u, f ) can be identified with an 
element of Hs

P (X). �
Suppose that P is elliptic at ∂ X and let s = 0, 1. If u ∈Hs(X) and P u ∈H0(X) in distributions, then there is a canonical 

f ∈Hs−2(X) such that P u = f weakly, namely the element P u ∈H0(X) ↪→Hs−2(X) itself. According to Lemma 5.20, with 
this choice of f there is a uniquely associated φ ∈Hs−ν(∂ X) such that

P (u, φ)= P u,
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and the norm ‖(u, φ)‖H̃s(X) is equivalent to ‖u‖Hs(X) +‖P u‖H2−s(X) . Adding ‖P u‖H0(X) to both of these norms shows that 
the spaces

{u ∈Hs(X) : P u ∈H0(X)} and {(u, φ) ∈ H̃s(X) : P (u, φ) ∈H0(X)}
coincide, with an equivalence between the natural graph norms. This will be exploited in Section 6.1.

5.10. Parameter-elliptic boundary value problems

This section concerns elliptic estimates for parameter-dependent Bessel operators. The exposition is deliberately brief, 
since most of the definitions and facts in this section are straightforward adaptations from the non-parameter-dependent 
setting. In particular the main theorem of this section, Theorem 5.2, is stated without proof. The interested reader is referred 
to [44, Chapter 9] for an indication of how the proofs should be modified in the parameter-dependent setting.

Fix a compact manifold with boundary X with the usual data of a boundary defining function and collar diffeomorphism. 
Let P (λ) ∈ Bess(λ)

ν (X) be a parameter-dependent Bessel operator; if 0 < ν < 1, then P (λ) is augmented by boundary condi-
tions as in Section 5.2. The boundary conditions themselves may depend on the spectral parameter λ, namely one considers 
(T (λ), C(λ)) where

Tk(λ)=
∑
±

T±k (λ)γ±, T−k (λ) ∈ Diff1
(λ)(∂ X), T+k (λ) ∈ Diff0

(λ)(∂ X),

and Ck, j(λ) ∈ Diff∗(λ)(∂ X). It is necessary to formulate a parameter-dependent Lopatinskiı̌ condition for (T (λ), C(λ)). Suppose 
that μk ∈ {1 − ν, 2 − ν, 1 + ν} and

ord(λ)
ν (Tk(λ))≤μk.

Here the order of T with respect to ν is defined in the parameter-dependent sense, namely factors of λ are given the same 
weight as a derivative tangent to ∂ X . Define the family of operators

(T̂(p,η;λ))k = σ
(λ)
�μk−1+ν�(T−(λ))(p, η;λ)γ− + σ

(λ)
�μk−1−ν�(T+(λ))(p, η;λ)γ+,

indexed by (p, η, λ) ∈ T ∗∂ X × C. Thus each (p, η, λ) ∈ T ∗∂ X × C gives rise to a one-dimensional boundary operator 
(T̂(p,η;λ))k .

Next, choose ck, j ∈ Z such that

ord(λ)(Ck, j(λ))≤ ck, j ≤ τ j +μk,

and then define the matrix Ĉ(y,η) with entries

(̂C(p,η;λ))k, j = σ
(λ)
ck, j

(Ck, j(λ))(p, η;λ).

Again the order of Ck, j(λ) is taken in the parameter-dependent sense.

Definition 5.21. Suppose that P (λ) is parameter-elliptic on ∂ X with respect to an angular sector �. The boundary operators 
(T (λ), C(λ)) are said to satisfy the parameter-dependent Lopatinskiı̌ condition with respect to P and � if for each p ∈ ∂ X
and (η, λ) ∈ T ∗p∂ X ×� \ 0, the only element (u, u) ∈M+(p, η, λ) ×C

J satisfying

T̂(p,η,λ)u+ Ĉ(p,η,λ)u = 0

is the trivial solution (u, u) = 0. The operator P(λ) = {P (λ), T (λ), C(λ)}, is said to be parameter elliptic if P (λ) is parameter-
elliptic and (T (λ), C(λ)) satisfy the parameter-dependent Lopatinskiı̌ condition on ∂ X with respect to P (λ) and �.

In the notation of Theorem 5.1, the main theorem of this section is the following. As remarked in the introduction to 
this section, it is provided without proof.

Theorem 5.2. Let X be a compact manifold with boundary as in Section 2.2. Assume that

P (λ) ∈ Bess(λ)
ν (X)

is parameter-elliptic at ∂ X with respect to an angular sector � in the sense of Section 2.5. If 0 < ν < 1, then assume P (λ) is augmented 
by parameter-dependent boundary conditions (T (λ), C(λ)) such that P(λ) = {P (λ), T (λ), C(λ)} is elliptic at ∂ X with respect to �. 
There exists δ > 0 such that if ϕ, χ ∈ C∞c ({0 ≤ x < δ}) satisfy ϕ = 1 near ∂ X and χ = 1 near suppϕ , then the following hold.
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(1) Let 0 < ν < 1 and s = 0, 1, 2. Then

‖|ϕ(u, φ, u)‖|H̃s(X)×Hs+τ (∂ X) ≤ C(‖|ϕP(λ)(u, φ, u)‖|Hs−2(X)×Hs−μ
(∂ X)

+ ‖|χ(u, φ, u)‖|H̃s−1(X)×Hs−1+τ (∂ X)) (5.20)

for each (u, φ, u) ∈ H̃s(X) ×Hs+τ (∂ X) and λ ∈�.
(2) Let ν ≥ 1 and s = 0, 1, 2. Then

‖|ϕu‖|Hs(X) ≤ C(‖|ϕP (λ)u‖|Hs−2(X) + ‖|χu‖|Hs−1(X)) (5.21)

for each u ∈Hs(X) and λ ∈�.

5.11. Conormal regularity

So far only regularity at the H2 level has been discussed. Higher-order regularity is defined in terms of a scale of 
conormal Sobolev spaces relative to Hs . Let X be a compact manifold with boundary with a fixed boundary defining 
function x and collar neighborhood W . Then let Xeven denote the manifold X equipped with a new smooth structure: on 
the collar W � [0, ε)x × ∂ X , functions are smooth if in the normal direction they depend on x2 (rather than just x).

Define the Lie algebra Vb(Xeven) of smooth vector fields on Xeven which are tangent to ∂ X . In local coordinates 
x, y1, . . . , yn−1 on the collar, elements of Vb(Xeven) are C∞(Xeven) linear combinations of x∂x and ∂yi .

Lemma 5.22. Let P ∈ Bessν(X). If V ∈ Vb(Xeven) and x−1 V x|∂ X is nowhere vanishing, then there exists f ∈ C∞(X) and P̃ ∈
Bessν(X) such that

[P , V ] = f P̃

near ∂ X.

Proof. The hypothesis implies that in local coordinates

V (x, y)= a(x2, y)x∂x +
n−1∑
i=1

bi(x2, y)∂yi ,

where a(0, ·) is nowhere vanishing. Note that

[|Dν |2, x∂x] = 2|Dν |2, [Dν, x∂x] = Dν .

Also from (4.10), if a ∈ C∞(Xeven), then

[|Dν |2,a] = âxDν + ã

for â, ̃a ∈ C∞(Xeven), as well as [xDν , a] ∈ x2C∞(Xeven). The result follows immediately from these observations. �
Given k ∈N and s = 0, 1, 2, the space Hs,k(X) is defined as

Hs,k(X)= {u ∈Hs(X) : V 1 · · · Vku ∈Hs(X) for any V 1, . . . , Vk ∈ Vb(Xeven)}.
Fixing a finite generating set G for Vb(Xeven), this space can be given the topology of a Hilbert space by inductively defining 
the norms

‖u‖2
Hs,k(X)

=
∑
V∈G
‖V u‖2

Hs,k−1(X)
.

A different choice of generating set yields an equivalent norm. Note that over any compact K ⊆ X , there is an equivalence 
between functions in Hs,k(X) and Hs+k(X) which are supported on K . In addition, all of the density results which hold for 
Hs(X) also hold for Hs,k(X).

Also observe that for s = 0, 1, no evenness assumptions are required for the vector fields tangent to ∂ X in the sense that 
there is equality

Hs,k(X)= {u ∈Hs(X) : V 1 · · · Vku ∈Hs(X) for any V 1, . . . , Vk ∈ Vb(X)}.
This is because Hs(X) is closed under multiplication by arbitrary C∞(X) functions when s = 0, 1. Thus only H2,k(X) neces-
sitates the introduction of a new smooth structure on X .

A convenient generating set G = {V 0, V 1, . . . , V N} for Vb(W even) (at least near the boundary) is as follows: set V 0 = x∂x , 
and then choose a collection of vector fields V 1, . . . , V N on ∂ X which span T ∂ X . Then V 0, . . . , V N may be considered as 
vector fields on [0, ε)x × ∂ X , hence on W .
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Lemma 5.23. Let P ∈ Bessν(X) and k ∈N.

(1) If ν > 0, then P :H2,k(X) →H0,k(X) is bounded.
(2) If 0 < ν < 1 and T is a boundary operator such that ordν(T ) ≤μ, then T :H2,k(X) → Hk+2−μ(∂ X) is bounded.

Proof. (1) This follows by Lemma 5.22 and induction on k, since multiplication by f ∈ C∞(X) is bounded on each H0,k(X).
(2) Given a vector field Z on ∂ X , there exists V ∈ Vb(Xeven) such that V |∂ X = Z . Then Z(γ±u) = γ±(V u) for each 

u ∈H2,k(X); this is certainly true on Fν(X) and extends by density. �
Consider the generating set G as above. Note that the flow of V 0 is given by exp(hV 0)(x, y) = (ehx, y), where (x, y) ∈

[0, ε)x × ∂ X . Given V ∈ G , let

ρV ,hu = (u ◦ exp(hV )− u)/h

denote the associated difference quotient.
Suppose that u ∈ H2,k(X) is supported in {0 ≤ x < δ} for δ > 0 sufficiently small. Observe that there exists h0 > 0

depending on δ such that ρV 0,hu is well defined for h ∈ (0, h0); the difference quotients corresponding to V 1, . . . , V N are 
defined for all h > 0. The first step is to calculate the commutator of P with ρV 0,h; this is illustrated for [|Dν |2, ρV 0,h]. First 
note that

[∂x,ρV 0,h]u = h−1(eh − 1)(∂xu) ◦ exp(hV 0).

A short calculation gives

[|Dν |2,ρV 0,h]u = h−1(1− e2h)(|Dν |2u) ◦ exp(hV 0),

which shows that

‖[|Dν |2,ρV 0,h]u‖H0,k(X) ≤ C‖u‖H2,k(X)

for h ∈ (0, h0), where C > 0 does not depend on u or h. Continuing this calculation shows that

‖[P ,ρV ,h]u‖H0,k(X) ≤ C‖u‖H2,k(X)

for any V ∈ G . As for the boundary operators, one has

γ−(u ◦ exp(hV 0))= γ−u, γ+(u ◦ exp(hV 0))= e(1/2+ν)hγ+u,

so γ− ◦ ρV 0,h = 0 and γ+ ◦ ρV 0,h = (e(1/2+ν)h − 1)γ+u. Similarly,

‖[T ,ρV i ,h]u‖Hk+2−μ(∂ X) ≤ C‖u‖H2,k(X)

for i = 1, . . . , N , uniformly in h.

Theorem 5.3. Let X be a compact manifold with boundary as in Section 2.2. Assume that

P ∈ Bessν(X)

is elliptic at ∂ X in the sense of Section 2.4. If 0 < ν < 1, then assume P is augmented by a boundary condition T such that P = {P , T }
is elliptic at ∂ X. There exists δ > 0 such that if ϕ, χ ∈ C∞c ({0 ≤ x < δ}) satisfy ϕ = 1 near ∂ X and χ = 1 near suppϕ , then the 
following hold.

(1) Let 0 < ν < 1. If χu ∈H2(X) and χ P u ∈H0,k(X), T u ∈ Hk+2−μ(∂ X) for some k ∈N, then ϕu ∈H2,k(X). Furthermore,

‖ϕu‖H2,k(X) ≤ C
(‖χPu‖H0,k(X)×Hk+2−μ(∂ X) + ‖χu‖H0(X)

)
,

where C > 0 does not depend on u.
(2) Let ν ≥ 1. If χu ∈H2(X) and χ P u ∈H0,k(X) for some k ∈N, then ϕu ∈H2,k(X). Furthermore,

‖ϕu‖H2,k(X) ≤ C
(‖χ P u‖H0,k(X) + ‖χu‖H0(X)

)
,

where C > 0 does not depend on u.

Proof. The proof is by induction; the case k = 0 is Theorem 5.1. Suppose that the result holds for k ∈ N; combined with 
the calculations preceding the theorem, this gives that ρV ,h(ϕu) ∈H2,k(X) is well defined and uniformly bounded for each 
V ∈ G and h > 0 sufficiently small. Standard functional analysis (extracting a weakly convergent subsequence, etc.) proves 
that V ϕu ∈H2,k(X) for every V ∈ G , with a corresponding estimate. This allows one to conclude the result for k + 1. �



O. Gannot / C. R. Acad. Sci. Paris, Ser. I 356 (2018) 988–1029 1021
5.12. Asymptotic expansions

Using Mellin transform techniques and the conormal regularity guaranteed by Theorem 5.3, it is straightforward to give 
asymptotic expansions for solutions of certain Bessel equations. This section is a special case of far more general expansions; 
see [43, Section 7] and [46, Proposition 8.10] for example.

Proposition 5.24. Suppose that P and {P , T } are elliptic at ∂ X. If u ∈H0(X) and P u ∈ Ċ∞(X), then the following hold.

(1) Let 0 < ν < 1. If T u ∈ C∞(∂ X), then there exist u± ∈ C∞(X) such that

u = x1/2+νu+ + x1/2−νu−.

In addition u± − g± ∈ x2C∞(X), where g− = γ−u and 2νg+ = γ+u.
(2) Let ν ≥ 1. Then there exists u+ ∈ C∞(X) such that

u = x1/2+νu+.

6. The Fredholm alternative and unique solvability

6.1. Global assumptions

Let X denote a compact manifold with boundary as in Section 2.2. Consider

P ∈ Bessν(X).

Assume that P is elliptic at ∂ X in the sense of Section 2.4. Furthermore, if 0 < ν < 1, fix a scalar boundary condition T
with ordν(T ) ≤ μ; this is just for simplicity, whereas matrix boundary conditions necessarily arise in the adjoint problem. 
Assume that P = {P , T } is elliptic at ∂ X as well.

Without any assumptions on the behavior of P away from ∂ X , there is no reason to expect that P or P are Fredholm. 
This section outlines some additional global assumptions which guarantee a Fredholm problem. The simplest of these as-
sumptions is that P is everywhere elliptic (in the standard sense) on X , but in view of applications to general relativity, 
this is overly restrictive. Indeed, operators which arise in the study of quasinormal modes on black holes spacetimes have 
the property that their ellipticity degenerates at the event horizon. Moreover, rotating Kerr–AdS black holes contain an 
ergoregion, so that the corresponding operator is not everywhere elliptic even in the black hole exterior.

The global assumptions on P presented next are motivated by recent work of Vasy [47], which applies to the setting of 
rotating black holes. More generally, these assumptions are typical for situations where coercive estimates are proved via 
propagation results. Given ν > 0, define the space

Y =
{

u ∈H1(X) : P u ∈H0(X), T u ∈ H2−μ(∂ X) if 0 < ν < 1,

u ∈H1(X) : P u ∈H0(X) if ν ≥ 1,

where P u is taken as a distribution on X . That T u is well defined follows from Lemma 5.20. Equip Y with the norm

‖u‖Y =
{
‖u‖H1(X) + ‖P u‖H0(X) + ‖T u‖H2−μ(∂ X) if 0 < ν < 1

‖u‖H1(X) + ‖P u‖H0(X) if ν ≥ 1.

According to the discussion following Lemma 5.20, the space Y is equivalent to

{(u, φ) ∈ H̃1(X) :P(u, φ) ∈H0(X)× H2−μ(∂ X)} (6.1)

for 0 < ν < 1 when the latter space is equipped with the norm ‖(u, φ)‖H̃1(X) + ‖P(u, φ)‖H0(X)×H2−μ(∂ X) . The proof of the 
following result is left to the reader.

Lemma 6.1. The space Y has the following properties.

(1) Y is complete, and Fν(X) is dense in Y .
(2) If 0 < ν < 1, then P :Y→H0(X) × H2−μ(∂ X) is bounded.
(3) If ν ≥ 1, then P : Y→H0(X) is bounded.
(4) The inclusion Y ↪→H0(X) is compact.
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The Fredholm properties of P or P are examined when the following a priori estimates are satisfied. If 0 < ν < 1, 
suppose that the a priori estimate

‖u‖H1(X) ≤ C
(‖Pu‖H0(X)×H2−μ(X) + ‖u‖H0(X)

)
(AP0)

holds for each u ∈ Y . If ν ≥ 1, then the a priori estimate is

‖u‖H1(X) ≤ C
(‖P u‖H0(X) + ‖u‖H0(X)

)
(AP1)

for each u ∈ Y . In view of the compact embedding statement in Lemma 6.1 (cf. Lemma 4.26), it is standard that (AP0) or 
(AP1) imply P : Y→H0(X) × H2−μ(∂ X) or P : Y→H0(X) have finite-dimensional kernels (see Lemma 6.4 below).

Suppose that 0 < ν < 1. In order to prove that P has finite-dimensional cokernel, it is necessary to introduce spaces 
associated with the formal adjoint P∗ and Hilbert space adjoint P ′ . Fix a density μ on X of product type near ∂ X . A priori, 
P∗ is bounded

P∗ : H̃0(X)× Hμ−2(∂ X)→H−2(X)× Hν−2(∂ X).

Recall that if ( f , g) =P∗(v, ψ, v), then for u ∈H2(X) and w ∈ H2−ν(∂ X),

〈u, f 〉X +
〈
w, g
〉
∂ X
= 〈P u, v〉X +

〈
w − γ u, Jψ

〉
∂ X
+ 〈G w, v

〉
∂ X , (6.2)

where the dualities on X and ∂ X are induced by μ and μ∂ X . Now define the space

X =

⎧⎪⎨⎪⎩
(v,ψ, v) ∈ H̃0(X)× Hμ−2(∂ X) :
P∗(v,ψ, v) ∈H−1(X)× Hν−1(∂ X),

if 0 < ν < 1,

u ∈H0(X) : P u ∈H−1(X) if ν ≥ 1.

The space X has properties similar to those in Lemma 6.1. In particular, if 0 < ν < 1, then the set of all (v, γ v, v) such that 
v ∈Fν(X) and v ∈ C∞(∂ X) is dense in X . Similarly, Fν(X) is dense in X for ν ≥ 1.

The analogues of (AP0) and (AP1) are formulated next for the adjoint problems. First suppose that 0 < ν < 1. The relevant 
a priori estimate is

‖(v,ψ, v)‖H̃0(X)×Hμ−2(∂ X) ≤ C(‖P∗(v,ψ, v)‖H−1(X)×Hν−1(∂ X) + ‖(v,ψ, v)‖H̃−1(X)×Hμ−3(∂ X)) (AP0*)

for each (v, ψ, v) ∈X . When ν ≥ 1 the estimate is

‖v‖H0(X) ≤ C(‖P∗v‖H−1(X) + ‖v‖H−1(X)) (AP1*)

for each v ∈X .
When 0 < ν < 1, the formally adjoint operator P∗ should be compared with the Hilbert space adjoint

P ′ :H0(X)× Hμ−2(∂ X)→ H̃2(X)′

defined by〈
(u, φ),P ′(v, v)

〉
X
= 〈P u, v〉X +

〈
T u, v

〉
∂ X .

Recall that the inclusion of H̃2(X) ↪→ H̃1(X) is dense. Consequently H̃1(X)′ may be identified with a dense subspace of 
H̃2(X)′ , where this identification is induced by the μ-inner product. In order to describe H̃1(X)′ , note that there is an 
isomorphism

� : H̃1(X)→H1(X)× H−ν(∂ X)

given by �(u, φ) = (u, φ+); the inverse of � is �−1(u, φ+) = (u, γ−u, φ+). Thus for each α ∈ H̃1(X)′ there exist unique 
f ∈H−1(X), g+ ∈ Hν(∂ X) such that

α(u, φ)= 〈 f , u〉X + 〈g+, φ+〉∂ X .

Furthermore, note that if g− ∈ H−ν(∂ X), then the functional given by u �→ 〈g−, γ−u
〉
∂ X is an element of H1(X)′ . Thus it 

may be represented in the form u �→ 〈 f−, u〉X for a unique f− ∈H−1(X). The next lemma summarizes this discussion.
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Lemma 6.2. Each α ∈ H̃1(X)′ admits a representation

α(u, φ)= 〈 f , u〉X +
〈
g, φ
〉
∂ X

, (6.3)

where f ∈H−1(X) and g ∈ Hν−1(∂ X). Furthermore, ‖α‖H̃1(X)′ is equivalent to the norm

inf{‖ f ‖H−1(X) + ‖g‖Hν−1(∂ X)},
where the infimum is taken over all f , g such that (6.3) holds.

Still assuming 0 < ν < 1, define the auxiliary space

X̃ = {(v, v) ∈H0(X)× Hμ−2(∂ X) :P ′(v, v) ∈ H̃1(X)′}.

Lemma 6.3. Suppose that (AP0*) holds. Then

‖(v, v)‖H0(X)×Hμ−2(∂ X) ≤ C(‖P ′(v, v)‖H̃1(X)′ + ‖(v, v)‖H−1(X)×Hμ−3(∂ X)) (AP0’)

for each (v, v) ∈ X̃ .

Proof. Since P ′(v, v) ∈ H̃1(X)′ , there exists f ∈H−1(X) and g ∈ Hν−1(∂ X) such that the action of P ′(v, v) on (u, φ) ∈
H̃1(X) is given by

(u, φ) �→ 〈 f , u〉X +
〈
g, φ
〉
∂ X

. (6.4)

Now let ψ = J G∗v − J g , so that Jψ + G∗v = g . Furthermore, note that ψ ∈ H−ν(∂ X), so (v, ψ) may be considered as an 
element of H̃0(X). Referring back to (6.2), it follows that P∗(v, ψ, v) = ( f , g). This shows that (v, ψ, v) ∈X , so

‖(v, v)‖H0(X)×Hμ−2(∂ X) ≤ C(‖ f ‖H−1(X) + ‖g‖Hν−1(∂ X) + ‖(v, v)‖H−1(X)×Hμ−3(∂ X))

by (AP0*). In the last line, this used the fact that

‖ψ‖H−1−ν (∂ X) ≤ C(‖v‖Hμ−3(∂ X) + ‖g‖Hν−1(∂ X)).

It now suffices to take the infimum over all f , g satisfying (6.4), and then appeal to Lemma 6.2. �
6.2. The Fredholm property

In this section, the Fredholm property is established whenever (AP0), (AP1), (AP1), (AP1*) hold. The proof is sketched in 
the more complicated case 0 < ν < 1.

Lemma 6.4. Let 0 < ν < 1.

(1) If (AP0) holds, then the operator

P : Y→H0(X)× H2−μ(∂ X)

has a finite-dimensional kernel.
(2) If (AP0*) holds, then the operator

P ′ :H0(X)× Hμ−2(∂ X)→H−2(X)× Hν−2(∂ X)

has a finite-dimensional kernel.

Proof. (1) This is immediate from the compactness of the inclusion Y ↪→H0(X), combined with (AP0).
(2) Clearly the kernel of P ′ restricted to H0(X) × Hμ−2(∂ X) is equal to the kernel of P ′ restricted to X̃ . The result 

follows from the same type of compactness considerations as in (1), using (AP0’). �
In light of Lemma 6.4, let K denote the finite-dimensional kernel of P ′|X̃ . Standard functional analytic arguments (cf. 

[48, Section 4.3] in a similar setting) give the following solvability result.
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Lemma 6.5. Let 0 < ν < 1, and assume that (AP0’) holds. If

(h,k) ∈H0(X)× H2−μ(∂ X)

lies in the annihilator of K via the duality between H0(X) × Hμ−2(∂ X) and H0(X) × H2−μ(∂ X), then there exists (u, φ) ∈ H̃1(X)

such that P(u, φ) = (h, k).

The combination of Lemmas 6.4 and 6.5 imply the Fredholm property:

Theorem 6.1. Let ν > 0 and P as in Section 6.1 be elliptic at ∂ X. If 0 < ν < 1, then let T denote a scalar boundary operator satisfying 
ordν(T ) ≤μ, such that P = {P , T } is elliptic at ∂ X.

(1) Suppose that 0 < ν < 1. If P satisfies (AP0) and (AP0*), then

P : Y→H0(X)× H2−μ(∂ X)

is Fredholm.
(2) Suppose that ν ≥ 1. If P satisfies (AP1) and (AP1*), then

P : Y→H0(X)

is Fredholm.

Proof. (1) Lemma 6.4 shows the kernel is finite dimensional. On the other hand, Lemma 6.5 shows that the equation 
P(u, φ) = (h, k) has a solution (u, φ) ∈ H̃1(X) for (h, k) in a space of finite codimension in H0(X) × H2−μ(X); clearly this 
(u, φ) can be identified with a unique element of Y , namely u.

(2) When ν ≥ 1, there is a natural analogue of Lemma 6.5. Since the arguments are simpler when there is no boundary 
operator, the proofs are omitted. �
6.3. Unique solvability

In this section, again let X denote a compact manifold with boundary as in Section 2.2. This time, consider

P (λ) ∈ Bess(λ)
ν (X).

Assume that P (λ) is parameter-elliptic at ∂ X with respect to an angular sector � in the sense of Section 2.5. If 0 < ν < 1, 
fix a scalar boundary condition T (λ) with ord(λ)

ν (T (λ)) ≤ μ, and assume that P(λ) = {P (λ), T (λ)} is parameter-elliptic at 
∂ X with respect to �. It is also assumed that the “principal parts” of P (λ), T (λ) do not depend on λ, so the spaces Y
defined in the previous section are independent of λ.

The parameter-dependent versions of (AP0), (AP1), (AP0*), (AP1*) are obtained by replacing the norms ‖ · ‖ with their 
uniform counterparts ‖ | · ‖ |, and insisting that the estimates hold for all λ ∈�.

Theorem 6.2. Let ν > 0 and P (λ), P(λ), � be as above. Suppose that the parameter-dependent versions of (AP0), (AP1), (AP0*), 
(AP1*) hold.

(1) Let 0 < ν < 1. There exists R > 0 such that

P(λ) : Y→H0(X)× H2−μ(∂ X)

is an isomorphism for all λ ∈� satisfying |λ| > R.
(2) Let ν ≥ 1. Then there exists R > 0 such that

P (λ) : Y→H0(X)

is an isomorphism for all λ ∈� satisfying |λ| > R.

Proof. The parameter-dependent versions of (AP0), (AP0*) show that P(λ) and P(λ)′ are injective on the appropriate 
spaces (for λ ∈ � with |λ| sufficiently large). This implies that P(λ) is an isomorphism for |λ| sufficiently large. Similar 
remarks hold for P when ν ≥ 1. �



O. Gannot / C. R. Acad. Sci. Paris, Ser. I 356 (2018) 988–1029 1025
7. Completeness of generalized eigenfunctions

In this section, sufficient conditions are given which guarantee that an elliptic parameter-dependent Bessel operator has 
a complete set of generalized eigenvectors. Completeness of eigenvectors for non-self adjoint boundary value problems has 
a long history, going back to classical works of Keldysh [33], Browder [12], Schechter [45], Agmon [1], among many others. 
The results of this section apply to large classes of Bessel operator pencils with a spectral parameter in the boundary 
condition, and two-fold completeness is established (a condition stronger than completeness, described below).

One application of this section is to describe a class of boundary conditions for which linearized scalar perturbations 
of global anti-de Sitter space have complete sets of normal modes. Recent numerical and perturbative studies have hinted 
at a relationship between the linear spectra of such perturbations and possible nonlinear instability mechanisms [5,7–9,13,
17,18]. These normal modes have been studied by separation of variables techniques, but there has not appeared a general 
criterion guaranteeing completeness of normal modes (nor even the discreteness of normal frquencies) for general boundary 
conditions. The results of this section also apply to more general stationary aAdS spacetimes with compact time slices where 
∂t is Killing but the spacetime is not necessarily static.

7.1. Two-fold completeness

The main reference for this section is [38, Chapter II]. Let X be a manifold with boundary, and let P (λ) ∈ Bess(λ)
ν (X) be 

a parameter-dependent Bessel operator. If 0 < ν < 1, let T (λ) be a scalar parameter-dependent boundary operator, written 
in the form T (λ) = T1 + λT0.

If 0 < ν < 1, a complex number λ0 ∈C is said to be an eigenvalue of P(λ) if there exists u0 ∈H2(X) such P(λ0)u0 = 0. 
Corresponding to an eigenvalue λ0, a sequence (u0, . . . , uk) with u0 
= 0 is said to be a chain of generalized eigenvectors if{

P (λ0)up + ∂λ P (λ0)up−1 + 1
2 ∂2

λ P (λ0)up−2 = 0,

T (λ0)up + ∂λT (λ0)up−1 = 0

for p = 0, . . . , k. Thus (u0, . . . , uk) is a chain of generalized eigenvectors with eigenvalue λ0 if and only if the function

u(t)= eλ0t
k∑

j=0

t j

j!uk− j

solves the (time-dependent) equation P(∂t)u(t) = 0. Such a solution u(t) is called elementary. With each elementary so-
lution is associated the Cauchy data (u(0), ∂t u(0)). The set of generalized eigenvectors (for all possible eigenvalues) is said 
to be two-fold complete in a Hilbert space H continuously embedded in H0(X) ×H0(X) if the span of all Cauchy data 
(u(0), ∂t u(0)) corresponding to elementary solutions (for all eigenvalues) is dense in H . The same definition holds for ν ≥ 1, 
this time replacing P(λ) with P (λ).

A general criterion concerning two-fold completeness is given by [53, Theorem 3.4], which is a refinement of the standard 
reference [19, Corollary XI.9.31].

Theorem 7.1. Let P (λ), T (λ) be defined as above. Fix rays �1, . . . , �s through the origin of the complex plane such the angle between 
any two adjacent rays is less than or equal to π/n, where dim X = n.

(1) Let 0 < ν < 1. If P(λ) is elliptic with respect to �1, . . . , �s , then the eigenvalues of P(λ) are discrete and the set of generalized 
eigenvectors is two-fold complete in the space {(v1, v2) ∈H2(X) ×H1(X) : T0 v2 + T1 v1 = 0}.

(2) Let ν ≥ 1. If P (λ) is elliptic with respect to �1, . . . , �s , then the eigenvalues of P (λ) are discrete and the set of generalized 
eigenvectors is two-fold complete in the space H2(X) ×H1(X).

Proof. (1) First suppose that 0 < ν < 1. To apply [53, Theorem 3.4], it must be verified that the singular values of the 
embeddings Jk :Hk(X) ↪→Hk−1(X) satisfy s j( Jk) ≤ C j−1/n for k = 1, 2, and that the space {(v1, v2) ∈H2(X) ×H1(X) :
T0 v2 + T1 v1 = 0} is dense in H1(X) ×H0(X).

The claim about the singular values follows from Lemma B.1. To verify the density claim, let (u1, u2) ∈H1(X) ×H0(X), 
and take a sequence (vn

1, vn
2) ∈H2(X) ×H1(X) such that (vn

1, v
n
2) → (u1, u2) in H1(X) ×H0(X) as n →∞. Note that

T0 vn
2 + T1 vn

1 ∈ H2−μ(∂ X).

Once the sequence (vn
1, v

n
2) is fixed, choose a sequence λn ∈ C such that |λn| tends to infinity along one of the rays of 

ellipticity (say �1) and

|λn|−1‖T0 vn
2 + T1 vn

1‖H2−μ(∂ X)→ 0 (7.1)

as n →∞. According to Theorem 6.2, the operator
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P(λn)
−1 :H0(X)× H2−μ(X)→H2(X)

exists for n sufficiently large, where ord(λ)
ν (T (λ)) ≤μ. Let

wn
1 =P(λn)

−1(0,−T0 vn
2 − T1 vn

1),

so wn
1 lies in H2(X), and set wn

2 = λn wn
1. Then

(vn
1 + wn

1, vn
2 + wn

2) ∈ {(v1, v2) ∈H2(X)×H1(X) : T0 v2 + T1 v1 = 0}.
Furthermore, according to Theorems 5.2 and 6.2 the solution wn

1 satisfies

|λn|2−s‖wn
1‖Hs(X) ≤ C‖T0 vn

2 + T1 vn
1‖H2−μ(∂ X)

for s = 0, 1. Thus (wn
1, w

n
2) → 0 in H1(X) ×H0(X) by the choice of λn in (7.1). This shows that (vn

1 + wn
1, v

n
2 + wn

2) →
(u1, u2), establishing the density.

(2) For ν ≥ 1 the singular value estimates remain the same, and the corresponding density of H2(X) ×H1(X) in H1(X) ×
H0(X) is trivial. �
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Appendix A. Proof of Lemma 4.6

The proof of Lemma 4.6 is broken up into several stages. Recall in this section that γ± are defined as in the beginning 
of Section 4.4 without any mention of the space Fν .

Lemma A.1. Let ν > 0.

(1) If u ∈H1(Tn+) and γ−u = 0, then for a.e. y ∈ Tn−1 ,

u(x, y)= x1/2−ν

x∫
0

tν−1/2∂νu(t, y)dt.

(2) Suppose in addition that 0 < ν < 1. If u ∈H2(Tn+), and γ u = 0, then for a.e. y ∈ Tn−1 ,

u(x, y)= x1/2−ν

x∫
0

t−2ν+1

t∫
0

s1/2−ν∂∗ν ∂νu(s, y)ds dt.

Proof. These two facts follow from the Sobolev embedding for weighted spaces, as in Section 4.1. In the first case, for a.e. 
y ∈ Tn−1 the function x �→ xν−1/2u(x, y) is absolutely continuous on R+ , and γ−u = 0 implies that xν−1/2u(x, y) → 0 as 
x → 0 for a.e. y ∈ Tn−1. The result follows from the fundamental theorem of calculus. A similar argument applies in the 
second case, in which the functions x �→ xν−1/2u(x, y) and x �→ x1/2−ν∂νu(x, y) are absolutely continuous on R+ for a.e. 
y ∈ Tn−1, and vanish at x = 0. �
Lemma A.2. Let 0 < ν < 1. Then Ḣ1(Tn+) = kerγ− , and Ḣ2(Tn+) = kerγ .

Proof. The first equality comes from [25, Proposition 1.2]. It remains to show the second equality.
(1) First show that if u ∈H2(Tn+) and γ u = 0, then u ∈ Ḣ2(Tn+). Begin by assuming that u has compact support in Tn+ , 

which is possible by a standard truncation argument. Next, fix χ ∈ C∞c (R+) satisfying

0≤ χ ≤ 1, χ(x)= 0 for 0≤ x≤ 1, χ(x)= 1 for x≥ 2.

Consider the sequence un(x, y) = χ(nx)u(x, y); since un has compact support in the interior Tn+ , it follows that

un ∈ Ḣ2(Tn+)⇐⇒ un ∈ Ḣ2(Tn+)

by comparability of norms in the interior and the well known characterization of Ḣ2(Tn+) as the kernel of the smooth trace 
maps.
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It now suffices to prove that un → u in H2(Tn+), since Ḣ2(Tn+) is closed. This is easily deduced from Lemma A.1, 
imitating the proof of [21, Chapter 5.5, Theorem 2] for instance.

(2) The inclusion Ḣ2(Tn+) ⊆ kerγ is clear, since γ u = 0 for each u ∈ C∞c (Tn+), and hence γ u = 0 for each u ∈ Ḣ2(Tn+)

by density and continuity. �
Lemma A.3. There exists a map

K : C∞(Tn−1)× C∞(Tn−1)→Fν

such that γ ◦K= 1 on C∞(Tn−1) × C∞(Tn−1) and K̃=K× 1 extends by continuity to a map

K̃ : Hs−ν(Tn−1)→ H̃s(Tn+)

for each s = 0, ±1, ±2. If s = 2, then K extends to a right inverse for γ acting on H2(Tn+).

Proof. Let ϕ ∈ C∞c (R+) be such that ϕ = 1 near x = 0, and set

v−(x)= x1/2−νϕ(x2), v+(x)= (2ν)−1x1/2+νϕ(x2),

so v± ∈Fν . Given ( f−, f+) ∈ C∞(Tn−1) × C∞(Tn−1), define u±(x, y) by its Fourier coefficients,

û±(x,q)= 〈q〉−(1/2±ν) f̂±(q)v±(〈q〉 x).
Then u± ∈Fν and γ±(u− + u+) = f± in the sense of Lemma 4.5; set

K( f−, f+) := u− + u+.

Appealing to Section 4.6 shows that the map defined by

K̃( f−, f+) := (K( f−, f+), f−, f+)

extends by continuity to a map Hs−ν(Tn−1) → H̃s(Tn+). The last statement about the s = 2 case follows from the natural 
identification H2(X) = H̃2(X). �
Lemma A.4. If ν > 0, then Fν is dense in Hs(Tn+) for each s = 0, 1, 2.

Proof. The proof for ν ≥ 1 can be done directly by a mollification argument, so only the case 0 < ν < 1 is considered here. 
Furthermore, the result is obvious when s = 0. The proof is given here in the case s = 2; the case s = 1 is simpler, and can 
be handled similarly.

Suppose that u ∈H2(Tn+), and let ũ =K(γ u), viewed as an element of H2(X). Then γ (u − ũ) = 0, so u − ũ ∈ Ḣ2(Tn+)

by Lemma A.2. It follows that there exists a sequence u j ∈ C∞c (Tn+) such that u j → u − ũ in H2(Tn+). On the other hand, 
approximate γ u by a sequence v j ∈ C∞(Tn−1) × C∞(Tn−1), and hence ũ j =Kv j satisfies ũ j ∈Fν and ũ j→ ũ in H2(Tn+). 
Therefore, u j + ũ j ∈Fν and u j + ũ j→ u, which shows that Fν is dense in H2(Tn+). �
Appendix B. Singular values

Lemma B.1. Let X be a compact manifold with boundary. If ν > 0, then the embeddings

J1 :H1(X) ↪→H0(X), J2 :H2(X) ↪→H1(X)

are compact, and the singular values of J i satisfy s j( J i) ≤ C j−1/n.

To prove the lemma, first let L denote the self-adjoint operator on Tn
� = (0, 1) ×T

n−1 with distributional action given by 
�ν and form domain {u ∈H1(Tn

�) : u(1, ·) = 0}. The remarks following Lemma 5.20, Green’s formula, and Theorem 5.1 show 
that

D(L)=
{

u ∈H2(Tn
�) : γ+u = u(1, ·)= 0 if 0 < ν < 1,

u ∈H2(Tn
�) : u(1, ·)= 0 if ν ≥ 1,

and in either case Theorem 6.1 guarantees that L has discrete spectrum. Note that D((L +1)1/2) = {u ∈H1(Tn
�) : u(1, ·) = 0}. 

The eigenvalues and eigenvectors are well known. When 0 < ν < 1 the eigenvalues are |q|2 + y2
ν,n + 1, where q ∈ Zn−1 and 

yν,n is the n’th positive root of the Bessel function Yν . The corresponding eigenfunction is
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√
xYν(yν,nx)⊗ ei 〈q,y〉.

The zeros yν,n satisfy the asymptotic formula

yν,n =
(

n+ 1
2ν − 3

4

)
π+O(n−1)

as n →∞. The eigenvalues of the compact operator (L + 1)−1/2 are therefore (1 + |q|2 + y2
ν,n)−1/2, and if they are listed in 

descending order with multiplicity, then

λ j ≤ C j−1/n (B.1)

for some C > 0. If ν ≥ 1 then Yν should be replaced by Jν , and yν,n by the zeros jν,n of Jν ; the bound (B.1) remains valid.

Proof of Lemma B.1. (1) First consider the operator J1. By passing to a partition of unity, it suffices to bound the singular 
values of the inclusion

J1 : D((L + 1)1/2) ↪→ L2(Tn
�).

The operator (L + 1)−1/2 is an isomorphism acting L2(Tn
�) →{u ∈H1(Tn

�) : u(1, ·) = 0}. Write

J1 = (L + 1)−1/2(L + 1)1/2.

Now (L + 1)−1/2 is self-adjoint and non-negative on L2(Tn
�), so its singular values are the λ j which satisfy λ j ≤ C j−1/n . 

Furthermore, (L + 1)1/2 is bounded H1(Tn
�) → L2(Tn

�), so the inequality s j(AB) ≤ s j(A)‖B‖ shows that s j( J1) ≤ C j−1/n .
(2) Next, consider J2. First suppose that ν ≥ 1. Again passing to a partition of unity, it suffices to bound the singular 

values of

J2 : {u ∈H2(Tn
�) : u(1, ·)= 0} ↪→ D((L + 1)1/2).

Since the space on the left-hand side is just D(L) when ν ≥ 1, one proceeds as in the first part of the proof.
The proof when 0 < ν < 1 proceeds differently. In that case, one considers the inclusion J2 :H2(Tn

�) ↪→H1(Tn
�) directly. 

Note that H2(Tn
�) may be identified with a closed subspace H of H1(Tn

�)
n ×H1∗(Tn

�) via the mapping

u �→ (u, ∂y1 u, . . . , ∂yn−1 u, ∂νu).

With this in mind, the embedding H2(Tn
�) ↪→H1(Tn

�) is identified with the embedding

H1(Tn
�)

n ×H1∗(Tn
�) ↪→ L2(Tn

�)
n+1, (B.2)

restricted to H . Since 0 < 1 − ν < 1, by the first part of the proof the singular values of the embedding (B.2) are bounded 
by C j−1/n . The same is therefore true of the embedding H2(Tn

�) ↪→H1(Tn
�). �
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